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Abstract: ~2.4% of the human mitochondrial genome (mtDNA) shows common homoplasmic 

genetic variation. Analyzing 12,975 whole genome sequences we show that 45.1% of individuals 

from 1,526 mother-offspring pairs harbor a mixed population of mtDNA (heteroplasmy), but the 

propensity for maternal transmission differs across the mitochondrial genome. Over one 

generation, we observe selection both for and against variants in specific genomic regions, and 5 

previously seen variants were more likely to be transmitted. New heteroplasmies were more 

likely to match the nuclear genetic ancestry than the mitochondrial genome on which the 

mutations occurred, validating our findings in 40,325 individuals. Thus, human mtDNA at the 

population level is shaped by selective forces within the female germline under nuclear genetic 

control to ensure consistency between the two independent genetic lineages. 10 

One Sentence Summary: Human mitochondrial DNA (mtDNA) undergoes selection in the 

female germ line which is shaped by the nuclear genome.    
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Primarily inherited from the maternal line, the 16.5Kb human mitochondrial DNA (mtDNA) 

genome acquired mutations sequentially following the emergence of modern humans out of 

Africa (1-3). Pedigree and phylogenetic analyses have estimated a de novo mtDNA nucleotide 

substitution rate of ~10-8/base pair/year (4). However, from 30,506 mitochondrial genome 

sequences from across the globe (5), only 2.4% of nucleotides show genetic variation with 5 

frequencies greater than 1% within a population (Fig. 1). Although contentious (6, 7), selection 

could explain the non-random distribution of common variants across the mitochondrial genome 

in the human population.  

Heteroplasmic mtDNA variants are common and maternally inherited 

We analyzed high-depth mtDNA sequences from 1,526 mother-offspring pairs (mean depth in 10 

the mothers = 1,880x, range 249x-7,454x; mean depth in the offspring = 1,901x, range 259x-

7,475x; mothers vs. offspring, P=0.49, two-sample t-test) (fig. S1). We called homoplasmic and 

heteroplasmic mtDNA variants from whole-blood DNA sequence data (8, 9) and filtered out 

heteroplasmic calls likely to be due to errors (9, 10, 11). We identified a mixed population of 

mtDNA (heteroplasmic variants) with a heteroplasmic variant allele frequency (VAF) >1% with 15 

high confidence in 47.8% of mothers (1,043 heteroplasmic variants at 812 sites) and 42.5% of 

offspring (893 heteroplasmic variants at 693 sites) (Fig. 1, table S1 and Data S1). In 22 

individuals, where the whole genome was independently sequenced twice, the heteroplasmic 

mtDNA calls were 96.4% concordant (fig. S2) (9). As expected (12, 13), there was a small but 

significant positive correlation between the number of heteroplasmic variants and age of mother 20 

(P=6.42 x 10-11, R2=0.17, CI= 0.12 - 0.23, Pearson's correlation) (fig. S3), with mothers having 

more heteroplasmic variants than offspring (mean number in the mothers = 0.68, range 0-6; 
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mean number in the offspring = 0.58, range 0-4; P=0.002, effect size = 0.68, Wilcoxon rank sum 

test) (Fig. 2A).  

We defined three categories of heteroplasmic variants: (1) transmitted/inherited, if the 

variant was present in the mother and the offspring and was heteroplasmic in at least one of the 

two; (2) lost, if the heteroplasmic variant was present in the mother but not detectable in the 5 

offspring; and (3) de novo, if the heteroplasmic variant was present in the offspring but not 

detectable in the mother (table S1) (9).  Note that very low level heteroplasmies (<1% VAF) 

may be missed by our sequencing and bioinformatics pipeline. Hence, “lost” and “de novo” 

variants could potentially be present at very low levels in, respectively, the offspring’s and 

mother’s germline. The heteroplasmic fraction (HF) of transmitted heteroplasmic variants (mean 10 

HF = 19.5%, sd = 13.9%) was significantly higher than the HF of lost variants (mean HF = 5.6%, 

sd = 6.3%) in the mothers (P<2.2 x 10-16, effect size = 4.24, Wilcoxon rank sum test); and the HF 

of inherited heteroplasmic variants (mean HF = 19.8%, sd = 14.1%) was significantly higher 

than the HF of de novo variants (mean HF = 6.2%, sd = 7.4%) in the offspring (P<2.2 x 10-16, 

effect size = 4.06, Wilcoxon rank sum test) (Fig. 2B and table S1). The HF of transmitted 15 

variants in the offspring strongly correlated with the corresponding maternal level (P=1.52 x 10-

93, R2=0.79, CI=0.75 - 0.82, Pearson's correlation) (Fig. 2C). In total, 477 de novo heteroplasmic 

variants were observed at >1% HF in the offspring that were not seen in the mother, in keeping 

with previous estimates (13). To ensure these data were not due to technical errors, we 

determined whether any heteroplasmic variants in the offspring were also present in their fathers. 20 

Amongst 313 father-offspring pairs, the offspring harbored 196 heteroplasmic variants with HF 

>1%, and only one of these was also observed in the corresponding father. This was a common 

population variant (population minor allele frequency (MAF) = 25.8% (5)) in the D-loop region 
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(m.152T>C) which was homoplasmic in the father and had an HF of 12.4% in his child. The 

alternate allele was not detected in the mother, suggesting this is a recurrent site of mutation or 

conceivably due to the paternal transmission of mtDNA. 

