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Synopsis Most research in comparative cognition focuses on measuring if animals manage certain tasks; fewer studies

explore how animals might solve them. We investigated bumblebees’ scanning strategies in a numerosity task, distin-

guishing patterns with two items from four and one from three, and subsequently transferring numerical information to

novel numbers, shapes, and colors. Video analyses of flight paths indicate that bees do not determine the number of

items by using a rapid assessment of number (as mammals do in “subitizing”); instead, they rely on sequential enu-

meration even when items are presented simultaneously and in small quantities. This process, equivalent to the motor

tagging (“pointing”) found for large number tasks in some primates, results in longer scanning times for patterns

containing larger numbers of items. Bees used a highly accurate working memory, remembering which items have

already been scanned, resulting in fewer than 1% of re-inspections of items before making a decision. Our results

indicate that the small brain of bees, with less parallel processing capacity than mammals, might constrain them to use

sequential pattern evaluation even for low quantities.

Introduction

Numerical cognition is viewed as a hallmark of

higher cognitive abilities and intelligence in animals,

perhaps because of the perceived association between

mathematical competence and intelligence in

humans (Dehaene 2011). Numerical abilities have

been found in primates (Brannon and Terrace

2000), birds (Rugani et al. 2013), amphibians

(Uller et al. 2003), fish (Agrillo et al. 2012), and

some invertebrates (Chittka and Geiger 1995;

Dacke and Srinivasan 2008; Gross et al. 2009;

Carazo et al. 2012; Yang and Chiao 2016; Howard

et al. 2018), but few studies have explored the ani-

mals’ pattern inspection tactics by which such tasks

are solved. This may be partly because the research-

ers’ goal was often to demonstrate animal intelli-

gence, in which case it perhaps appears sufficient

to measure performance and be satisfied that the

animal is successful in a statistically supportable

manner. However, seemingly complex cognitive tasks

can sometimes be solved by elegantly simple short-

cuts (Guiraud et al. 2018), using very basic neural

circuitry (MaBouDi et al. 2017; Peng and Chittka

2017; Roper et al. 2017). We therefore think it is

imperative to explore the behavioral strategies by

which animals solve cognitive tasks, in addition to

testing whether or not they solve them (Skorupski

et al. 2018; Vasas and Chittka 2019).
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Studies on adult and infant humans and a variety

of other species have suggested the existence of two

number systems: a small number system, which rep-

resents the numerosity of sets of up to four items,

and a large number system, which represents the

approximate numerosity of larger sets, but with an

error that scales with set size (Trick and Pylyshyn

1993; Pylyshyn 2001; Burr et al. 2010; Hyde 2011;

Skorupski et al. 2018). The ability of humans and at

least some other primates to accurately perceive

small numerosities “at a glance” has been termed

subitizing (Jevons 1871; Kaufmann et al. 1949;

Matsuzawa 2009). Comparative studies have led to

the hypothesis that the small and accurate number

system (object file system or OFS) and large but

approximate (analog magnitude) number systems

rest upon mechanisms shared by a variety of species

(approximate number system or ANS) (Feigenson

et al. 2004). The comparative evidence for this

mainly comes from studies showing a discontinuity

in performance, where error rates are relatively con-

stant for set sizes of up to four, but increase with set

size for larger numbers of items (Weber’s law).

However, the existence of such a discontinuity has

been challenged in non-human and human studies

(Rugani et al. 2013). However, the OFS is thought to

depend on object perception and individuation,

which depends on working memory and which

would also explain the upper limit for this system

of three to four items (Cowan 2001). Even though

there is also evidence to suggest that performances

seen for small versus large numbers might be under-

pinned by a single system (Gallistel 1990; Dehaene

and Brannon 2011; Halberda and Odic 2015;

Cheyette and Piantadosi 2020), there is no contro-

versy about the observation that humans and some

other animals are exceptionally fast and accurate at

assessing numbers of up to four. The ability to pro-

cess visual information rapidly and in parallel

appears to be a general feature of the primate visual

system.

Bees, on the other hand, appear poorly able to

analyze entire visual scenes at a glance (Nityananda

et al. 2014; Guiraud et al. 2018) and this might also

be reflected in their counting performance.

Honeybees can discriminate visual patterns with

small numbers of items based on numerical cues

(Gross et al. 2009; Howard et al. 2018). We hypoth-

esize that bees will be unable to rely on a single

sensory snapshot to make numerical discriminations

and predict instead that enumeration of small sets of

items will be dependent on sequential scanning

(Skorupski et al. 2018). This implies that the time

required to make number-based visual

discriminations will depend on the set sizes to be

enumerated. Here, we explore this prediction by de-

tailed analysis of the behavior of bees during the

decision-making process in a numerosity discrimina-

tion task.

Methods

Bees and apparatus

Eight colonies of bumblebees (Bombus terrestris

audax) were used in this study, housed in individual

nest-boxes. Each nest was separately connected to a

wooden flight arena (100� 70� 70 cm) via a plastic

tunnel. The arena was covered with a UV-

transparent Plexiglas ceiling.

Prior to experiments, a gravity feeder containing

30% sucrose solution was placed in the center of the

arena to familiarize with the experimental arena. In

this stage, forager bees could freely return to the hive

when satiated. Successful foragers were individually

marked on the thorax with number labels for iden-

tification during the subsequent experiment.

Marked bees were initially pre-trained to receive

50% sucrose solution from 10 white disks (7 cm in

diameter) surrounded by 2 mm wide black margins

presented on the back wall of the arena. The center

of each disk was attached to the back wall of the

arena via a tube (5 mm in diameter); a drop of

50% sucrose solution was placed in the opening of

the tube in the center of the disk. Foragers that

learned to take the sucrose from the center of the

pattern were selected for the experiment.

Stimuli

Stimulus patterns were constructed from the same

7 cm white disks, but with a varying number of con-

stituent elements to vary numerosity. These consisted

of two yellow shapes (circles or stars) in two differ-

ent sizes (3.1 and 7.0 cm2). The number of items in

a pattern was one, two, three, or four, each presented

in one of four alternative configurations (small or

large circles or stars). Patterns were rotatable about

their centers to vary pattern orientation between

training bouts and between tests. Each pattern was

surrounded by a 2 mm wide black margin, and sub-

tended a visual angle of approximately 4.5� from the

entrance to the flight arena. Patterns were laminated

to allow cleaning between training bouts and tests.

