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A B S T R A C T

Objective: This UK-wide OATech Network þ consensus study utilised a Delphi approach to discern levels of
awareness across an expert panel regarding the role of existing and novel technologies in osteoarthritis research.
To direct future cross-disciplinary research it aimed to identify which could be adopted to subcategorise patients
with osteoarthritis (OA).
Design: An online questionnaire was formulated based on technologies which might aid OA research and sub-
categorisation. During a two-day face-to-face meeting concordance of expert opinion was established with surveys
(23 questions) before, during and at the end of the meeting (Rounds 1, 2 and 3, respectively). Experts spoke on
current evidence for imaging, genomics, epigenomics, proteomics, metabolomics, biomarkers, activity moni-
toring, clinical engineering and machine learning relating to subcategorisation. For each round of voting, �80%
votes led to consensus and �20% to exclusion of a statement.
Results: Panel members were unanimous that a combination of novel technological advances have potential to
improve OA diagnostics and treatment through subcategorisation, agreeing in Rounds 1 and 2 that epigenetics,
genetics, MRI, proteomics, wet biomarkers and machine learning could aid subcategorisation. Expert pre-
sentations changed participants’ opinions on the value of metabolomics, activity monitoring and clinical engi-
neering, all reaching consensus in Round 2. X-rays lost consensus between Rounds 1 and 2; clinical X-rays reached
consensus in Round 3.
Conclusion: Consensus identified that 9 of the 11 technologies should be targeted towards OA subcategorisation to
address existing OA research technology and knowledge gaps. These novel, rapidly evolving technologies are
recommended as a focus for emergent, cross-disciplinary osteoarthritis research programmes.
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1. Introduction

It is predicted that there will be a 4- to 6-fold increase in the
number of total joint replacements for osteoarthritis (OA) in the
coming decades [1]. Despite the increase in prevalence and the large
body of literature existing on the subject, definitions of OA sub-
categories, whether in clinical or research environments, are often
disparate. The OATech Networkþ, a multidisciplinary consortium, had
identified this as a potential limitation to furthering OA research.
Whilst X-rays have been one of the most commonly used technologies
for studying OA for decades, there have been many recent techno-
logical developments applied to the field, for example, in genomics
and other ‘omics’, different forms of imaging, and computational
analysis of big data.

The OATech Network þ organised a consensus meeting
combining experts in a broad range of existing and novel technolo-
gies (with basic scientists and clinicians) to appraise the potential of
existing and new technologies and improve OA subcategorisation. A
Delphi approach was adopted, aiming to recommend improved tar-
geting of technology for OA subcategorisation so that existing and
emerging treatments could be applied more effectively to selected
patients or subgroups.

The meeting commenced with experts in the fields of engineering,
rheumatology, orthopaedic surgery, radiology, physiotherapy, biology
and OA pain perception sharing their experience of OA research. Experts
in more recently developed technologies lectured on their OA research
application, summarised below.
1.1. Genetics and genomics

The field of complex trait genetics has witnessed a revolution in
technological advances over the last decade, enabling the genome-wide
interrogation of sequence variation, leading to the discovery of thou-
sands of genetic risk loci. Recent methodological advances have also
enabled deep molecular characterisation of disease-relevant tissues
collected from human patients or studied in cellular and organismal
models of disease. Together, these can help enhance our understanding
of the mechanisms underlying disease development and progression [2].
Large-scale genetics can help improve our understanding of the genetic
aetiology of OA and related sub-groups by interrogating big data in ge-
netics, genomics and medically-relevant phenotypes from rich epidemi-
ological resources, patient collections and disease registries. Functional
genomic approaches for integrated molecular phenotyping of relevant
cell types can help translate insights from genomics into mechanisms of
disease in order to overcome the critical barrier of there being currently
no disease-modifying treatment for OA. The relevant diseased OA tissues
are readily available from joint replacement surgery, enabling the study
of molecular processes in the appropriate tissues, both to fill a gap in our
fundamental understanding of biology and to identify novel therapeutic
avenues.
1.2. Epigenetics and functional analysis