The difference between HF in mothers and their offspring can be measured in percentage 

points (Fig. 2D)(14). This metric is limited by the difference between the HF of the mother and 5 

the boundaries 0 and 100% and the magnitude of the percentage change does not correspond 

with the magnitude of the fold-change in VAF. For example, a change from 50% to 55% would 

be given the same value as a change from 1% to 6%, even though the latter implies 6-fold 

increase in the proportion of mtDNA carrying the alternate allele. We therefore studied the log2 

ratio of HF between offspring and mothers after imputation of HF values below 1% to our 10 

detection threshold of 1% (subsequently termed the heteroplasmy shift (HS), Fig. 2, E and F) 

(9), which shrunk HSs towards zero only when the true HF in either the mother or the offspring 

was below 1%. 

Overall, there was no significant difference between the number of heteroplasmic variants 

with a positive (n=731) and a negative (n=798) HS (P=0.091, binomial test). The HS distribution 15 

around zero was moderately symmetric and gave a marginal P value for asymmetry (P=0.05, one 

sample t-test) (Fig. 2, D and E), consistent with random segregation of mitochondria during 

meiosis (14, 15). All of the HSs were <6 in magnitude, corresponding to a <64-fold increase or 

decrease in HF across one generation, with 3 exceptions. De novo variants at m.57T>C 

(HF=99.3%), m.8993T>G (HF=82.1%) and m.14459G>A (HF=93.6%) were detected in three 20 

unrelated offspring and not present in the corresponding mothers (figs. S4 to S6). m.14459G>A 

is a non-synonymous (NS) variant in ND6 which, on the basis of evidence from previously 

published pedigrees (16, 17), causes Leber hereditary optic neuropathy (LHON) and Leigh 
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syndrome/dystonia. m.8993T>G is a NS variant in ATP6 (L156R), which has been observed on 

many independent occasions in Leigh syndrome or neurogenic ataxia with retinitis pigmentosa 

(18-20). Although these extreme HSs could reflect differences in the mechanism of transmission 

for pathogenic mtDNA mutations (21), ascertainment is a more likely explanation because 

childhood-onset neurodegenerative diseases were recruited as part of this study (22). 5 

Ascertainment bias is unlikely to explain the de novo occurrence of m.57T>C, but these findings 

indicate that extreme HSs at moderate HFs are not typical of human populations. 

As expected, the non-coding displacement (D)-loop had the highest substitution frequency 

(7.64 x 10-5 /base/genome/transmission) of all the regions in the mitochondrial genome (Fig. 3A 

and table S2)(13). In total, we observed 16 out of 57 previously defined (5) pathogenic 10 

mutations in the 1,526 mother-offspring pairs (Fig. 3B). After excluding m.14459G>A and 

m.8993T>G, where the extreme HS likely reflects ascertainment bias, the mean HS for the 

remaining 14 pathogenic mutations was not significantly different from zero (P=0.22, one 

sample t-test), nor from the mean HS for the remaining 1,076 non-pathogenic variants (P=0.11, 

two sample t-test). Thus, overall we did not see a strong signature of selection for or against 15 

pathogenic alleles, although our statistical analysis does not preclude that a subset of the 

observed pathogenic alleles may be under selection. Intriguingly, only three mothers carried the 

most common heteroplasmic pathogenic mutation m.3243A>G (23), each with a low HF (5.2%, 

3.6% and 1.7%), which decreased in the corresponding offspring, to levels falling below our 

detection threshold in two of the three offspring (3.9%, <1% and <1%). Six of the 16 pathogenic 20 

mutations were not detectable in the mothers, giving a de novo mutation rate for known 

pathogenic mutations of 393/100,000 live births (95% CI 144 – 854), which is ~3.7-fold higher 

than previously reported (24).  
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To gain insight into possible mutational mechanisms, we determined the trinucleotide 

mutational signature. As shown previously, C>T and T>C substitutions were the most common 

type of substitution in homoplasmic variants (5) and cancer somatic mtDNA mutations (25). For 

heteroplasmic variants, C>T and T>C substitutions were also predominant, although we also 

observed a small but significant excess of C>A, C>G, T>A and T>G substitutions (P<2.2 x 10-5 

16, odd ratio = 0.36, CI = 0.29 - 0.44, Fisher’s exact test) (fig. S7). Given that the heteroplasmic 

variant signature was not identical to the homoplasmic variant signature, this suggests that the 

germline transmission shapes the mutational signatures seen in homoplasmic variants at the 

population level.  Also of note, de novo mutations were more likely to involve a CpG-containing 

trinucleotide (P=3.01 x 10-6, odd ratio = 0.50, CI = 0.38 - 0.66, Fisher’s exact test) (Fig. 3C). 10 

Although controversial (26), this could be because methylation of NpCpG sites on the mtDNA 

genome predisposes to de novo mtDNA mutations, as seen in the nuclear genome.  