Patterns were presented in alternative numerosity

pairs: either one-item and three-item patterns, or

two-item and four-item patterns (see Fig. 1A, B for

some training patterns). Additional patterns were

constructed for transfer tests (see below). These

were designed in a different size such that the total
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yellow color area in the pattern with larger number

of items was less than the total yellow color in the

alternative pattern. Other patterns were constructed

using a novel color (purple) and novel shapes

(Fig. 1A, B). We measured the spectral reflectance

of the yellow and purple items as well as the white

background against which they were presented, fol-

lowing methods by Chittka (1992) and using the

spectral sensitivity functions of the bumblebee B.

terrestris (Skorupski et al. 2007). The lab’s

illumination spectrum was taken from Li et al.

(2017). We calculated the receptor signals in the

bees’ UV, blue and green receptors for the countable

items. From these values we calculated the color con-

trast and green contrast (contrast perceived by the

bees’ green receptors), since both can be used alter-

natively in stimulus detection by bumblebees

(Spaethe et al. 2001; Dyer et al. 2008). Yellow targets

produced a high color contrast against their white

background (0.32). A color contrast of >0.3 has

Fig. 1 Training and testing protocol. (A, B) Training and test patterns (artificial flowers) were constructed from 7 cm diameter disks

with a variable number (1–4) of constituent elements differing in size and shape (small or large circles or stars). Test patterns included

the same stimuli used during training, and additionally, during transfer tests, stimuli whose constituent elements contained novel shapes,

size, and color. Each pattern was attached via its center to the rear wall of the flight arena by a plastic tube (5 mm diameter) with 10 lL

sucrose or quinine (training) or distilled water (test stimuli) placed at the opening. Patterns were rotated around the center during the

experiment, to vary orientation of the pattern elements in a pseudo-random manner. Bees were trained on patterns containing either

one or three elements (A), or two or four elements (B); in each case differential conditioning was used, in separate groups of bees,

such that either the higher or lower numerosity was positively reinforced (sucrose) and the complementary numerosity was negatively

reinforced (quinine). (C) Each bee was subjected to 12 training bouts, in which she entered the flight arena and was confronted with

five pairs of patterns (e.g., two-item versus four-item patterns). The bee was free to sample the rewarding and unrewarding patterns

and return to the nest box when satiated, which marked the end of a bout. Following training bees were subjected to three further

tests where the positive or negative reinforcement was replaced with sterile distilled water. Responses were analyzed from video

recording of the first 120 s in the flight arena. In learning tests, bees were presented with pattern pairs randomly selected from the

training set. In transfer tests bees were presented with patterns of the same numerosity but with constituent elements of novel size,

shape, and color. Finally, bees were confronted with novel numerosity tests, such that bees trained to discriminate one- from three-

item patterns were presented with two- versus four-item patterns, and vice versa.
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been empirically shown to result in very high levels

of detectability and minimal search times in bum-

blebees (Spaethe et al. 2001). Yellow and purple tar-

gets differed by a Euclidian distance of 0.31 in the

bee color space, where values of 0.2 already result in

close to 100% accuracy in color discrimination (Dyer

and Chittka 2004). Green contrast for the yellow

targets was low (0.01), but this is more than com-

pensated for by high values of color contrast for

these targets (note that unlike honeybees, bumble-

bees can use color contrast for target detection

even in the absence of green contrast [Dyer et al.

2008]). Green contrast for the purple items with

the white background was �0.13. See

Supplementary Table S1 for further details on stim-

ulus parameters as the edge length, total amount of

color, special frequency, convex hull, and illusionary

shape of stimuli.

Protocol

During the training phase, the rear wall of the arena

served as a decision wall. Five pairs of disks were

randomly placed, presenting two alternative patterns,

and differential conditioning was used to improve

decision accuracy. Positive reinforcement was pro-

vided by 10 lL 50% sucrose solution placed at the

center of the target pattern and negative reinforce-

ment by 10 lL saturated quinine hydrochlorate solu-

tion in the distractor pattern. One bout was defined

as a bee leaving the nest and choosing different pat-

terns before freely returning to the hive once she was

satiated. During each bout, empty feeders were

refilled with 10 lL of sucrose after the bee had left

the correct pattern and made the next choice. After

each bout of training and tests, patterns and feeding

tubes were cleaned with 30% ethanol to exclude

olfactory cues. The location and shape of all condi-

tioned and unconditioned patterns were randomly

changed before the bee could enter the arena for

the next bout (Fig. 1C). Patterns and their positions

were randomly varied in each bout to prevent bees

from using the location of the reward when solving

the task. Each day of the experiment, only one se-

lected bee from the pre-training phase was allowed

to enter the arena until a total of 12 bouts and three

tests were completed. Only one of four types of pat-

terns (big dots, small dots, large star, or small star)

was presented to bee at each bout. In this study, four

groups of bees were trained separately. The first

group (N¼ 10) was trained to associate the pattern

containing one item with a reward and to avoid the

pattern with three items and the second group

(N¼ 10) was trained to get a reward from patterns

with three items against unrewarding patterns with a

single item. The third group of bees (N¼ 10) was

trained to discriminate patterns with two items over

those with four items, while the last group (N¼ 10)

was trained to choose patterns containing four items

over two items.

To evaluate performance with novel patterns after

training, the bees were examined not only in the

learning test, but also in the transfer tests containing

novel patterns or novel quantities (Fig. 1B, C). All

patterns in the tests provided 10 lL of sterilized wa-

ter (i.e., patterns without rewarding or punishing

outcomes for correct or incorrect choices [ICs]).

Following the learning phase, the first unrewarded

test was used to determine whether bees had learnt

to distinguish numbers without any olfactory and

irrelevant visual cues. Also, bees were examined in

transfer tests which included novel patterns (Fig. 1A,

B) to assess whether bees could transfer the learned

numbers to novel size, shape, or color. Finally, bees

were confronted with novel quantities; patterns with

two or four items were presented to bees that had

previously been trained to one or three items.

Conversely, bees that had learned to discriminate

between two and four items were presented with

patterns containing one or three items. One or two

refreshment bouts of training were used between

tests to maintain the bees’ motivation to complete

the task. The sequence of tests was randomized from

bee to bee. Trained bees were removed from the nest

once the training and tests phases were finished.

Statistical analysis

To evaluate the bees’ performance over trials, colony,

groups and patterns, the data from the learning pro-

cedure were analyzed with a generalized linear model

(GLM) for a binary probability of the performance.