Epigenetics is a mechanism used by the cell, tissue and organ to
regulate gene expression in a dynamic manner by reversible chemical
changes to the genome. There are three epigenetic markers: DNA
methylation, histone modification and the activity of regulatory RNAs
[3]. Epigenetic changes are context specific and show temporal and
spatial effects. They act during skeletogenesis and joint formation, and
have a role in OA [3–5]. As for genomic studies, the diseased joint tissues
such as articular cartilage, synovium or bone, are used in relatively large
quantities to extract DNA, chromatin and RNA for epigenetic analysis.
Such studies have led to subcategorisation of OA by, for example, iden-
tifying individuals who appear to have an inflammatory component to
their disease [4].
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1.3. Proteomics and metabolomics

Proteomics and metabolomics can be used to identify molecules as
possible predictors of early disease, disease progression and response to
treatment. Synovial fluid contains systemic proteins and metabolite
markers of disease and holds significant potential for the discovery of
proteins and metabolites to aid subcategorisation of the disease.

Whilst transcriptomics can indicate the proteome, the relationship
betweenmRNA and proteins is complex and thus identifying proteins in a
sample and how they vary is paramount. Quantitative proteomic differ-
ences between sample groups can be identified using either absolute or
relative quantification, with or without labelling (reviewed [6]). Abso-
lute quantification has been used to measure up to 20 targeted proteins in
a single experiment [7]. Label-free relative quantification using synovial
fluid has been used and predictors of treatment outcome with autologous
chondrocyte implantation (ACI) have been investigated for a number of
biomarkers [8]. Nuclear magnetic resonance (NMR) and MS have been
used in assessing metabolomics, being non-destructive, quantitative,
reproducible and cost effective. Both techniques have identified up to 32
differentially expressed metabolites in synovial fluid from OA and
rheumatoid arthritis [9].

Degradomics is another proteomic method that may be useful in OA
subcategorisation, assessing cleavage products at different stages in OA
[8]. A further development, Matrix Assisted Laser Desorption Ionization
Mass Spectrometry Imaging (MALDI-IMS), has been used to identify
proteins and neopeptides altered in cartilage ageing and OA [8].

1.4. Molecular signatures and biomarkers

All the above techniques (genomics, epigenomics, proteomics) can
assist in the search for OA biomarkers, in terms of the “Burden of disease,
Investigative, Prognostic, Efficacy of intervention and Diagnostic
(BIPED)” classification scheme [10]. To date, many candidate proteins,
carbohydrates and lipids [11] have been investigated [12]. Several are
associated with disease progression in OA cohorts, but are not able to
stratify individuals [13]. A ‘molecular signature’ representing multiple
protein or non-protein markers may be more realistic for OA than finding
a single biomarker, perhaps better indicating relevant shared mecha-
nisms within the disease.

Although singleplex antibody-based assays remain the mainstay for
investigation of candidate protein biomarkers, multiplexing with higher
sensitivity and specificity for complex biological fluids is now possible by
proprietary adaptive immunoassay approaches, such as electro-
chemiluminescence or proximity extension assays (combining antibody
and PCR technology) [14]. Whether using immunoassay or mass
cytometry (e.g. CyTOF), antibodies limit the absolute number and com-
binations possible, whereas non-antibody approaches circumvent these
issues. Modified aptameric assays (aptamers being short sequences of
nucleotides which are selected for their specificity to bind proteins in
much the same way as an antibody) can be multiplexed to quantify
thousands of proteins simultaneously in a single sample. These ap-
proaches have the ability to identify molecular endotypes (molecular
subgroups in disease) or to predict drug toxicity and transform the way
we are able to dissect molecular pathways or identify molecular signa-
tures as biomarkers in biological fluids.

1.5. Clinical engineering

The International Classification of Functioning, Disability and Health
(ICF) provides a framework for understanding disability which links the
body functions and structures to activity and participation. Clinical
movement analysis, in particular 3D gait analysis, allows clinicians to
measure the impact of OA on walking. This is important as patients often
perceive their walking pattern as a cause as well as a consequence of the
disease. Patients with unilateral disease often develop bilateral symp-
toms [15].
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Previous work [16] has described gait in patients with single joint
disease, who do not have a typically antalgic gait pattern, but have knee
loading which is high throughout the stance phase, giving them a high
moment impulse, combined with muscular co-contraction. This
co-contraction, measured using electromyography (EMG) further in-
creases contact forces in the joint. 3D gait analysis can detect bilateral
overloading in both hip and knee joints in patients with unilateral, single
joint disease. The adopted tentative gait pattern seems to predispose
other joints to OA.