Known mtDNA variants are more likely to be transmitted than novel 

We then compared heteroplasmic variants which have been seen before in the general population 

(known) and those not previously observed (novel). Variants were considered novel if they were 15 

absent from the 1000 Genomes datasets and dbSNP and were seen in at most one individual 

amongst 30,506 NCBI mtDNA sequences (5). Novel heteroplasmic variants were 4.7-fold less 

commonly transmitted from mother to offspring than known variants (P=3.55 x 10-13, odd 

ratio=2.60, CI=1.97 - 3.45, Fisher’s exact test), and the HS for transmitted known variants was 

more likely to be positive (P=0.0002, probability=0.40, CI=0.35 - 0.45, binomial test) (Fig. 3, D 20 

and E). Also, the transmitted heteroplasmic variants were more likely to affect known 

haplogroup-specific sites (27) compared to the lost and de novo heteroplasmic variants (P=7.86 x 

10-11, odds ratio=0.40, CI=0.30-0.53, and P=0.0016, odds ratio=0.62, CI=0.46-0.84, respectively, 
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Fisher’s exact test) (Fig. 3F). This suggests that factors may modulate the transmission of 

mtDNA heteroplasmy within the female germline over a single generation and influence the 

likelihood that they become established within human mtDNA populations. As heteroplasmic 

variants are acquired throughout life, they must be removed at transmission to offspring at a 

higher rate than they appear de novo as, otherwise, each generation would be accompanied by an 5 

expected increase in the number of heteroplasmic variants which may be deleterious (28). In 

keeping with this, the number of novel variants present in the mother but not transmitted (lost 

variants), exceeded the number of de novo novel variants detected in the offspring (P=7.93 x 10-

7, probability=0.62, CI= 0.57 - 0.67, binomial test) (Fig. 3D), in part reflecting the accumulation 

of heteroplasmic variants with increasing age in the mothers (fig. S3).  10 

Selection for and against heteroplasmy in different genomic regions 

We analyzed different functional regions of the genome and found evidence indicating region-

specific selection for or against heteroplasmic variants. The distributions of HF in the 1,526 

mother-offspring pairs were significantly different between the D-loop, rRNA, tRNA, and 

coding regions (Fig. 4A and table S3). Within the coding region, the NS and synonymous (SS) 15 

variants also had different distributions (P=2.74 x 10-5, Kolmogorov-Smirnoff test). The NS/SS 

ratio was greater for the heteroplasmic variants than for the homoplasmic variants (P=3.98 x 10-

24, odds ratio=1.91, CI=1.68 - 2.18, Fisher’s exact test), and the de novo and lost heteroplasmic 

variants had a higher NS/SS than the transmitted variants (transmitted vs de novo: P=0.0056, 

odds ratio=1.69, CI=1.15 - 2.48; transmitted vs lost: P=0.01, odds ratio=1.57, CI=1.10 - 2.24, 20 

Fisher’s exact test) (Fig. 4B). The heteroplasmic variants were more often in conserved sites than 

the homoplasmic variants (P=3.71 x 10-77, odds ratio=3.21, CI=2.86 - 3.60, Fisher’s exact test), 

and the transmitted heteroplasmic variants were less conserved than the de novo (P=0.0018, odds 
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ratio=1.62, CI=1.19 - 2.22, Fisher’s exact test) and lost (P=9.60 x 10-9, odds ratio=2.25, CI=1.69 

- 3.03, Fisher’s exact test) heteroplasmic variants (Fig. 4C). Also, heteroplasmic variants with a 

positive HS were less conserved than those with a negative HS (P=0.03, odds ratio=1.28, 

CI=1.01 - 1.61, Fisher’s exact test). Variants in the rRNA genes were more likely to show a 

decrease in the heteroplasmy level on transmission than an increase (P=1.00 x 10-4, 5 

probability=0.65, CI=0.57 - 0.72, binomial test) (Fig. 4D), and the mean HS was significantly 

less than zero (P=8.21 x 10-5, d=0.30, one sample t-test) (Fig. 4E).  

In order to understand the determinants of transmission of heteroplasmic variants with a 

reduced risk of confounding, we used multi-variable logistic regression to model the probability 

of transmission across all 1,526 mother-offspring pairs (9). We modeled the transmission 10 

probability of a variant as a function of its HF in the mother, the identity of the mitochondrial 

genome region containing it, and its known vs novel status (Fig. 4, F to H and Fig. 3D) (9). The 

probability that a heteroplasmic variant in the mother was transmitted to her offspring was 

associated with its HF in the mother (P<2.2 x 10-16, coefficient estimate=1.17, sd=0.08, logistic 

regression) (Fig. 4F). Variants in the D-loop were more likely to be transmitted (P=0.04, 15 

coefficient estimate=0.39, sd=0.19, logistic regression) than average and those in the rRNA were 

less likely to be transmitted (P=0.0026, coefficient estimate=-0.94, sd=0.31, logistic regression) 

than average (Fig. 4G). The novel variants were less likely to be transmitted than the known 

variants (P=0.028, coefficient estimate=0.43, sd=0.19, logistic regression) (Fig. 3D), even after 

accounting for all other covariates, including HF in the mothers.  20 

Heteroplasmic variants in the non-coding Displacement (D-) loop 

To cast light on the possible effects of selection on the non-coding D-loop, we derived a high-

resolution map of heteroplasmic variants in 12,975 individuals, which included the 1,526 
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mother-offspring pairs (mean mtDNA genome depth = 1832x, sd=945x; mean depth of D-loop = 