The percentages of the correct choices (CCs) were

calculated for every block of 10 consecutive visits of

all the bees (Supplementary Fig. S1). To study the

effect of different factors on bees’ performance, we

defined the trial block as a continuous predictor;

colony, and the group of bees trained with patterns

with different number of items were defined as cat-

egorical predictors and we included the interaction

between trial block and the group of bees in the

GLM. The bees’ index was included in the model

to check for random effects. Finally, the GLM’s

parameters were estimated by maximum-likelihood

estimation method in MATLAB 2018b

(MathWorks, MA, USA). In addition, the homoge-

neity of bees’ responses in each group was tested

using Chi-square goodness of fit tests. To determine
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whether bees were able to extract the learnt numer-

ical information from the training patterns without

any further cues, the decision of bees during the

first 120 s of their flight was analyzed in terms of

choices (landing on a pattern) and rejections (hov-

ering over a pattern and flying away without land-

ing). This gave four possible response categories:

landing on the correct pattern (correct choice -

CC); landing on the incorrect pattern (incorrect

choice - IC); visiting (hovering over) an incorrect

pattern without landing (correct rejection - CR);

visiting a correct pattern without landing (incorrect

rejection, IR). The percentage of each response was

estimated from the video recorded in the unre-

warded test. Finally, the Wilcoxon signed rank test

or Wilcoxon rank sum test was used to interpret

the null hypothesis that a pair of responses was not

different.

To summarize the bees’ performance in the learn-

ing and transfer tests with novel numbers, we used

the modified formula for the Matthews correlation

coefficient (MCC) (Matthews 1975) as follows:

MCC ¼ Cl � Rs � Cs � Rlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl þ Csð Þ Cl þ Rlð Þ Rs þ Csð Þ Rs þ Rlð Þ

p

where Cl and Rl represent the number of choices

and rejections of the pattern with large number of

items while Cs and Rs represented the number of

choices and rejections of the pattern with small

number of items, correspondingly. This allows a

more comprehensive evaluation of choice behavior

in comparison to the popular evaluation in which

choice accuracy is measured by only evaluating cor-

rect and incorrect choices. This coefficient takes into

account both true and false positive responses, as

well as correct and incorrect rejections . MCC meas-

ures the correlation between the observed pattern of

responses and the pattern of responses that would

reflect perfect performance. High positive values of

MCC (maximum at þ1) corresponds to the ten-

dency of the bee in responding to the patterns

with large number while negative values of MCC

(minimum at �1) exhibits the responses of the bee

to the pattern containing small number of items.

Zero indicates bees were not better than chance level

to select one of the presented options. Where the

previous analysis of correct versus incorrect choices

indicated numerosity had been learned, we tested the

directional hypothesis that MCC values were signif-

icantly greater than zero for groups trained on the

higher numerosity, and significantly less than zero

for groups trained on the lower numerosity

(Wilcoxon signed rank test, one-tailed).

Video analysis

The arena was equipped with a camera at the top of

the arena entrance (opposite the decision wall) to

record the bees’ flights while they were scanning

the presented patterns. The field of view of the cam-

era was 215 cm wide and 120 cm high at a resolution

of 1280� 720 pixels (Supplementary Fig. S3). For

initial trial runs with four individuals, the frame

rate was 30 fps using a webcam (HD Pro Webcam

C920, Logitech, Lausanne, Switzerland). We subse-

quently switched to 240 fps using an iPhone 5

(Apple, Cupertino, CA, USA). The first 120 s of the

tests were video-recorded to analyze the bee’s scan-

ning behavior. Examples of recorded tracks are

shown in Fig. 2A and Supplementary Fig. S3 and

Supplementary Videos S1 and S2.

The first 120 s of the recorded videos from the

learning and quantity tests was analyzed using the

free software Solomon coder beta (Andras Peter,

BUDAPEST). Bees were observed to reduce the

speed of flight or hover in a stable position when

approaching a pattern. Hovering behavior was char-

acterized by a bee flying very closely (approximately

1–2 cm) in front of the stimulus while facing it. We

wished to quantify this behavior in a manner inde-

pendent of any observer bias. Therefore, a MATLAB

algorithm was developed to measure the hovering

time (i.e., the time spent hovering in front a pat-

tern), and the number of items scanned in each pat-

tern, prior to a bee’s choice (landing) or rejection

(flying away after inspection). The MATLAB algo-

rithm was based on the extraction of x/y coordinates

of the bees’ bodies in front of the target wall during

flight, frame by frame. The algorithm was fully au-

tomated, allowing us to track a bee between consec-

utive frames, independently of target deformation,

shadows, or external moving objects. Extracted flight

data that represent the bees’ location at each frame

of the videos was used for further analysis. The flight

path of each bee was considered to start when the

bee entered the arena.

We evaluated the bees’ scanning behavior depend-

ing on the final choice made (land or reject after

inspection). Total hovering time in front of a pattern

was as the total time the bee’s body was seen inside

(in front of) the circular boundary of the pattern,

from the vantage point of the camera. In a similar

manner, we evaluated the number of items that bees

scanned within each pattern. If the bee’s body was

located entirely within the borders of an item (as

viewed from the camera) for >0.2 s, we considered

the bee to be scanning the item and therefore this

was considered a count. Ambiguous flight
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movements in front of a stimulus (�0.2 s) where

bees may have been changing direction or flying

across a stimulus to reach another were not consid-

ered. A simple threshold rule was used to decide if

bees chose (or rejected) a target. A bee is generally

considered as choosing a target when it makes con-

tact (with antennae, feet or proboscis) with the

target, and this typically involves a temporary slow-

ing down of flight, or actual landing. Since these

behaviors could not be monitored using the video

material at hand in an automated manner, we chose

a threshold flight speed classification to assess if bees

had made contact with (chosen) a target. Since,

however, flight speeds were variable between bees,

we used a dynamic threshold determination. The

speed of a bee in front of all microtubes was clus-

tered into two groups using a K-means algorithm.

The boundary between two groups (from K-means)

was considered a threshold to identify the bee’s deci-

sions. We assumed that the bee chose a pattern if her

speed was below the threshold. Otherwise, her be-

havior was classified as rejection behavior.

It is possible that the criterion of counting an item

as inspected only when the bee was seen right in

front of it underestimates the numbers of items re-

ally viewed. For instance, the bee’s body could have

been located slightly outside the volume in front of

an item during the video, while the body axis was

tilted in such a way that the bee may have been

facing an item. In such cases, the bee may have

scanned the item, but this would not have been con-

sidered a count because it did not qualify by our

criteria. For this reason, we repeated the analysis

for an extended volume around each countable

item, so that we also counted when a bee was seen

up to 5 mm outside the boundaries of the item.

