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Modulating the gut–liver axis and the pivotal role of the 
faecal microbiome in cirrhosis
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Cirrhosis is associated with intestinal dysbiosis, with specific 
alterations in the gut microbiota linked to particular aetiologies 
and manifestations of the disease. We review the role of the 
gut microbiome and the importance of the intestinal barrier 
in cirrhosis, provide an overview of the terminology and 
techniques relevant to this emerging area, and discuss the 
latest developments in therapies targeting the gut–liver axis.

Introduction

The human gut harbours trillions of micro-organisms that in 
health coexist symbiotically with their host. The gut microbiota 
(the micro-organisms in the intestinal niche), also referred to 
as the microbiome (the micro-organisms and their collective 
genomes), consists of bacteria, archaea, fungi, viruses and 
protozoa.1 This collection of microbes perform a multitude 
of functions benefiting the host, which have become better 
understood over the past decade, in part due to the advent of 
next-generation sequencing technologies.

Within the gut microbiota, bacteria are the most studied 
owing to the recent advent of non-culture-based molecular 
techniques, such as 16S ribosomal ribonucleic acid (rRNA) gene 
sequencing and shotgun metagenomic profiling, that allow 
characterisation of bacteria, and with the latter technique 
characterisation of their potential functions, without having 
to grow them all in a laboratory. 16S sequencing amplifies this 
highly conserved 1,500 base pair gene (found in all bacteria and 
archaea) to allow genus-level identification. This has largely been 
superseded by metagenomic approaches which sequence all 
of the deoxyribonucleic acid (DNA) in a sample. Metagenomic 
approaches provide much higher phylogenetic resolution, allowing 
species-level identification, and can also provide information on 
bacterial gene function. Other techniques such as transcriptomics 
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and metabonomics provide information on the genes that 
are transcribed and thus active and their metabolic products, 
respectively. These various analytical approaches are summarised 
in Fig 1 and the related terminology is outlined in Table 1.

Gut microbiota in health

The Human Microbiome Project examined microbial populations 
at 15 body sites in men and 18 in women, providing a reference 
data set from 242 healthy Americans.2 This showed that microbial 
populations vary from individual to individual, but all perform 
similar functions and exhibit diversity. The majority of human gut 
bacteria are from the Bacteroidetes and Firmicutes phyla. There 
is also a minor contribution from Actinobacteria, Verrucomicrobia 
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Key points

Patients with cirrhosis are predisposed to small intestinal 
bacterial overgrowth (SIBO), altered gut permeability and 
dysbiosis, resulting in pathological bacterial translocation 
(BT) which drives systemic inflammation.

Cirrhotic patients have an over-representation of potential 
pathogens in their gut microbiota, such as the Gram-negative 
Enterobacteriaceae family which includes Escherichia coli and 
other bacterial species. This can lead to infections including 
spontaneous bacterial peritonitis and contribute to acute 
hepatic decompensation.

Manipulation of the gut microbiota by antibiotics, pre-/
probiotics, faecal microbiota transplantation or stool 
transplantation (FMT) as well as other pharmacological 
approaches can ameliorate gut microbial dysbiosis, induce 
‘rebiosis’ and potentially reduce the risk of decompensation.

FMT has shown promise in small-scale human studies and 
now requires larger studies with long-term follow up and 
rigorous safety controls to further evaluate clinical efficacy.

KEYWORDS: Microbiota, cirrhosis, gut–liver axis, dysbiosis, 
faecal microbial transplantation
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and Proteobacteria as well as archaea (methane producing micro-
organisms) and bacteriophages (viruses which infect bacteria). Gut 
bacteria produce short-chain fatty acids (SCFAs) from otherwise 
indigestible starches such as butyrate, which plays a major role in 
maintaining gut barrier integrity, and acetate, which is involved 
in cholesterol synthesis. The microbiota also contributes to host 
energy production, vitamin synthesis, drug metabolism and bile 
acid metabolism and plays a vital role in host immune system 
maturation.3