1569x, sd=819x) (Fig. 5, A to C and fig. S8) (9). We found an association between the 

homoplasmic allele frequency amongst 30,506 NCBI mtDNA sequences and the proportion of 

individuals heteroplasmic for the same allele (P<2.2 x 10-16, logistic regression) (Fig. 5, A to C) 

similar to that previously observed (5). Of the 17 regions in the D-loop (Fig. 5C bottom - purple 5 

and orange bars), two had a significantly greater number of heteroplasmic variants than expected 

by chance. These regions correspond to the proposed replication fork barrier associated with the 

D-loop termination sequence (MT-TAS2) (29) and MT-CSB1 (MT-TAS2: P=4.5 x 10-11, odds 

ratio=0.40, CI=0.30 - 0.54; MT-CSB1: P=7.0 x 10-6, odds ratio=0.39, CI=0.24 - 0.61, Fisher’s 

exact test vs remainder of the D-loop). 10 

To help understand the evolution of the D-loop, we identified all the heteroplasmic variants 

not identified on mtDNA phylogenies across a subset of 10,210 unrelated individuals from the 

original dataset (9). Five of these heteroplasmic variants were shared by more than one 

individual and were present exclusively in people with a particular haplogroup (Fig. 5, D and E). 

One variant (m.16237A>T) was present in multiple individuals from two different branches of 15 

the phylogeny (L0a1&2 and M35b2) (Fig. 5, D and E). Compared to homoplasmic sequences 

from across the world (5), only m.299C>A was observed previously as a homoplasmic variant 

(in 3/30,506 individuals), each time on the R30b1 haplogroup background. This suggests that 

individuals we saw who were heteroplasmic for m.299C>A (Fig. 5F), also descended from the 

same maternal ancestor as the three homoplasmic individuals seen previously (5), but belonged 20 

to a closely related maternal lineage that had not yet reached fixation. These recurrent 

heteroplasmies contributed to the distinct trinucleotide mutational signature of the D-loop (P=2.3 

x 10-137, Stouffer’s method for combining Fisher P values), which involves prominent non-
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canonical substitutions, and is consistent with the conclusion that the homoplasmic trinucleotide 

mutational signature of mtDNA is shaped by germline transmission of heteroplasmic variants 

(Fig. 5D and fig. S9).  

We observed an absence of low-level heteroplasmic variants in critical sites required for the 

initiation of mtDNA transcription and replication. These zones include several conserved 5 

sequence boxes and the light strand promoter (MT-LSP: P=7.7 x 10-18, odds ratio=10.12, 

CI=5.43 – 20.31, Fisher’s exact test), which are required for mtDNA transcription and mtDNA 

replication (30). Certain regions with no known function (31) (eg. 16,400-16,500; Fig. 5C) also 

had a complete lack of low-level heteroplasmic variants, which suggests that an intact sequence 

at these regions is essential for mitochondrial function, perhaps genome propagation. The 10 

coordinates of the conserved and non-conserved regions provide a guide for functional studies of 

the mtDNA D-loop which has been incompletely characterized to date. 

The nuclear genetic background influences the heteroplasmy landscape 

Most of the ~1,500 known mitochondrial proteins are synthesized from the nuclear genome, 

including the majority of polypeptide subunits of the oxidative phosphorylation system, and the 15 

machinery required to replicate and transcribe the mitochondrial genome in situ (1). Selection for 

or against specific mtDNA variants must therefore occur in the context of a specific nuclear 

genetic background. To explore this, we identified 12,933 individuals for whom a confident 

mtDNA haplogroup could be predicted (fig. S10). We compared the haplogroup of each 

individual with the corresponding nuclear genetic ancestry, and identified three distinct groups of 20 

individuals: (1) a haplogroup matched group (n=11,867, 91.7%) where the mtDNA haplogroup 

was concordant with the nuclear ancestry; (2) a mismatched group (n=295, 2.3%) where the 

nuclear ancestry and mtDNA were from different human populations; and, (3) a group where the 
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nuclear ancestry could not be reliably determined (n=771, 6.0%) (Fig. 6, A and B and fig. S10). 

Subsequent analyses focused on the haplogroup matched and mismatched groups (9).  

8,159 heteroplasmic variants at 3,854 of the 16,569 distinct sites on the mitochondrial 

genome were present in the matched group, and 195 heteroplasmic variants at 163 distinct sites 

were present in the mismatched group. The mean number of heteroplasmic variants and mean 5 

HF were not statistically different between the matched and mismatched groups (fig. S11). Next, 

we studied distinct heteroplasmic sites in the 10,179 of 12,933 individuals who were not related 

on the basis of their nuclear genome (9,414 in the matched group, 217 in the mismatched group 

and 548 in the other group). Distinct heteroplasmic sites were more likely to affect known 

haplogroup specific sites (27) than the rest of the mitochondrial genome (P<2.2 x 10-16, Fisher’s 10 

exact test), particularly within the mismatched group (P=0.001, odds ratio=1.70, CI=1.22 - 2.36, 

Fisher’s exact test) (Fig. 6C). 

We extracted 2,641 haplogroup-specific variants present in only one super-population 

(European, Asian or African) on the world mtDNA phylogeny (27). We built a predictive model 

of transmission of these variants using logistic regression in 9,385 unrelated European and Asian 15 

nuclear ancestries using 2,215 European (n=940) and Asian (n=1,275) specific variants on the 

mtDNA phylogeny, omitting the Africans because of the diversity and small number (figs. S10 

and S12)(9). We included the super-population and the logit population allele frequency as 

covariates. We also included a dummy variable indicating whether or not the variant matched the 

mitochondrial ancestry of the individual carrying the variant. Finally, for the matched and 20 

mismatched groups, we included a separate variable indicating whether or not the variant super-

population matched the nuclear ancestry of the individual who carried the variant.   