Measurement of hovering time and number of items

scanned was done by independent analysis of all

flight path data by three experimenters (HM,

HSGD, and EG) and then cross-checked. The aver-

age hovering time and number of pattern items

scanned were then separately calculated for each re-

sponse category (i.e., CC, CR, IC, and IR; see above).

Results

Bumblebees discriminate numerosities in the range

1–4

We first confirmed that bumblebees could perform

simple numerosity discrimination. Differential con-

ditioning was used to train bees on artificial flower

patterns containing one to four countable items

(Fig. 1; see the “Methods” section). Bees were

trained to discriminate one-item from three-item

patterns, or two-item from four-item patterns. In

each case, one group of bees was reinforced posi-

tively (þ) on the higher number (3þ or 4þ) and

negatively (�) on the lower number (1� or 2�),

while another group was subjected to the reverse

conditioning. This resulted in four groups of bees

(4þ 2�, 2þ 4�, 3þ 1�, and 1þ 3�). Each group

Fig. 2 Numerosity discrimination by bees. (A) Flight path

showing the first 14 s of activity during a learning test, from a bee

trained to select two- and avoid four-item patterns. Each point

on the flight path corresponds to a single video frame, with an

interval of 33 ms between points. The bee sequentially scans two

patterns, correctly avoiding them, before landing on a two-item

pattern. The color map changes from blue to red with increasing

time (see Supplementary Video S1). (B) MCCs (mean6SEM) for

all four training groups in the learning tests. Values are indicated

for each individual bee by small empty circles. The correlation is

computed with respect to choosing the larger numerosity for

each training group; hence, positive correlation indicates correct

performance for bees trained to three- or four-item patterns

(3þ 1�, 4þ 2�) while negative correlation indicates correct

performance for the complementary training groups (1þ 3�,

2þ 4�). Correlation coefficients are significantly different from

zero (**P< 0.001).
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was presented with five pairs of the patterns, ran-

domly arranged on the back wall of the flight arena

during training and subsequent learning and transfer

tests (Fig. 1C). Before analyzing the data further, we

first ensured that each group of 10 bees showed sta-

tistically homogenous behavior by means of v2 con-

tingency tests on the 15 sequential blocks of 10

choices per bee. Indeed all four groups were statis-

tically homogenous (df¼ 126; P> 0.99 in all cases):

4þ 2�: v2¼29.4; 2þ 4�: v2¼17.7; 3þ 1�: v2¼27.8;

1þ 3�: v2¼20.1).

Following training, learning was assessed in unre-

warded trials (learning tests) of patterns containing

the same numbers of countable items. We analyzed

the bees’ choice behavior using video recording of

the first 120 s of activity from entering the flight

arena (Fig. 2A). During this interval, bees sequen-

tially scanned, on average, 32 patterns

(Supplementary Fig. S1B); each scan led to a landing

(a choice) or the bee flew on to another pattern

without landing (a rejection). This yields four possi-

ble response classes: a CC, IC, CR, and IR. We

counted the number of responses in each category

to compute the MCC for each bee in each learning

test (see the “Methods” section). In Fig. 2B, the

mean MCC values are plotted for each group of

trained bees (see also Supplementary Fig. S2). Since

we computed the MCC as the correlation with

responses to the larger numerosity in each pair of

patterns, perfect performance would be reflected in a

MCC of 1.0 for the 4þ 2� and 3þ 1� groups, and a

MCC of �1.0 for the groups trained on the smaller

numerosity (2þ 4� and 1þ 3�). In all cases a MCC

of 0 reflects chance performance. The distribution of

MCC values was significantly different from a distri-

bution centered on zero for all groups (Wilcoxon

one-sample signed rank test; W> 36, P< 0.004,

two tailed, for all groups) indicating that each group

successfully learned the numerosity discrimination.

Performance in the learning tests was not signifi-

cantly different for bees trained on the higher or

lower of the target numerosities in the patterns

(i.e., 1 vs. 3 or 2 vs. 4). However, the absolute per-

formance level was higher for groups trained to dis-

criminate one- from three-item patterns compared

with the groups trained to discriminate two- from

four-item patterns, regardless of whether the target

numerosity was the lower or higher value (Wilcoxon

two-sample signed rank test, W¼ 249, P¼ 0.046).

This was also reflected in the training phase, where

analysis of learning curves demonstrated faster learn-

ing in the groups trained to discriminate one from

three compared with the groups trained to

discriminate two from four (Supplementary Fig.

S1A; GLM—see the “Methods” section, P¼ 0.001).

To control for the possibility that low level visual

cues may have influenced bees’ decisions, we carried

out transfer tests (see the “Methods” section), in

which the trained numerosities were represented by

novel patterns (Fig. 1 and Supplementary Fig. S3,

Supplementary Video S2, and Supplementary Table

S1), where the size, shape, and color of the constit-

uent items were varied. Most trained groups made

significantly more CCs than ICs when the trained

numerosity was presented via the novel patterns

(Supplementary Fig. S4; P< 0.04 for all novel pat-

terns and groups except the 3þ 1� group, which

failed to transfer the trained numerosity to novel

color patterns (P¼ 0.19), despite successfully trans-

ferring to novel sizes and shapes; see Supplementary

Table S1 for full details of stimuli). We therefore

conclude that bumblebees can make visual discrim-

inations based on numerosity, at least in the range of

1–4 and when the difference between numbers was

two. They did so without relying on visual pattern

matching, overall area, illusory contours, spatial fre-

quency, convex hull, or perimeter length of stimulus

items. This is consistent with previous studies in

honeybees (Chittka and Geiger 1995; Dacke and

Srinivasan 2008; Gross et al. 2009); we first needed

to ascertain that bumblebees, too, could solve such

tasks before exploring how they solve them (see sub-

sequent sections).

Bumblebees scanned items sequentially

To explore how bees made the choice of accepting or

rejecting a given pattern, we analyzed the videos of

the bees’ flight paths (see the “Video analysis” sec-

tion) using an automatic extraction of the flight path

(from the bee’s location at each frame of the video)

and hovering time (flight duration when the location

of the bee was within the circumference of the pat-

tern followed by a “landing” or “rejecting” choice)

for every pattern type. Hovering time for CCs

depended strongly on training group, being signifi-

cantly longer for bees trained on the larger number

of items within a pattern (3þ 1� > 1þ 3�, Fig. 3A

and 4þ 2� > 2þ 4�, Fig. 3B; Wilcoxon rank sum

test: P< 0.008 for both group comparisons). In other

words, bees took longer to correctly identify target

patterns containing more items, presumably because

such items require more scanning (Fig. 3A, B).