Whilst knee pain and loading measures improve after knee arthro-
plasty, some patients improve more than others and abnormal loading
patterns often persist [16]. 3D gait analysis is useful in understanding the
control and loading of the joints during movement and interpreting how
these change in OA gait is important in providing appropriate therapies,
such as bracing or biofeedback.

In knee OA populations biomechanical measures at baseline have also
been used to predict radiographic disease progression [17], future total
knee arthroplasty (TKA) [18] and stratify response to interventions such
as lateral wedge insoles and TKA [16].

1.6. Activity monitoring

Recent OARSI guidelines have advocated the use of activity moni-
toring devices to collect objective measures of physical activity [19]. It is
important for individuals with OA to remain physically active. Evidence
indicates that it can reduce OA related pain, in addition to increasing
muscle strength, joint range of motion and cardiovascular fitness [20].
Physical activity levels measured in OA populations over the longer term
(3–12 months post-surgery) show no substantial increases in activity
after 12 months [21]. Therefore more behavioural interventions are
required to promote physical activity in the recovery period, a conclusion
that could be missed when using more subjective self-reported measures.

Activity monitoring technology is rapidly advancing but for sub-
grouping of OA requires large amounts of data. Smart phones and
wearable technology now offer the potential to collect this data outside of
the laboratory and unobtrusively.

1.7. Machine learning and ‘big data’

Much of the technology described with potential to improve OA
stratification creates very large data sets which require computational
analysis; as the quantity of data increases, meaningful analysis becomes
more challenging. The use of complex artificial neural network archi-
tectures or machine learning (ML) have been shown to be capable of
representing and learning predictable relationships in many diverse types
of data. These computational tools hold promise for transforming the
future of ‘omics’ and other technologies which acquire huge data sets or
'big data' [22].

Imaging modalities such as MRI are used as clinical diagnostic tools
and contain vast amounts of information which lend themselves well to
analysis via ML. In the following example, ML is applied to image analysis
of OA in the spine, thus demonstrating the potential value of this tech-
nology in identifying subgroups of OA. ML has been used to develop an
automated method for grading degeneration in the spine and interver-
tebral disc on MRIs [23,24], as used in the Pfirrmann Score [25] for
degenerative disc disease or OA of the spine (developed as ‘SpineNet’).
The system can robustly extract measurements for this, in addition to
having the potential to identify other phenotypes such as spinal stenosis
or ‘Modic’ changes in the vertebral endplates. This approach requires
well defined cohorts of patients with appropriate levels of consent for this
type of data storage and analysis, both for developing the program and
then subsequently independent cohort(s) for validation. SpineNet also
has the capability of producing so-called ‘Hotspots’ or saliency images
that can be used to visualize the parts of the MRI that are the likely source
of the output [23], so possibly defining completely new phenotypes from
this unbiased approach.
3

A prerequisite for imaging biomarker discovery is the extraction of
robust and discriminative radiological measurements from joint MRIs;
however, the lack of imaging biomarker standardisation within the
research community, the inherent intra- and inter-reader variability and
time and cost has hampered research to date. Clearly ML is providing a
powerful tool to aid in the analysis of ‘big data’ and medical images with
diverse applications too numerous to discuss here. Future ML, compu-
tational analysis and the development of automated programs, can offer
robust, repeatable and rapid analysis of large datasets (MRI images or any
other potential ‘biomarker’) and provide important tools for sub-
categorisation and identification of OA biomarkers. As novel markers of
OA emerge across the biological, biomechanical, clinical and imaging
interfaces, their combination will provide increasingly powerful datasets
and opportunities for ML applications across OA diagnostics and classi-
fication domains.

In summary, the technologies mentioned above have developed
rapidly in the last decade. For example, a literature search for ‘genomics’
or ‘epigenomics’ (using Medline and Embase) over the last 30 years
highlights the increased awareness and use of such technology. From
1990 to 1999 genomics or epigenomics shows a total of 10 publications,
2000–2009 shows 7322 and 2010–2019 shows 23,426. With the
continuous evolution of these technologies, it seemed appropriate that
the OATech Network þ should address the topic of the potential of
technologies for subcategorising OA and it was felt that a Delphi meeting
would be an appropriate approach.