 15 

We fitted the model to 768 heteroplasmic variants in 9,179 unrelated matched individuals 

and 30 heteroplasmic variants in 206 unrelated mismatched individuals (9). The heteroplasmic 

variants in the mismatched group were significantly more likely to match the ancestry of the 

nuclear genetic background than the mtDNA background on which the heteroplasmy occurred 

(P=2.9 x 10-4, coefficient estimate=0.85, sd=0.24, logistic regression, Fig. 6D and table S4). 5 

These findings suggest that the new mtDNA variants underwent selection to match the nuclear 

genome. Given the high mutation rate of the mitochondrial genome and the patterns we observed 

over one generation, the selective process is likely to occur within the female germline.  

To independently validate this finding, we repeated this analysis with an additional 40,325 

WGS recruited through the Genomics England 100,000 Genomes Rare Disease Main 10 

Programme (9). There were 36,038 individuals in a haplogroup matched group, 1,098 in a 

haplogroup mismatched group, and 3,124 in a group where the nuclear ancestry could not be 

reliably determined (figs. S12, S13). As before, we focused on the European and Asian specific 

variants observed in 23,931 unrelated European and Asian individuals. We fitted the same 

logistic regression model to 1,942 heteroplasmic variants in 23,277 unrelated matched 15 

individuals, and 67 heteroplasmic variants in 654 unrelated individuals where the nuclear and 

mtDNA had a different ancestral origin. Again, the heteroplasmic variants in the mismatched 

group were more likely to match the ancestry of the nuclear genetic background than the 

ancestral background of the mtDNA on which the heteroplasmy occurred (P=1.33 x 10-3, 

coefficient estimate=0.47, se=0.15, logistic regression, Fig. 6D and table S4). An inverse-20 

weighted meta-analysis of the discovery and validation cohorts yielded a significant association 

across the two datasets (P=3.3 x 10-6, coefficient estimate=0.59, se=0.13). To gain a better 

understanding of underlying mechanisms we studied the gene location and HF of 97 
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heteroplasmic variants identified in the mismatched groups across both the discovery and 

validation studies. Potentially functional variants were found in the non-coding region and RNA 

genes, and also included 14 non-synonymous protein coding variants in the MT-ATP, MT-COX, 

MT-CYB and MT-ND regions (fig. S14). This raises the possibility that differences in oxidative 

phosphorylation and ATP synthesis are responsible the association we observed.   5 

Discussion 

Several explanations have been proposed for the high substitution rate of the non-coding mtDNA 

D-loop, including a high intrinsic mutation rate, and/or a permissive sequence relative to the 

coding regions (31). Here we show that the segregation of mtDNA heteroplasmy likely plays a 

role in shaping D-loop population polymorphisms by a mechanism operating within the female 10 

germline. Similar findings have been seen in Drosophila where D-loop variants ‘selfishly’ drive 

segregation favoring a specific mtDNA genotype (32). These observations have implications for 

the development of mitochondrial transfer techniques for preventing the inheritance of severe 

pathogenic mtDNA mutations in humans (33, 34). After mitochondrial transfer, ~15% of human 

embryonic stem cell lines show reversion to the original mtDNA genotype (34-36). The reasons 15 

for this are not fully understood, but the selective propagation of D-loop heteroplasmy is a 

plausible explanation. Our findings implicate the nuclear genome in this process. This places 

greater emphasis on matching both nuclear and mtDNA backgrounds when selecting potential 

mitochondrial donors, in order to minimize the possibility of nuclear-mitochondrial 

incompatibility following mitochondrial transfer.  20 

In cases of heteroplasmic mtDNA, one allele can be preferentially copied, or segregate to 

high levels in a population of daughter cells. This can lead to changes in mtDNA allele 

frequency during the lifetime of an individual cell, tissue or organism through genetic drift (38, 
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39). A high mtDNA content buffers fluctuations in allele frequency. However, if the number of 

copies falls to a low level, this creates a ‘genetic bottleneck’, increasing the possibility of large 

changes in allele frequency.  

There is a ~1000-fold reduction in cellular mtDNA content during human germ cell 

development (40) is followed by a period of intense proliferation and migration when the germ 5 

cells migrate to form the developing gonad (41). This process is dependent on oxidative 

phosphorylation, and is accompanied by a massive increase in mtDNA levels (40). Under these 

conditions, variants that compromise mitochondrial ATP synthesis will be selected against. On 

the other hand, variants that promote mtDNA replication will have an advantage, potentially 

explaining the preferential transmission of specific D-loop variants. Subtle selective pressures 10 

will have maximal impact at this time, so the nuclear genetic influence we observed will most 

likely come into to play during this critical period of development. Thus, human mtDNA at the 

population level are influenced by selective forces acting within the female germline and 

modulated by the nuclear genetic background. These are apparent within one generation, and 

ensure consistency between these two independent genetic systems, shaping the current world 15 

mtDNA phylogeny. 
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Materials and Methods:  

Participants, approvals and sequence acquisition 

The primary data was whole genome sequencing (WGS) from 13,037 individuals in the NIHR 

BioResource - Rare Diseases and 100,000 Genomes Project Pilot studies (table S5) (22) After 

quality control (QC, see below and (9)), 12,975 samples including 1,526 mother-offspring pairs 5 

were included in this study. For demographics see (9). Ethical approval was provided by the East 

of England Cambridge South national research ethics committee (REC) under reference number: 

13/EE/0325. WGS was performed using the Illumina TruSeq DNA PCR-Free sample preparation 

kit (Illumina, Inc.) and an Illumina HiSeq 2500 sequencer, generating a mean depth of 45x 

(range from 34x to 72x) and greater than 15x for at least 95% of the reference human genome 10 

(fig. S8A).  