Interestingly, a similar, if less marked effect was

found for CRs (when bees found themselves scan-

ning the incorrect number). Bees trained to patterns
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with the smaller number of items (1þ 3�, Fig. 3A

and 2þ 4�, Fig. 3B) spent longer hovering over

patterns containing the higher numerosity before

correctly rejecting it, than they did over patterns

containing the smaller numerosity before correctly

choosing it. The opposite relationship between pat-

tern numerosity and hovering time was found in the

two groups trained on the larger numerosity: these

bees were quicker to reject patterns with the smaller

numerosity than they were to correctly choose pat-

terns with the larger (Wilcoxon rank sum test:

P< 0.02 for all four comparisons of CC with CR).

Thus, response time increased with pattern numer-

osity for both CCs and CRs.

In keeping with this, differences in hovering time

were smaller when comparing correct responses (CC

or CR) to patterns with the same numerosities in

different training groups. Hovering time of bees cor-

rectly choosing three-item patterns (i.e., 3þ 1�
group) did not differ significantly from those cor-

rectly rejecting three-item patterns (i.e., 1þ 3�
group; Fig. 3A; Wilcoxon rank sum test: W¼ 40,

P¼ 0.72). The same was true when comparing CCs

and CRs of four-item patterns (Fig. 3B; Wilcoxon

rank sum test: W¼ 26, P¼ 0.21). However, when

bees had been trained to a larger number (3þ or

4þ) and encountered a pattern with a smaller num-

ber (in which case the correct response is a rejec-

tion), there was a trend for longer scanning times, as

if the bees continued searching for further items.

This difference was significant when comparing

CCs of one-item patterns by the 1þ 3� group

with CRs of the same patterns by the 3þ 1� group

(W¼ 70, P¼ 0.045; Fig. 3A), but not for the same

comparison of correct responses to the two-item pat-

tern; i.e., CC by the 2þ 4� group and CR by the

4þ 2� group (W¼ 52, P¼ 0.138; Fig. 3B).

The dependence of hovering time (Fig. 3A, B) on

pattern numerosity suggests that bees make their

choices at least in part by sequential enumeration

of items within a pattern. To confirm this, we

extracted the number of items within a pattern

that were scanned prior to each decision from video

recordings of the learning tests. A direct comparison

for CCs, of the numbers of items scanned depending

on the number of items that needed to be counted

within patterns, reveals a clear correlation (Fig. 4A

and Supplementary Fig. S6), confirming that numer-

osities were not assessed by subitizing (at a glance),

but instead by bees viewing the items at least in part

sequentially. However, it is also apparent that the

number of items counted within a pattern before

making a decision is lower than the number that

actually needs to be counted. There are multiple pos-

sible reasons for this (see the “Discussion” section).

Figure 4A shows that the number of items scanned

increased with the target numerosity for both CCs and

CRs (Kruskal–Wallis test, v2 ¼ 9.25, P< 0.001). This

Fig. 3 Hovering times of bees in the learning tests. (A) Response times (i.e., the time spent hovering in front a pattern) for each

response category (CC, correct choice; CR, correct rejection; IC, incorrect choice; IR, incorrect rejection) for bees trained to select

one-item (light green symbols) and three-item (dark green) patterns (mean6SEM). Numerals in square brackets indicate the numer-

osity for correctly chosen and correctly rejected patterns. Response time increases with pattern numerosity for both CCs and CRs. (B)

Same analysis for bees trained to discriminate two-item (light blue symbols) from four-item patterns (dark blue symbols). ** indicates

P< 0.001 and * for P< 0.05 for difference in hovering time between CC and CR within groups (horizontal square brackets) and

difference in hovering time for CCs between groups.
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indicates that more scans were needed to enumerate

higher numerosity patterns to correctly choose them,

suggesting that bees may need to retain items scanned

in working memory for enumeration, keeping track of

items already scanned. Our analysis of the sequence of

individual pattern elements scanned within the re-

sponse time (i.e., prior to landing or flying away)

supported this notion. Bees in all four training groups

clearly avoid re-scanning a previously scanned item in

the vast majority of cases (Fig. 4B, C).

Transfer to novel numbers

We next explored the behavior of the bees when

confronted with novel numerosities after the training

sessions. In these transfer tests, we presented each

training group with pattern pairs of the non-

trained pattern, i.e., two- and four-item patterns

for the 1þ 3� and 3þ 1� groups, and one- and

three-item patterns for the 2þ 4� and 4þ 2�
groups. If the bees learned the numerical relations

“greater than” and “less than” between the trained

numerosities, then we would expect them to prefer-

entially select the novel patterns containing higher or

lower numerosity according to training group. When

the training sessions were followed by transfer tests

with novel numerosities, the overall rejection rates

increased in all groups (Fig. 5A; compared with the

rejections in the learning test P< 0.05), suggesting

that the bees were reluctant to select patterns other

than those containing the trained numerosity.

However, analysis of choice behavior (according to

the criterion that CCs mean selection of either the

greater or lesser of the novel numerosities, according

to training group) showed significantly more CCs

among the 1þ 3�, 3þ 1�, and 4þ 2� groups.

Thus, bees trained to discriminate one-item over

three-item patterns were significantly more likely to

select a smaller numerosity when confronted with

the novel two- and four-item pattern pairs

(Supplementary Fig. S5A). Conversely, bees trained

to select three-item patterns over one-item patterns

were significantly more likely to select the larger

(four-item) pattern from the novel numerosity

pair. Similarly, bees trained to discriminate four-

Fig. 4 Sequential scanning of stimulus elements by bees. (A)

Mean (6SEM) number of stimulus elements scanned prior to

correct responses for four groups of bees trained to discriminate

one- from three-item patterns and two- from four-item patterns.

Number of items scanned increases with pattern numerosity. **

indicates P< 0.001 (B, C) Number of scans for each item within

a pattern for bees trained to discriminate one- from three-item

patterns (B) and two- from four-item patterns (C). For both

groups, scanning an individual item more than once is very rare

(<1% across all bees), suggesting the sequence of items scanned

is retained in working memory.
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over two-item patterns were significantly more likely

to select the greater novel numerosity (three-item

patterns). However, this trend was not found among

bees trained to discriminate two- from four-item

patterns; these bees selected the larger or smaller of

the novel numerosity pairs with approximately equal

frequency (Supplementary Fig. S5B).