Bile acids modulate the gut microbiota via their antimicrobial 
activity and control its composition based on bacterial enzyme 
activity. Primary bile acids are produced from cholesterol in the 
liver and bile acids re-circulate via the enterohepatic circulation, 
with 95% re-absorbed in the terminal ileum. Bile acids that reach 
the colon are metabolised by two types of bacterial enzymes. 
Bile salt hydrolases (BSHs), which are expressed by a variety of 
different bacteria, deconjugate glycine and taurine, reforming 
primary bile acids. 7α-hydroxylation converts them to secondary 
bile acids.3 Disruption to this finely balanced process can occur due 
to altered bile acid production as seen in cirrhosis, where there is 
reduced conversion of primary to secondary bile acids, or altered 
bacterial composition.4

The gut microbiota is also influenced by route of delivery at birth 
(vaginal or caesarean section), breast or formula feeding, diet, 
drugs and alcohol in later life, as well as a whole variety of other 

environmental factors that remain to be determined. There is 
growing interest in perturbations of the normal gut microbiome 
seen in various disease states, such as diabetes mellitus, 
inflammatory bowel and cardiovascular diseases, and Alzheimer’s 
disease. This is commonly and very broadly described as ‘dysbiosis’ 
and the impact of these compositional changes on microbiome 
function and host interactions is where research is increasingly 
focused. Dysbiosis refers to several types of changes including:5

>> a general change in microbiota composition, eg alteration, 
perturbation, abnormal composition or loss of diversity

>> an imbalance in composition, which is almost always deemed to 
have a negative effects

>> changes to specific taxonomic lineages in that composition.

The intestinal barrier relies on multiple layers that defend 
against exogenous pathogens.6 In the normal homeostatic 
state, the most external layer of defence is mucus, which is 
where the outer, microbiota-colonised layer interacts directly 
with the gut microbiota, while the inner sterile layer covers the 
gut epithelium.7 This epithelial monolayer of cells maintains a 
physical barrier which is dependent on dynamic tight junctions 
to maintain its integrity.8 The next layer of defence is provided 
by the immune cells of the lamina propria, which contains several 
types of innate and adaptive immune cells and aggregations of 
lymphoid nodules known as Peyer’s patches.9,10 The final layer is 
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Fig 1. Overview of next generation sequencing and bioinformatic methods for microbiome analyses and functional metagenomics. DNA = 
deoxyribonucleic acid; OTU = operational taxonomic unit; PCR = polymerase chain reaction; rRNA = ribosomal ribonucleic acid.
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the gut vascular barrier (GVB), which is pivotal in preventing the 
systemic dissemination of viable microbes and their metabolites 
via the portal circulation.11 The gut microbiota play an important 
role in interacting homeostatically with all these various layers, in 
particular in the priming of gut mucosal immunity.12,13

Gut microbiota in cirrhosis

The composition of the dysbiotic gut microbiota in cirrhosis 
has been characterised by several groups, describing a clear 
over-representation of pathogenic bacteria and fungi. Qin 
et al evaluated the gut microbiome of 98 Chinese cirrhotic 
subjects and compared them to 83 healthy controls by shotgun 

metagenomic sequencing.14 Veillonella, Streptococcus, Clostridium 
and Prevotella were enriched in the cirrhosis cohort, with a 
dominance of Eubacterium and Alistipes in the healthy control 
group. Of the 20 species that were enriched in cirrhosis, four 
were Streptococcus species and six were Veillonella species, 
including species typically originating from the oral cavity, 
suggesting that these two genera may have an important role 
in cirrhosis and leading to the concept of ‘oralisation’ of the 
gut microbiome in cirrhosis. In a study of 244 cirrhotic subjects 
with varying severity of disease and 25 age-matched controls, 
the term ‘cirrhosis dysbiosis ratio (CDR)’ was developed, which 
compares the ratio of beneficial to potentially pathogenic 
bacteria, with a low number being indicative of dysbiosis.15 The 

Table 1. Terminology and definitions relevant to microbiome descriptions and techniques

Term Definition

Next generation 
sequencing

Encompasses a broad range of sequencing technologies which require preparation of templates 
(recombinant DNA combining adaptor with the target sequences), sequencing, genome alignment and 
assembly. These methodologies may be run in parallel on a large scale (‘massively parallel’), making 
their sequencing affordable and more efficient than the ‘first generation’ Sanger sequencing technology