2. Methods

This Delphi study consisted of a two-day focus group meeting (see
programme in Supplementary Table 1), together with online surveys
using ‘Google Forms’, to assess the level of agreement on a number of
statements relating to OA and the use of different technologies (see
Supplementary Table 2). The group consisted of a number of different
specialists, all with expertise and significant interest in OA (Supple-
mentary Table 3). A questionnaire was formulated based on the most
widely used technologies and research tools which may aid sub-
categorisation of OA. The technologies were chosen by the organisers
from their knowledge of the field and review of the literature, including a
search performed for this study. Selected examples of OA categorisations
were taken from the recent literature through primary searches (using
Medline, EMBASE and PubMed with ‘definition of osteoarthritis’ as a
search term) and articles known to the authors. Questions requiring free-
text opinions of panel members were included in the questionnaire, for
example, ‘were any questions missing’ and ‘what was their personal
definition of OA?'. Answers to the latter were used to start discussions at
the meeting and to assess the similarity of expert definition and under-
standing of OA. Expert consensus was reached for each statement when
�80% participants agreed with the statement and rejected if � 20% of
participants agreed, as commonly used in previous Delphi studies [26].

The questionnaire was tested on 3 world leading experts in the field of
OA (Professors Richard Loeser, Mary Goldring and Virginia Kraus) and
modified slightly on their advice, before being sent to the Delphi panel
electronically (Table 1). Panel members were asked if they agreed/dis-
agreed with each of the statements. Round 1 was completed before the
two day meeting. Talks were given at the start of the meeting by experts
in the technologies presented in the Introduction. All statements in
Round 1 were retained for Round 2, viewed ‘live’ on the Delphi Google
Form; any questions/statements which did not reach consensus in Round
2 were discussed in fine detail with participants suggesting potential
improvements to statements. Once unanimous agreement on the wording
was achieved, the wording was altered in the survey for voting on in
Round 3 at the end of day 2. These changes to wording are shown in
Table 1.

The aims of the Delphi study were to determine, using a panel of
experts, 1. whether novel and existing technologies could aid in the
subcategorisation of patients with osteoarthritis (OA) and 2. whether



Table 1
Statements used in the DELPHI and the percentage of participants who agreed with the statements at each Round.

DELPHI statement/Question Round 1 Round 2 Modified question for round 3 Round 3

Percentage agreement with statement

1 OA is a disease of
i Bone
ii Cartilage
iii Bone and cartilage

i. 2.9
ii. 5.7
iii. 91.4

i. 3.1
ii. 0
iii. 96.9

2 OA always involves other tissues in the joint in
addition to bone and or cartilage

63.9 87.9 OA involves other tissues in the
joint in addition to bone and
cartilage

100

3 Early OA needs categorising differently to
‘established OA

86.1 87.9 Panel decided not to take this
question forward

4 Osteoarthritis needs re-defining 65.7 69.7
5 OA is a continuum 88.6 97
6 Subcategorising OA is useful 94.3 100
7 The definition of OA needs to be joint specific 55.6 69.7 The definition of OA needs to

encompass joint specific
differences

66.7

8 OA phenotypes should rely on underlying
mechanisms

73.5 84.8

9 X-rays alone can be used to categorise OA
phenotype

5.6 6.1

10 The Kellgren-Lawrence (KL) is the most appropriate
for categorising OA on X-ray

50 74.2 There is a need for an improved
scoring system than the
Kellgren-Lawrence for X-rays

93.9

11 MRI has no role to play in categorising OA 2.8 9.1
12 A universal OA categorisation system can be used

for all clinical cases of OA
44.4 56.3 Panel decided not to take this

question forward
13 The same categorisation system for OA can be used

in the clinic and or research studies
57.1 59.4 The same categorisation system

for OA should be used in the clinic
and or research studies

78.8

14 The latest technological advances can be used to
improve OA subcategorisation

100 100

15 Please say if you agree or disagree that the
application of the following technologies can
improve clinical OA subcategorisation

Clinical Research

Epigenomics 84.8 87.5
Genetic analysis 91.4 97
MRI 100 97
X-ray 82.9 48.5
Ultrasound 58.8 66.7
Metabolomics 78.8 90.6
Proteomics 87.9 93.8 87.9 75.8
Wet biomarker analysis 97.1 93.8 75.8 69.7
Machine learning (AI) 88.9 100
Activity monitoring 68.6 90.9
Clinical engineering 72.2 87.5

16 Different OA subcategorisation systems have been
suggested in the literature recently. Please say if you
agree or disagree with the following statements
taken from the literature.
A . Examples of OA can be: Hip/knee/hip and or

knee [45]
58.3 72.7 51.5

B . Pain, symptoms, clinical examination and X-
rays are the most useful factors in diagnosing
early OA [46]