The above evaluation took into account only land-

ing on patterns. A similar picture emerges when

MCCs (where all four types of decisions are evalu-

ated, including pattern inspections followed by a re-

jection without landing) are calculated for the

transfer tests (Fig. 5B). Bees of the group rewarded

on three items (3þ 1�) chose four over two in the

transfer test (positive correlation; P¼ 0.001), whereas

bees rewarded on one-item patterns (1þ 3�) pre-

ferred two-item patterns in the transfer test (negative

correlation; P¼ 0.042). Bees trained to choose two-

and reject four-item patterns were indiscriminate

when forced to choose between one- and three-

item patterns, selecting the higher or lower of the

novel numerosity approximately equally, as reflected

in an MCC value not significantly different from

zero (P¼ 0.56). Bees trained to four-item patterns

(4þ 2�) showed only a weak trend to select three-

over one-item patterns in the novel numerosity test

(P¼ 0.055; Fig. 5B).

Discussion

The aim of our study was to investigate the behav-

ioral strategies and mechanisms underpinning count-

ing in bumblebees. Our results suggest that bees

require sequential scanning of pattern items to enu-

merate the countable elements within a pattern. This

is supported by the observation that the time re-

quired to make number-based visual discriminations

depends on quantity of items and the capacity of

storing such information during inspection. We

show that bumblebees can discriminate numerical

quantities in the range 1–4 in a manner that rules

out other low-level features that might correlate with

number, at least when the difference between the

countable items is two. Thus, bumblebees join hon-

eybees and other insects in terms of their ability to

respond appropriately in small-number counting

Fig. 5 Novel numerosity test. (A) Comparison of rejection rate in learning test and novel numerosity tests (dashed bars) for all four

training groups. **P< 0.005, *P< 0.05. (B) MCCs (mean6SEM; individual values indicated by small circles) for all four training groups in

the novel numerosity test, where bees trained to discriminate one- from three-item patterns were presented with two- and four-item

patterns, and vice versa. The correlation is computed with respect to choosing the larger numerosity for each training group; hence, if

bees generalize the larger of smaller numerosity according to training group, positive correlation indicates bees trained to three- or

four-item patterns (3þ 1�, 4þ 2�) are now choosing four- and three-item patterns, respectively, while negative correlation indicates

the complementary training groups (1þ 3�, 2þ 4�) are now choosing two- and one-item patterns, respectively. Correlation coef-

ficients significantly different from zero indicated by **P< 0.005 and *P< 0.05).
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tasks (Chittka and Geiger 1995; Dacke and

Srinivasan 2008; Gross et al. 2009; Howard et al.

2018, 2019).

Our detailed flight-path analysis of the behavior of

bees also indicates that their assessment of pattern

numerosity depends on serial enumeration of pattern

elements. The close-up inspection and scanning of

countable items by bees was not a result of their

poor detectability (see the “Methods” section). For

CCs, bees trained to select the larger number of a

pair would spend more time inspecting the patterns,

and scan more items within a pattern, than bees

trained to the smaller number. This was also true

for CRs by bees trained to the smaller number of a

pair, where longer hovering times and larger num-

bers of scanned items indicate serial enumeration of

the incorrect patterns prior to rejection.

Furthermore, during inspection of the patterns, the

frequency of re-scanning an individual pattern item

was very low (<1%), suggesting that bees main-

tained a tally of items scanned in working memory.

This suggests that bees in our study do not make

global judgments of numerical quantity, in the way

that humans and other primates can (Jevons 1871;

Kaufmann et al. 1949; Feigenson et al. 2004), but

instead need to itemize the number of elements

within a pattern, at least in part, by serial visual

scanning.

Our video analysis of bees’ flight behavior was

relatively simple, and has obvious shortcomings.

Nonetheless, it is better to have some exploration

of the bees’ scanning strategies in pattern discrimi-

nation tasks rather than none at all, as a first step to

understanding the mechanisms behind their visual

cognition. The limitations stem from the fact that

only a single camera was used, and therefore we

have no information about the bees’ position in

3D, and the proximity to the wall on which the

targets were presented had to be estimated. In addi-

tion, the volumes in which the bees’ scanning was

counted were not simple cylindrical shapes, but

would instead have been slightly oblique depending

on how far in the periphery of the wall the targets

were. Irrespective of these shortcomings, the overall

result that bees take longer to inspect patterns with

larger numbers of items, and inspect (hover in front

of) larger numbers of such items is unaffected by

this. Therefore, the observation that bees do not fully

assess small numerosities by subitizing is robust.

Nonetheless, the number of items inspected per

pattern before bees make a decision is on average

smaller than the number of items that need to be

enumerated (Fig. 4A and Supplementary Fig. S6).

Even when the larger volume around each item is

taken into account, bees decided to accept a four-

item pattern, on average, after scanning on average,

2.5 items. For one-item patterns, the number of

items scanned is, on average, 0.5—in other words,

according to our quantification, bees often landed on

such patterns very swiftly and without closely scan-

ning any items. There are the following possible

explanations. One is that our method of diagnosing

that an item was enumerated (“scanned”) are highly

conservative—the bee had to spend a time of 0.2 s in

front of it (or a slightly enlarged area around it). We

were not able to assess if a bee might have counted

an item during a shorted fly-by, or from an oblique

angle. Therefore, the analyses in Fig. 4A and

Supplementary Fig. S6 might present underestima-

tions of the numbers of items scanned. It is also

possible that bees viewed items by subtle head move-

ments (Riabinina et al. 2014; Boeddeker et al. 2015)

that could not be captured by our video analysis.

In addition, we cannot rule out that there was

some combination of parallel or serial processing,

to the extent that, for example, bees might be able

to process two, but not more, items simultaneously.

The observation that decisions were made after bees

scanned, on average, only half as many items as were

contained in a pattern, is consistent with this

(Fig. 4A and Supplementary Fig. S6). This applies

only, however, under the assumption that our simple

video analysis really captured all instances of bees

scanning an item. Furthermore, in our study, the

difference between two patterns to be discriminated

was always 2. This meant that bees could decide for

the correct pattern earlier than enumerating the full

number of countable items. For example, when two

needs to be discriminated from four, a bee can make

a decision after counting three items because it is

clear at this stage that the pattern inspected is not

a two.