16S rRNA The transcribed form of the 16S ribosomal subunit gene, the smaller RNA component of the prokaryotic 
ribosome, used as the most common taxonomic marker for bacterial communities

16S rRNA gene 
sequencing

Sequencing of the highly conserved 1,500 bp gene found in bacteria and archaea allowing genus level 
resolution (cheaper and faster than metagenomics)

Metagenomics Obtained via shotgun sequencing of all the DNA in a sample, followed by mapping to a reference 
database. The metagenome is the collection of genomes and genes from members of the microbiota

Functional metagenomics Computational or experimental analysis of a microbial community with respect to the biochemical and 
other biomolecular activities encoded by its composite genome

Microbe A microorganism of the Bacteria, Archaea or Eukarya life domains and their viruses

Microbiota The total collection of microbial organisms within a community, typically used in reference to a 
mammalian host and to particular anatomical niches, eg the gastrointestinal tract

Microbiome The total microbial community, their genomes and biomolecules within a defined environment

Meta-transcriptomics Analysis of the expressed RNA by high-throughput sequencing

Meta-proteomics Sequencing of all the proteins present in a given sample (from the micro-organisms and the surrounding 
environment)

Metabolomics Analysis of the metabolite profile in a sample (the collective metabolites are termed the metabolome)

Metabonomics Describes the approach to generate metabolite profiles from complex systems such as urine, faecal water 
(eg where more than one strain or tissue has generated the metabolites)

Diversity A calculated index of the taxonomic distribution within a community, either in terms of distinct taxa or 
in terms of their evolutionary/phylogenetic distance, that incorporates measures of richness and species 
distribution

Dysbiosis Imbalance between microbes among a community that occupies a given ecological niche. The concept 
of dysbiosis was coined by Metchnikoff and describes a disordered commensal community that alters 
homeostasis between the microbiota and its host, predisposing to risk of or contributing to disease

Prebiotic A food substance metabolised by the microbiota so as to directly or indirectly benefit the host

Probiotic A live microorganism that, when ingested, provides benefit to the host, either directly through 
interactions with host cells or indirectly through effects on members of the microbiota

Taxonomy Discipline of classification for organisms, formally described by Carl Linnaeus (1707–1778). Current 
classification systems use a series of tiers starting from domain, and progressing to kingdom, phylum, 
class, order, family, genus, species and strain

Taxon A taxonomic unit or population of organisms, whether named or un-named, which are inferred to be 
related and have common characteristics

bp = base pairs; DNA = deoxyribonucleic acid; rRNA = ribosomal ribonucleic acid.
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CDR was found the be highest in controls and to reduce with 
increasing severity of disease, being lowest in cirrhotic inpatients 
with acute hepatic decompensation. CDR also negatively 
correlated with endotoxaemia. There was a significant reduction 
in autochthonous taxa (Clostridiales XIV, Ruminococcaceae and 
Lachnospiraceae) and a significant increase in pathogenic taxa 
(Enterococcaceae, Staphylococcaceae, Enterobacteriaceae) when 
comparing controls with cirrhotic outpatients and inpatients. 
A reduction in Veillonellaceae and Porphyromonadaceae with 
worsening liver disease was also noted.

Changes to the fungal inhabitants of the gut microbiota have 
also been reported in alcohol-related cirrhosis. Patients with 
alcoholic liver disease have reduced gut fungal diversity and 
overgrowth of Candida.16 These patients also have increased 
β-glucan in the systemic circulation (derived from fungal cell 
walls) which was ameliorated by anti-fungal treatment in a mouse 
model. Children with non-alcoholic steatohepatitis (NASH) have 
been found to have an over-representation of ethanol-producing 
bacteria, suggesting that the pathogenesis of NASH may relate 
to endogenous ethanol production, resulting in liver damage.17 
Specific gut microbiota changes have also been noted in primary 
sclerosing cholangitis (PSC) with an increase in Veillonella, and 
gut microbiota profiles are distinct from those with inflammatory 
bowel disease without PSC and healthy controls.18