Extracting mitochondrial sequences, quality control and variant detection 

WGS reads were aligned to the Genome Reference Consortium human genome build 37 

(GRCh37) using Isaac Genome Alignment Software (version 01.14; Illumina, Inc.). Reads 

aligning to the mitochondrial genome were extracted from each BAM file and analyzed using    15 

MToolBox (v1.0) (8, 9). Variant Call Files and the merged VCF were normalized with bcftools 

and vt (44, 45, 46), and duplicated variants were dropped with vt. The final VCF was annotated 

using the Variant Effect Predictor (VEP) (47). Further QC was carried out as described (9). 

Potential DNA cross-contamination was investigated using verifyBamID (48) in the nuclear 

genome, and mtDNA variant calls (9). 20 

 

Determining matched and mismatched groups 
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The pairwise relatedness and nuclear ancestry were estimated using nuclear genetic markers as 

described (9). MtDNA haplogroup assignment was performed using HaploGrep2 (27, 57). We 

then compared the mtDNA phylogenetic haplogroup with the nuclear genetic ancestry in the 

same individual, and identified three distinct groups of individuals as described in the text.  

 5 

Defining novel variants  

Variants were considered to be novel if absent from 1000 Genomes datasets and dbSNP and 

were seen in at most one individual amongst 30,506 NCBI mtDNA sequences (5).  

 

MtDNA mutational spectra and signature 10 

Mutational spectra were derived from the reference and alternative alleles as described (25, 58). 

 

Probability of maternal mtDNA transmission 

We modelled the probability of transmission of heteroplasmic variants observed in the mothers 

using the following logistic regression model: 15 

logit 𝑃 𝑦!"# = 1 = 𝛼 + 𝛽!𝟏!!! + 𝛽!𝟏!!! + 𝛽!𝟏!!! + 𝛽!𝟏!!! + 𝛾𝑤!"# + 𝜂𝑧!"# 

where 𝑦!"# = 1 if the lth variant within mitochondrial genomic region j in mother i was 

transmitted and zero otherwise; 𝑗 = 0, 1, 2, 3 or 4 denote the coding, Dloop, rRNA, tRNA and 

the remainder sequences, respectively; 𝑤!"# is the logit of the HF of the lth variant within 

mitochondrial genomic region j in mother i; and 𝑧!"# = 1 if the lth variant within mitochondrial 

genomic region j in mother i was observed in no individuals from the 1000 Genomes datasets, 20 

dbSNP and at most one individual amongst 30,506 NCBI mtDNAs, otherwise it was equal to 

zero.  
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Homoplasmic allele frequency in the population and heteroplasmic variants 

We fitted a logistic regression model to explore the relationship between the homoplasmic allele 

frequency in the general population and the rate at which individuals who are not homoplasmic 

for the alternate allele are heteroplasmic (9). 5 

 

Defining haplogroup specific variants on mtDNA phylogenetic tree  

We extracted 4,476 SNVs present on mtDNA phylogenetic tree (27), then focused on SNVs 

either present in only one super-population (European, Asian or African), or present on two 

super-populations but commonly seen in one population (>1%) and not seen or extremely rare in 10 

the other population in 17,520 mtDNAs (5). This defined 2,641 haplogroup-specific variants, 

including 426 African variants, 1,275 Asian variants and 940 European variants.  

 

Nuclear genome ancestry and mtDNA heteroplasmic variants 

We modelled the presence or absence of a heteroplasmic variant in a particular individual using 15 

logistic regression. We considered only the 2,215 mtDNA variants from of over 4,000 

haplogroup-specific variants that are present exclusively in European or Asian branches of the 

world mtDNA phylogeny (27), as this allows unambiguous assignation of mitochondrial ancestry 

to each variant. To avoid the potential for bias induced by recent shared ancestry between 

individuals, we considered only the 9,631 unrelated individuals in matched and mismatched 20 

groups. We fitted the following logistic regression model: 

logit 𝑃 𝑦!" = 1 = 𝛼 + 𝛽!𝟏𝒙𝒋!𝟏 + 𝛽!𝟏𝒙𝒋!𝟐 +  𝛾𝑤! + 𝜂𝟏𝒛𝒊!𝒘𝒊 + 𝜔𝟏𝒙𝒋!𝒘𝒊∩𝒛𝒊!𝒘𝒊 +  𝜓𝟏𝒙𝒋!𝒘𝒊∩𝒛𝒊!𝒘𝒊 
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where 𝑦!" = 1 if variant 𝑗 is heteroplasmic in individual 𝑖, and zero otherwise; 𝑥! =

0, 1 or 2 depending on whether the variant ancestry is Asian, African or European, respectively; 

𝑤!is the logit of the homoplasmic allele frequency of variant j in 30,506 NCBI samples; 

𝑧! = 0, 1 or 2 depending on whether the mitochondrial ancestry of individual i is Asian, African 

or European, respectively; and 𝑤! = 0, 1 or 2 depending on whether the nuclear ancestry of 5 

individual i is Asian, African or European, respectively. The indicator variable 1 evaluates to 1 if 

the conditions in its subscript are met and zero otherwise.  