Our findings do not exclude the possibility that,

after extensive training, bees might be able to switch

to rapid simultaneous assessment of quantities, as

suggested (though not directly demonstrated) by

Gross et al. (2009). Allowing bees to view countable

items simultaneously (as opposed to Chittka and

Geiger [1995] and Dacke and Srinivasan [2008] in

whose studies sequential enumeration was enforced)

does not mean that they necessarily count them by

subitizing. Conversely, allowing bees to enumerate

items sequentially (as we did here) does not deci-

sively demonstrate that it is impossible for bees to

count by parallel processing at a glance. Further

experiments in which bees are precluded from scan-

ning patterns sequentially would be desirable, for

example by flashing them briefly on a screen
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(Nityananda et al. 2014). Alternatively, allowing bees

to view targets from a distance through baffles before

making a decision could also constrain the possibil-

ity to scan targets (Srinivasan and Lehrer 1988;

Horridge 2000).

Our results also suggest that bees can generalize

differences in trained numerosities by applying a

“greater-than” or “less-than” rule, as has recently

been suggested for honeybees (Bortot et al. 2019).

Of the four groups of bees, three correctly chose

the patterns with the larger or smaller number of

items in keeping with whether they had been

rewarded with the higher or lower numerosity of

the original training patterns. However, when we

computed MCC, this difference was only significant

for two of these groups (1þ 3�, 3þ 1�). An alter-

native to applying greater/less than rules when faced

with novel numerosities would be to base decisions

on numerical proximity. Applying such a rule would

explain the seemingly random choice behavior dis-

played by four of the bees trained to choose two-

and reject four-item patterns (the trained numerosity

two is equally proximate to the novel numerosities of

one and three). However, the same is true of the

3þ 1� group, yet these bees chose the higher of

the novel numerosities (four rather than two) at a

highly significant level. Overall, our results contrib-

ute to the growing body of work showing that bees

respond to continuous (Avarguès-Weber et al. 2014)

and discrete quantity (Howard et al. 2018; Bortot

et al. 2019) relations. Here, we additionally shed light

on the mechanisms underlying these decision-

making abilities.

In other animals, the upper limit of the small

number system (accessible by subitizing) is around

four items (Trick and Pylyshyn 1994; Hauser and

Carey 2003; Feigenson et al. 2004; Agrillo et al.

2012). This system, also referred to as OFS

(Feigenson et al. 2002), is accurate and capacity-

limited because it essentially enumerates the number

of objects that can be individuated and tracked in

working memory (Trick and Pylyshyn 1994; Cowan

2001). By contrast, larger numerical quantities are

thought to be processed by a separate ANS, or

analog-magnitude system, where the error of the es-

timate scales with the quantity to be estimated

according to Weber’s law. However, the existence

of a discontinuity in numerical representation has

been questioned; it has also been argued that repre-

sentation of both countable and non-countable mag-

nitude is characterized by scalar variability, and the

apparent ease of small number recognition is simply

a ceiling effect (any two numbers from the set 1–4

will have a minimum difference in Weber fraction of

25%) (Gallistel and Gelman 2000; Ross 2003). The

range 1–4 of the putative small number system is

within the subitizing range, within which humans

can accurately count the number of items in a dis-

play “at a glance” (Jevons 1871; Kaufmann et al.

1949). However, the ability to take in a visual scene

from a single sensory snapshot is a feature of the

primate visual system and does not directly pertain

to the question of whether there really are two sep-

arate number systems. For example, numerical dis-

plays containing many more than four items can still

be estimated by humans (albeit with less accuracy)

when presented very briefly, to preclude sequential

counting (Burr et al. 2017).

Are the numerical abilities of bees based on an

object-file system limited by working memory capac-

ity? The scanning behavior documented here is com-

patible with this notion, as is also the bees’ ability to

avoid rescanning the same item within a pattern

(Bar-Shai et al. 2011). However, we also note that

bees trained to discriminate one- from three-item

displays achieved higher accuracy than the groups

trained on two- versus four-items, which could

also be consistent with scalar variability, given the

higher ratio difference in the stimuli presented to

the former groups. On the whole, however, it is clear

that the bees’ counting strategy is in part sequential

in nature even for small numbers, in line with other

findings on limitations on parallel processing in their

visual system, and the need to acquire information

about visual patterns by actively scanning them

(Spaethe et al. 2006; Nityananda et al. 2014;

Guiraud et al. 2018). Our results appear broadly in

line with the idea that numerical judgments are re-

lated to the capacity limits of storing information in

working memory when performing a visual task. As

recently reported by Cheyette and Piantadosi (2020),

infants and primates have a lower visual memory

capacity that limits their accuracy even throughout

the small number range, and this might similarly

apply to bumblebees.

Author contributions

H.M. conceptualized the research, designed the

experiments, performed the experiments, wrote the

programs for video analysis, analyzed the data, and

wrote the manuscript. H.S.G.D. analyzed the video

data. E.G. performed the experiments and analyzed

the video data. O.J.L., E.B., and P.D.O. performed

the experiments. P.S. conceptualized the research

and wrote the manuscript. L.C. conceptualized the

research, designed the experiments, supervised the

study, and wrote the manuscript.

940 H. MaBouDi et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article/60/4/929/5830514 by St G

eorge's U
niversity of London user on 07 January 2021



Acknowledgments

We thank Mark Roper and Angelo Bisazza for

discussions.

Funding

This research was funded by the EPSRC program

[grant Brains-on-Board EP/P006094/1], HFSP pro-

gramme [grant RGP0022/2014], ERC Advanced

Grant SpaceRadarPollinator, and Royal Society

Wolfson Research Merit Award to L.C.AQ

Supplementary data

Supplementary data are available at ICB online.

References

Agrillo C, Piffer L, Bisazza A, Butterworth B. 2012. Evidence

for two numerical systems that are similar in humans and

guppies. PLoS ONE 7:e31923.

Avarguès-Weber A, d’Amaro D, Metzler M, Dyer AG. 2014.

Conceptualization of relative size by honeybees. Front

Behav Neurosci 8:80.

Bar-Shai N, Keasar T, Shmida A. 2011. The use of numerical

information by bees in foraging tasks. Behav Ecol

22:317–25.

Boeddeker N, Mertes M, Dittmar L, Egelhaaf M. 2015.

Bumblebee homing: the fine structure of head turning

movements. PLoS ONE 10:e0135020.

Bortot M, Agrillo C, Avarguès-Weber A, Bisazza A, Miletto

Petrazzini ME, Giurfa M. 2019. Honeybees use absolute

rather than relative numerosity in number discrimination.

Biol Lett 15:20190138.