45.7 36.4 42.4

C . Pain, psychological distress, radiographic
severity, BMI, muscle strength, inflammation and
comorbidities are all associated with clinically
distinct OA phenotypes [47]

60 69.7 51.5

D . Minimal joint disease, malaligned, biochemical,
chronic pain, inflammatory metabolic syndrome
and bone and cartilage metabolism are all main
phenotypes of OA [48]

61.8 72.7 48.5

E . Knee OA phenotype is defined by patient
reported frequent knee pain, cartilage damage
and the presence of degenerative meniscal tissue
[49]

58.8 48.5 39.4

F . OA can be classified by symptomatic
radiographic OA (primary criteria) and pain
alone (secondary criterion).

31.4 24.2 36.4

Bold text indicates statements reaching consensus.
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there is good knowledge and awareness of these technologies. This could
then help define what technology gaps exist to allow recommendations
on the focus of future collaborative and cross disciplinary research.

2.1. Participant identification and inclusion

Experts were selected from a wide range of disciplines relevant to the
field of OA. All 130 members of the OATech Networkþ were invited to
take part. The Delphi questionnaire was emailed to 36 potential Delphi
panel experts, who were all active in the OA field and expressed an in-
terest in attending the meeting. The minimum requirement for all invited
experts was to complete all three rounds of the Delphi and attend the
meeting.

3. Results

Thirty three experts responded and completed the Round 1 ques-
tionnaires and attended the meeting, so becoming the Delphi panel
(Supplementary Table 3). This consisted of basic science researchers,
orthopaedic surgeons, physiotherapists, rheumatologists, engineers, ra-
diologists, veterinary researcher and a clinical efficacy researcher from
the UK (n ¼ 31), America (n ¼ 1) and the Netherlands (n ¼ 1). However,
several members were multi-faceted, e.g. being clinically active and
performing basic research and running clinical trials. The questionnaire
showed 37% of the panel members were actively treating patients whilst
63% were not, but might have patient contact. Twenty seven percent of
panel members had been working in the field of OA for 0–5 years, with
24% being involved for >20 years (Supplementary Figure 1). Although
the Delphi panel was made up of a diverse group of experts, none were
experts in Delphi methodology. However, several panel members had
significant, relevant experience of the process to mitigate this limitation.

The wording in the statements and the results of the Delphi ques-
tionnaire over 3 rounds are shown in Table 1 and summaries of the
definitions of OA provided by participants from different disciplines in
Table 2. Not all panellists answered the question on defining OA as all
questions were optional for panel members, so results are shown from
those available, with only small variations between and within
professions.

None of the six categorisations of OA taken from recent literature
reached consensus in any round (Table 1). Furthermore, 4 of the 6
literature-derived definitions demonstrated a decrease in agreement be-
tween Rounds 2 and 3 (following the face-to-face meeting).

In contrast, there was unanimous agreement in Rounds 1 & 2 that the
latest technological advances could be used to improve OA sub-
categorisation (Table 1 & Fig. 1). Of the technologies identified, only the
Table 2
Definitions of OA from different professions on the Delphi panel.

Profession OA definition

Physiotherapists A syndrome affecting the joints of the body
Joint pathology leading to pain and functional limitation that inv

Rheumatologists Structural alteration of cartilage and bone in a joint which results
A disease of the whole joint with distinct clinical and structural p
A disease of many tissues of the joint including cartilage and bon
Osteoarthritis is a whole-joint disease, affecting articular and peri
inflammation that differ in extent and clinical consequences betw

Orthopaedic Surgeons Structural and biological derangement of joint (that isn't rheumat
A painful condition involving changes in multiple tissues of the jo

Engineers A disease of the joint, characterised by pain, loss of function and
Musculoskeletal disease possibly triggered by altered joint biome
pain

Radiologist Degenerative joint change currently based on exclusion of other c
Vet Degenerative whole joint disease with an inflammatory compone
Scientists (researcher) Joint disease that results in cartilage degeneration, bone changes

Degenerative disorder of the joint
A degenerative disease of the bone and cartilage. Can lead to cart

*The number of comments shown indicates the number of people who provided defi
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statement ‘X-rays alone can be used to categorise OA phenotype’ failed to
reach consensus in Rounds 1 and 2, whilst there was no consensus in
Round 2 for either X-rays or ultrasound as technologies which would to
improve clinical OA subcategorisation (Table 1).