There is increasing evidence that gut dysbiosis in cirrhosis 
can pathologically contribute to disease progression and 

decompensating events such as spontaneous bacterial peritonitis 
(SBP) and hepatic encephalopathy (HE). Patients with cirrhosis 
often develop small intestinal bacterial overgrowth (SIBO) which is 
reported to be more common in patients with advanced cirrhosis. 
SIBO (as measured by hydrogen breath testing) occurred in 20% of 
Child–Pugh A cirrhotics, compared to 73% of those with Child–Pugh 
C, but only 8% of healthy controls, and has been associated with 
development of SBP.19 Chang et al showed that 70% of cirrhotic 
patients with SBP had SIBO, compared to 20% of those without SBP. 
Small intestinal motility was also noted to be impaired in those with 
a history of SBP and may contribute to the development of SIBO.20 
An important consideration is the effect of pharmacotherapies that 
cirrhotic patients are often prescribed, which can have a deleterious 
effect on the gut microbiota. Proton pump inhibitors (PPIs) are 
an example of a commonly used medication that is associated 
with poor outcomes in cirrhosis, being linked to increasing risk of 
infections and HE.21 PPI use has been shown to be associated 
with a relative enrichment in the distal gut of microbiota that are 
usually resident in the oral cavity in cirrhotics.22 This has deleterious 
functional consequences whereby Streptococcaceae – known 
to increase urease generation – are enriched along with greater 
production of trimethylamine N-oxide.23

Patients with cirrhosis exhibit increased gut permeability, 
facilitating pathological translocation of bacteria and their 
immune-interacting products (known as pathogen-associated 
molecular patterns or PAMPs) into the systemic circulation, 

Fig 2. Relationship of the gut microbiome to other components of the intestinal barrier and gut–liver axis in cirrhosis.  Box 1 gives further details on 
the role of the individual components and compartments of the intestinal barrier in cirrhosis. LPS = lipopolysaccharide; PAMP = pathogen-associated molecu-
lar patterns; PRR = pattern recognition receptor; ROS = reactive oxygen species.
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which drives inflammation and cirrhosis-associated immune 
dysfunction.24 Disrupted tight junction expression affecting 
the small intestines of cirrhotic patients has been shown to 
correlate with degree of endotoxaemia based on measurement 
of lipopolysaccharide (LPS), one of the prototypical PAMPs.25 The 
GVB has recently been described as a key layer of defence and is 
disrupted in non-alcoholic fatty liver disease (NAFLD), allowing 
translocation of bacteria and PAMPs into the circulation, as 
demonstrated by increased detection of the fenestrated marker 
PV1.26 As a consequence, the intestinal barrier in cirrhosis is 
often disrupted at multiple levels, propagating the pathological 

translocation of microbes and their inflammatory metabolites to 
the liver, where local hepatic inflammation is induced as well as 
to systemic sites via the lymphatic system (Fig 2; Box 1). The role 
of the gut microbiota in mediating and contributing to gut barrier 
disruption in cirrhosis remains to be determined. Recent studies 
have, however, begun to confirm the presence of gut inflammation 
in acutely decompensated cirrhosis by the evaluation of faecal 
cytokine profiles as well as other markers such as D-lactate, fatty 
acid-binding protein-2 and faecal calprotectin where intestinal 
dysbiosis is likely to play a causal role in affecting gut barrier 
integrity.27

Box 1. Individual components and compartments of the intestinal barrier and beyond involved in the gut-
liver axis in cirrhosis

I.  Luminal content

>> Microbiota dysbiosis with overgrowth of pathogens and depletion of commensal organisms
>> Overgrowth within small bowel with impaired gut mobility
>> Peturbed metabolic activity including bile acid profiles, short-chain fatty acids (SCFAs), lactate and tryptophan production
>> Increase in pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS), flagellin, peptidoglycan and 

unmethylated CpG motifs

II.  Mucus layer

>> Mucus layer in health prevents bacteria and their products from invading the microvillus environment
>> Mucus consists of glycoproteins secreted by goblet cells called mucins
>> Mucin (MUC) secretion is affected by transcription factors (nuclear factor-κB [NF-κB]), growth factors, LPS, presence of microbes, 

inflammatory cytokines
>> Animal models of cirrhosis show abnormal mucus production and function