 

Validation dataset   

We repeated the nuclear-mtDNA ancestry analysis in 42,799 WGS from the Genomics England 10 

100,000 Genomes Rare Disease Main Programme aligned to GRCh37 or/and hg38 using the 

same bioinformatics pipeline. See (9) for details.   

         

 

 15 
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Fig 1. Circos plot of mitochondrial heteroplasmic variants identified in 1,526 mother-

offspring pairs.  

Circles from the outside to the inside indicate the following: (1) position of a variant on the 

mtDNA, the removed regions are shown in red crosses; (2) Minor allele frequency for common 

variants (MAF>1%) derived from 30,506 NCBI mtDNA sequences (5), where the radial axis 5 

corresponds to the MAF; (3) phastCons100way scores from UCSC (42) where the radial axis 

corresponds to the degree of conservation ; (4) heteroplasmic variants identified in the mothers 

where the radial axis corresponds to the heteroplasmy fraction, HF; (5) regions corresponding to 

the different mtDNA genes (yellow - D-loop, purple – coding region, green – rRNAs and orange 

- tRNAs); (6) heteroplasmic variants identified in the offspring where the radial axis corresponds 10 

to the heteroplasmy fraction, HF.  
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Fig 2. Transmission of heteroplasmic mtDNA variants in 1,562 mother-offspring pairs.  

(A) Frequency distribution of number of heteroplasmic variants in the mothers and offspring. (B) 

Distribution of HF in the mothers and offspring, transmitted, inherited, lost and de novo are 

shown separately. (C) Scatter plot of logit(HF) in transmitted heteroplasmic variants between the 

mothers and offspring (R2=0.79, P=1.52 x 10-93, Pearson's correlation). (D) Left, difference in the 5 

percentage shift of HF between the offspring and the corresponding mothers (HFoffspring - 

HFmother) ordered by the degree of shift. Right, distribution of the difference of the percentage 

shift of HF between offspring and the corresponding mothers (HFoffspring - HFmother). (E) 

Left, log2 ratio of HF difference between offspring and the corresponding mothers ordered by 

the degree of log2 ratio. Three increase HSs with values above 6 shown in the box. Right, 10 

distribution of log2 ratio of HF difference between offspring and the corresponding mothers. (F) 

log2 ratio of HF difference between offspring and the corresponding mothers aligned to the 

whole mitochondrial DNA sequence; the mtDNA regions are shown at the bottom bar in 

different colors (yellow - D-loop, purple – coding region, green – rRNAs and orange - tRNAs).  
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Fig 3. Characteristics of the heteroplasmic mtDNA variants in 1,562 mother-offspring 

pairs.  

(A) Mutation rate of mtDNA genomic regions was estimated using 477 de novo heteroplasmic 

variants from 1,526 mother-offspring pairs detected at HF>1%. Vertical axes represent 

1/log2(mutation rate) per base per mother-child transmission. mtDNA genomic regions are 5 

labeled and shown in different colors (yellow - D-loop, purple – coding region, green – rRNAs 

and orange - tRNAs). All tRNAs were combined to estimate the tRNA mutation rate. Note that 

this is the raw number of new mutations/bp/transmission detected at HF>1% in the offspring, 

and does not factor in the detection threshold nor segregation because current models assume 

neutrality(13, 43), which we later show is not the case. (B) Pathogenic mutations were observed 10 

in 1,526 mother-offspring pairs. Each dot represents the HF in the mothers (blue) and the 

corresponding offspring (pink); the directions of arrow show increase (->) or decrease (<-) HS; 

the length of the arrow between each pair of points represents the change in HF (orange - 

transmitted heteroplasmic variants, grey - de novo / lost heteroplasmic variants). (C) Frequency 

of heteroplasmic variants at CpG and non-CpG islands. Expected, homplasmic variants, 15 

transmitted, lost and de novo heteroplasmic variants are shown separately. (D) Number of novel 

versus known heteroplasmic variants in transmitted, lost and de novo heteroplasmic variants, 

increase and decreasing HS in transmitted heteroplasmic variants are shown in different colors. 

(E) Distribution of HS between the offspring and the corresponding mothers in transmitted 

known and novel heteroplasmic variants, increase and decreasing HS are shown in different 20 

colors. (F) Frequency of haplogroup defining variants in transmitted, lost and de novo 

heteroplasmic variants. The transmitted heteroplasmic variants were more likely to affect known 

haplogroup specific sites on the world mtDNA phylogeny than the lost and de novo 



 12 

heteroplasmic variants (P=7.86 x 10-11 and P=0.0016 respectively, Fisher’s exact test). P value < 

0.05*, < 0.01**, < 0.001*** and <0.0001****.  
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Fig 4. Evidence of selection during the transmission of mtDNA heteroplasmy in 1,526 

mother-offspring pairs.  

(A) Cumulative distributions of HF in the mothers and offspring within each mtDNA region. 