Brannon EM, Terrace HS. 2000. Representation of the

numerosities 1–9 by rhesus macaques (Macaca mulatta). J

Exp Psychol Anim Behav Process 26:31–49.

Burr DC, Anobile G, Arrighi R. 2017. Psychophysical evi-

dence for the number sense. Phil Trans R Soc Lond Ser

B, Biol Sci 373: 20170045.

Burr DC, Turi M, Anobile G. 2010. Subitizing but not esti-

mation of numerosity requires attentional resources. J

Vision 10:20.

Carazo P, Fern�andez-Perea R, Font E. 2012. Quantity estima-

tion based on numerical cues in the mealworm beetle

(Tenebrio molitor). Front Psychol 3:502.

Cheyette SJ, Piantadosi ST. 2020. A unified theory of numer-

osity perception. Nat Hum Behav (in review).

Chittka L. 1992. The colour hexagon: a chromaticity diagram

based on photoreceptor excitations as a generalized repre-

sentation of colour opponency. J Comp Physiol A

170:533–43.

Chittka L, Geiger K. 1995. Can honey-bees count landmarks?.

Anim Behav 49:159–64.

Cowan N. 2001. The magical number 4 in short-term mem-

ory: a reconsideration of mental storage capacity. Behav

Brain Sci 24:87–114; Discussion 114–85.

Dacke M, Srinivasan MV. 2008. Evidence for counting in

insects. Anim Cogn 11:683–89.

Dehaene S. 2011. The number sense: how the mind creates

mathematics. Oxford, UK: Oxford University Press.

Dehaene S, Brannon E. 2011. Space, time and number in the

brain: searching for the foundations of mathematical

thought. Amsterdam, Netherlands: Elsevier Academic Press.

Dyer AG, Chittka L. 2004. Biological significance of distin-

guishing between similar colours in spectrally variable illu-

mination: bumblebees (Bombus terrestris) as a case study. J

Comp Physiol A Sens Neural Behav Physiol 190:105–14.

Dyer AG, Spaethe J, Prack S. 2008. Comparative psychophys-

ics of bumblebee and honeybee colour discrimination and

object detection. J Comp Physiol A 194:617–27.

Feigenson L, Carey S, Hauser M. 2002. The representations

underlying infants’ choice of more: object files versus ana-

log magnitudes. Psychol Sci 13:150–6.

Feigenson L, Dehaene S, Spelke E. 2004. Core systems of

number. Trends Cogn Sci 8:307–14.

Gallistel CR. 1990. The organization of learning. Cambridge:

The MIT Press.

Gallistel CR, Gelman R. 2000. Non-verbal numerical cogni-

tion: from reals to integers. Trends Cogn Sci 4:59–65.

Gross HJ, Pahl M, Si A, Zhu H, Tautz J, Zhang S. 2009.

Number-based visual generalisation in the honeybee.

PLoS ONE 4:e4263.

Guiraud M, Roper M, Chittka L. 2018. High speed videogra-

phy reveals how honeybees can turn a spatial concept

learning task into a simple discrimination task by stereo-

typed flight movements and sequential inspection of pat-

tern elements. Front Psychol 9:1347.

Halberda J, Odic D. 2015. The precision and internal confi-

dence of our approximate number thoughts. In:

Mathematical Cognition and Learning. Amsterdam,

Netherlands: Elsevier. p. 305–33.

Hauser MD, Carey S. 2003. Spontaneous representations of

small numbers of objects by rhesus macaques: examina-

tions of content and format. Cogn Psychol 47:367–401.

Horridge GA. 2000. Visual discrimination of radial cues by

the honeybee (Apis mellifera). J Insect Physiol 46:629–45.

Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD,

Dyer AG. 2018. Numerical ordering of zero in honey

bees. Science (New York, NY) 360:1124–26.

Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD,

Dyer AG. 2019. Symbolic representation of numerosity by

honeybees (Apis mellifera): matching characters to small

quantities. Proc R Soc B Biol Sci 286:20190238.

Hyde DC. 2011. Two systems of non-symbolic numerical

cognition. Front Hum Neurosci 5:150.

Jevons WS. 1871. The power of numerical discrimination.

Nature 3:281–367.

Kaufmann EL, Lord MWW, Reese TWW, Volkmann J. ,

1949. The discrimination of visual number. Am J Psychol

62:498–525.

Li L, MaBouDi H, Egertov�a M, Elphick MR, Chittka L, Perry

CJ. 2017. A possible structural correlate of learning perfor-

mance on a colour discrimination task in the brain of the

bumblebee. Proc R Soc B Biol Sci 284:20171323.

MaBouDi H, Shimazaki H, Giurfa M, Chittka L. 2017.

Olfactory learning without the mushroom bodies: spiking

Sequential counting in bees 941

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article/60/4/929/5830514 by St G

eorge's U
niversity of London user on 07 January 2021

https://academic.oup.com/icb/article-lookup/doi/10.1093/icb/icaa025#supplementary-data


neural network models of the honeybee lateral antennal

lobe tract reveal its capacities in odour memory tasks of

varied complexities. PLOS Comput Biol 13:e1005551.

Matsuzawa T. 2009. Symbolic representation of number in

chimpanzees. Curr Opin Neurobiol 19:92–98.

Matthews BW. 1975. Comparison of the predicted and ob-

served secondary structure of T4 phage lysozyme. Biochim

Biophys Acta 405:442–51.

Nityananda V, Skorupski P, Chittka L. 2014. Can bees see at a

glance? J Exp Biol 217:1933–39.

Peng F, Chittka L. 2017. A simple computational model of

the bee mushroom body can explain seemingly complex

forms of olfactory learning and memory. Curr Biol

27:1706.

Pylyshyn ZW. 2001. Visual indexes, preconceptual objects,

and situated vision. Cognition 80:127–58.

Riabinina O, de Ibarra NH, Philippides A, Collett TS. 2014.

Head movements and the optic flow generated during

the learning flights of bumblebees. J Exp Biol 217:

2633–42.

Roper M, Fernando C, Chittka L. 2017. Insect bio-inspired

neural network provides new evidence on how simple fea-

ture detectors can enable complex visual generalization and

stimulus location invariance in the miniature brain of hon-

eybees. PLOS Comput Biol 13:e1005333.

Ross J. 2003. Visual discrimination of number without count-

ing. Perception 32:867–70.

Rugani R, Cavazzana A, Vallortigara G, Regolin L. 2013. One,

two, three, four, or is there something more? Numerical

discrimination in day-old domestic chicks. Anim Cogn

16:557–64.
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