III.  Gut epithelial layer

>> Goblet and Paneth cell dysfunction, reduced mucin and antimicrobial proteins production
>> Ultrastructural changes: villous irregularity, increased epithelial cell space, tight junction compromise
>> Intracellular activation of pattern recognition receptors (PRRs)
>> Translocation of viable bacteria and PAMPs

IV.  Local mucosal immune responses

>> Increased neutrophil, macrophage and dendritic cell recruitment
>> Increased PRR activation
>> Enhanced pro-inflammatory mucosal cytokine release
>> Reduced anti-inflammatory metabolites
>> Enhanced mucosal priming of THI/TH17 cells
>> Reduced mucosal priming of T-regs
>> Dysfunctional mucosal innate and adaptive immune cell responses

V.  Gut-associated lymphoid tissue

>> Comprises four lymphoid compartments: Peyer’s patches, lamina propria lymphocytes, including dendritic cells (DCs), intraepithelial 
lymphocytes and mesenteric lymph nodes (MLNs)

>> Microorganisms are transported by dendritic cells from intestines to MLNs via the lymphatic system

VI.  Gut vascular layer

>> Consists of endothelial cells that express junctional proteins
>> Enteric glial cells and pericytes together form the gut-vascular unit and are closely associated with endothelial cells
>> Enteric glial cells preserve integrity of epithelial and endothelial barriers through the release of S-nitroglutathione (GSNO)
>> Gut vascular barrier in cirrhosis is less able to control intestinal microbial products and antigens that translocate into the systemic 

circulation

VII.  Systemic immune system

>> Heightened susceptibility to infection
>> Immuno-paresis with systemic inflammation
>> Defective innate and adaptive immune responses to PAMPs
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Manipulating the gut microbiota and gut–liver axis in 
cirrhosis

Given that changes to the gut microbiota appear to be causal in 
propagating liver damage as well as hepatic decompensation 
in cirrhosis, the microbiota therefore rationally represents a 
therapeutically modifiable target.28,29 The gut microbiota can 
be manipulated by diet, drugs and pre-/probiotics as well as 
faecal microbiota transplantation or stool transplantation (FMT). 
These therapeutic approaches, many of which remain under 
investigation, are summarised in Fig 3.

Antibiotic therapy remains a cornerstone of treatment in cirrhosis, 
but has been associated with an increasing incidence of multidrug 
resistant infections in cirrhotic patients in recent studies from Europe 
and globally.30,31 Antimicrobial resistance (AMR) now poses a very 
major threat to cirrhotic patients, with the gut microbiota being a 
densely populated microbial ecosystem resident in the intestinal 
luminal environment that provides frequent opportunity for the 
horizontal transfer of resistance genes among microbes. This occurs 
through several different mechanisms including conjugation and 
transduction, with most AMR genes harboured by strictly anaerobic 
intestinal commensals.32 AMR is focusing efforts on investigating 
and developing effective alternative non-antibiotic based therapies 
for bowel decontamination designed to curtail PAMPs and bacterial 
translocation in cirrhosis.33 Rifaximin is a non-absorbable antibiotic 
licensed for the treatment of recurrent HE. Rifaximin’s efficacy may 
be attributed to its impact on modulating the metabolic function 
of the gut microbiota rather than a change in relative bacterial 
abundance, although this is undergoing further evaluation in 
studies.34

Prebiotics such pectin/inulin that nourish beneficial gut bacteria 
and probiotics, which are exogenously administered bacteria that 

confer a health benefit, have been used in cirrhosis, particularly for 
the treatment of HE. A meta-analysis found that probiotics can 
decrease serum ammonia and endotoxin levels, improve minimal 
HE, and prevent overt HE development in cirrhosis.35 Patients 
with acute alcoholic hepatitis (AAH) have been reported to have 
an over-representation of Enterococcus faecalis within their gut 
microbiota, with this species secreting a toxin called cytolysin 
which drives hepatocyte death and liver injury.36 Using humanised 
mice in the same study, bacteriophages, which are viruses that 
destroy bacteria with high specificity, were targeted against 
E faecalis; this resulted in decreased cytolysin in the liver and 
abolished ethanol-induced liver disease.