Vertical lines between two curves show the greatest distance between Dloop / SS and NS / rRNA 

/ tRNA regions (P-values in table S3). (B) NS/SS ratio of NS and SS variants for observed 5 

homoplasmic polymorphisms, total heteroplasmic variants, transmitted, lost and de novo 

heteroplasmic variants. (C) Frequency of heteroplasmic variants affecting conserved and non-

conserved sites. Expected, homoplasmic variants, transmitted, lost, de novo heteroplasmic 

variants, increase and decrease HSs are shown separately. (D) Number of heteroplasmies 

showing an increase or decrease HF in each mtDNA region. Left-facing arrows indicate that the 10 

number increasing was less than the number decreasing. Right-facing arrows indicate that the 

number increasing was greater than the number decreasing. (E) Histograms of HS in each 

mtDNA region with fitted kernel density curves. (F) Bar plot of the frequency of transmitted 

heteroplasmic variants by bins of HF in the mothers. (G) Frequency of transmitted heteroplasmic 

variants in each mtDNA region, along with 95% confidence intervals. (H) Receiver operating 15 

characteristic (ROC) curve for the logistic regression model of transmission (Area under the 

curve, AUC=0.857). P value < 0.05*, < 0.01**, < 0.001*** and <0.0001****.  
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Fig 5. The distribution of heteroplasmic variants in mtDNA Dloop region.  

(A) MAF of homoplasmic single nucleotide polymorphisms observed in 30,506 NCBI mtDNA 

sequences, with an expanded axis to show MAF<10% at the bottom. (B) Trend of PhastCons 

scores is shown across the mtDNA D-loop region. (C) HFs observed in 12,975 mtDNA 

sequences in the D-loop region. MT-TAS2 and MT-CSB1 are shadowed in light purple. MT-5 

LSP is shadowed in light orange. Corresponding known sub-regions of the mtDNA D-loop are 

shown at the bottom. Key - MT-3H: mt3 H-strand control element, MT-3L: L-strand control 

element, MT-4H: mt4 H-strand control element, MT-7SDNA: 7S DNA, MT-CSB1: Conserved 

sequence block 1, MT-CSB2: Conserved sequence block 2, MT-CSB3: Conserved sequence 

block 3, MT-HPR: replication primer, MT-HSP1: Major H-strand promoter, MT-HV1: 10 

Hypervariable segment 1, MT-HV2: Hypervariable segment 2, MT-HV3: Hypervariable 

segment 3, MT-LSP: L-strand promoter, MT-OHR: H-strand origins, MT-OHR57: H-strand 

origin, MT-TAS: termination-associated sequence, MT-TAS2: extended termination-associated 

sequence, MT-TFH/MT-TFL/ MT-TFX/ MT-TFY/: mtTF1 binding site. (D) Trinucleotide 

mutational signature of heteroplasmic variants in the D-loop region in 12,975 mtDNA sequences. 15 

The bars representing the frequency for the six types of substitution are displayed in different 

colours. (E) Simplified mtDNA phylogeny tree showing 6 heteroplasmic variants (refer to main 

text). Variants are shown in red and haplogroups are shown in blue. The pie chart sizes are 

proportional to the number of samples (shown at the bottom) belonging to the corresponding 

haplogroup in 10,210 unrelated mtDNA sequences. The proportion of samples carrying each 20 

heteroplasmic variant within the same haplogroup is shown in yellow. (F) HF of six 

heteroplasmic variants shared by more than one individual who belong to the same haplogroup.  

  



 17 



 18 

Fig 6. The characteristics of heteroplasmic variants in the nuclear ancestry and mtDNA 

ancestry matched and mismatched groups.  

 (A) Schematic showing how individuals with matched (MG, red border) and mismatched 

(MMG, green border) nuclear and mtDNA genomes arise over generations. Red and grey 

colored mtDNAs represent two different hypothetical populations. (B) I. Projection of the 5 

nuclear genotypes at common SNPs onto the two leading principal components computed with 

the 1000 Genomes dataset, with individuals colored by their assigned nuclear ancestry: Asian 

(blue), African (green), European (red) and Other (orange). The individuals colored in blue, 

green and red in the boxes labelled II, III and IV are shown in panels II, III and IV, respectively, 

where they are colored by their mitochondrial ancestries. Stars indicate that the mitochondrial 10 

ancestry does not match the nuclear ancestry. (C) Proportion of haplogroup defining variants in 

the matched and mismatched groups in 9,631 mtDNA sequences from unrelated individuals, 

along with the expected proportion shown at the left side. Distinct heteroplasmic sites were more 

likely to affect known haplogroup specific sites (26) than the rest of the mitochondrial genome 

compared to that expected by chance (P<2.2 x 10-16, Fisher’s exact test). This bias was stronger 15 

in the mismatched group than the matched group (P=0.001, Fisher’s exact test). (D) Heatmaps 

showing the density of observed heteroplasmic mtDNA haplogroup-defining variants in the 

observation dataset (left) and validation dataset (right). The matched (top) and mismatched 

(bottom) groups are shown separately, broken down by the nuclear ancestry of the carrier and the 

major haplogroup of the variants. The width of each column is proportional to the number of 20 

variants defining each of the two major haplogroups (Asian and European). Within each 

heatmap, the height of each row is proportional to the number of individuals having each nuclear 

ancestry. The density of heteroplasmic variants in each cell determines its color. 