As a result of the success in manipulating the gut microbiome 
with single strains of bacteria using probiotics, interest has 
grown in replacing the entire dysbiotic gut microbiota with that 
of a healthy donor, using FMT. FMT has proven to be extremely 
successful in the treatment of recurrent Clostridium difficile 
infection. In cirrhosis, FMT has been studied in the treatment of 
HE where it was noted to reduce the number of HE episodes in 
the treatment group when given via enema after antibiotic pre-
treatment.37 FMT has also been used to treat steroid-ineligible 
AAH in India.38 Our group has recently completed a safety and 
feasibility study of FMT in advanced but stable cirrhosis (MELD 
score 10–16).39 This study showed that FMT was safe and feasible 
in this patient group, with a reduction in plasma ammonia levels in 
FMT treated patients persisting for up to 30 days after treatment. 
Ammonia is a microbial metabolite and has a central role in the 
pathogenesis of HE, suggesting a potential role for the use of 
FMT in the management of this debilitating condition. FMT is 
currently only approved for use in clinical trials when prepared in 
a Medicines and Healthcare products Regulatory Agency licensed 
facility in the UK and the long-term effects of FMT are not yet 
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known. A larger multicentre trial of encapsulated, lyophilized FMT 
(where the donor faeces are concentrated into ingestible capsules) 
is now planned in patients with decompensated cirrhosis in the 
UK with recruitment due to commence in 2021. Donors must be 
rigorously screened for potential pathogens to avoid the risk of 
transmission of infection to patients as occurred in the USA with 
an ESBL (extended spectrum beta lactamase)-producing bacteria 
traced back to infected FMT and which resulted in the death of 
one patient.40

Other potential therapeutic agents that target the gut 
microbiota include non-selective beta-blockers (NSBBs), which 
have been shown to protect against SBP, potentially by reducing 
bacterial translocation by modulating gut motility and SIBO.41 
Farnesoid X receptor (FXR) agonists such as obeticholic acid and 
non-steroidal FXR agonists (PX2060) have been demonstrated 
to reduce gut permeability and portal pressures in a cirrhotic 
animal model, as well as reconstituting microbiota composition, 
restoring epithelial and vascular intestinal barrier function, 
improving intestinal innate defence mechanisms, reducing 
intestinal inflammation and decreasing bacterial translocation in 
experimental cirrhosis.42 Large-scale human studies are awaited. 
Synthetic carbons have been trialed as adsorbents to remove 
harmful bacterial metabolites as well as LPS from the gut. AST-120 
reduced ammonia levels in cirrhotic rats, reducing brain water, but 
did not show a clinical benefit in humans. The CARBALIVE-SAFETY 
study (NCT03202498) is currently underway to assess the efficacy 
of Yaq-001 (a synthetic carbon) in humans, following successful 
animal studies.28

Summary

Cirrhotic patients exhibit intestinal dysbiosis which correlates 
with disease severity and endotoxaemia. Specific alterations in 
the gut microbiota have been associated with certain causes of 
cirrhosis and manifestations of hepatic decompensation, with 
research now focusing on establishing causality and confirming 
that these microbial changes are not simply due to bystander 
effects or epiphenomena. Manipulation of the gut microbiota is 
an increasingly attractive therapeutic target and can be achieved 
by several approaches which are non-antibiotic dependent in an 
era of rapidly increasing AMR incidence. There is emerging data 
on the utility of FMT as a therapeutic option in cirrhosis, as well 
as FXR agonists and NSBBs. Further studies are required to both 
mechanistically elucidate the pathophysiological role of the gut 
microbiota in cirrhosis, as well as the efficacy and safety of such 
targeted therapies on the gut–liver axis. ■

In memoriam

This article is dedicated to the late Prof Roger Williams CBE, who 
died recently after a short illness. He had a great interest in all 
aspects of the gut–liver axis in cirrhosis and for the potential for 
therapeutic interventions. He was, over the past 6 decades, a 
strong advocate for the role of the Royal College of Physicians in 
medical education. In recent years he was a highly valued mentor 
and supporter to Vishal Patel who, with many other academic 
hepatologists, continue in his legacy.
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