The technologies which gained greatest consensus in Round 2 for
being of use in improving subcategorisation of OA were: ML (100%),
genetic analysis and MRI (both 97%), proteomics and wet biomarker
analysis (both 93.8%), activity monitoring (90.9%), metabolomics (both
90.6%), epigenomics and clinical engineering (both 88%). Eighty three
percent of participants thought X-rays could aid subcategorisation of OA
in Round 1, but this reduced to 49% in Round 2, whilst for ultrasound
this changed from 59% in Round 1 to 67% in Round 2. Ultrasound was
described as useful for identifying inflammation in the knee and could
therefore be valuable in subcategorising OA, although somemembers did
not feel that there was sufficient evidence presented to make an informed
decision as this technology was not presented at the meeting.

There was much discussion on the usefulness of X-rays and the
commonly used Kellgren-Lawrence (KL) score for staging disease. Dis-
cussions highlighted that radiography is considered outdated and flawed,
but that X-rays are still the gold standard (alongside clinical criteria) for
diagnosis and assessing OA in the clinic, e.g. for suitability for
arthroplasty.

4. Discussion

Whilst OA has long been recognised as a heterogeneous multi-faceted
disorder, progress into defining subgroups or categories has been poor;
this is a likely reason why several clinical trials of novel pharmaceuticals
or Disease Modifying Osteoarthritis Drugs (DMOADs) have failed
[27–29]. In other areas of medicine such as asthma, subcategorisation
has been achieved according to the pathological mechanisms (i.e. mo-
lecular endotyping) and clinical phenotyping [30]. It is to be hoped that
this can be achieved for OA, resulting in improved diagnosis, under-
standing of disease mechanisms, identification of novel therapeutic tar-
gets, the development of new therapies and, subsequently better
stratification and improved treatment of patients. Indeed, this was a
conclusion of the inaugural meeting of an EPSRC-funded UK initiative for
the OATech Network þ, with the subsequent decision to utilise a
Delphi-style process to address this topic.

As technology becomes more sophisticated and specialised there is a
danger of working increasingly in silos. This process, including expert
participants (>20% having >20 years’ OA research experience), from
several disciplines, facilitated an appraisal across key areas where tech-
nology has made great advances. The benefits associated with this were
indicated in participant feedback, for example, the change in consensus
olves genetics and epigenetic factors
in pain and loss of function
henotypes
e, associated with pain or stiffness
articular tissues. It has components of degeneration, regeneration and low-grade
een joints, disease stages and patients
oid/ankylosing spondylosis/psoriatic
int
degeneration/progressive damage of structures in/around the joint
chanics and biological signalling leading to joint tissue degeneration, inflammation and

auses
nt
and pain

ilage loss, joint inflammation, changes in the bone and pain

nitions in each profession.



Fig. 1. A. Frequency histogram indicating change of panel members' response as to whether different technologies were able to improve OA stratification in Round 1
(before the focus meeting) and Round 2 (after the instructive lectures at the start of the meeting). Nine of the 11 technologies reached consensus after the 2nd round.
B. The modified question related to X-ray and ultrasound technologies for the 3rd round for the clinic and research and the percentage agreement.
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on technologies such as clinical engineering. The process highlighted a
consensus belief that adopting key existing and emerging technologies
(ML, genetic analysis, MRI, proteomics, wet biomarker analysis, activity
monitoring, metabolomics, epigenomics and clinical engineering), would
increase successful delivery of improved OA subcategorisation and dis-
cussions raised many suggestions as detailed below. In contrast, existing
literature provided little agreement on the approach to OA catego-
risations and indeed, other studies that have highlighted the urgent need
for updated definitions and categories [31,32].

X-rays, discussed at length, are well known to have limitations,
especially with regard to the KL scoring system for radiographic diag-
nosis of OA [33,34]. The inclusion of clinical and non-clinical partici-
pants was particularly beneficial with orthopaedic surgeons highlighting
that X-rays remain a valued clinical technology, being relatively simple,
cheap, readily available and useful for diagnosis and treatment decisions.
The KL radiographic classification scheme for OA, first described in 1957
[33], remains the most widely used clinical tool for the radiographic
diagnosis of OA [34], despite its known limitations. Hence X-rays should
be retained in OA studies, and based on previous improvements [35], the
optimistic aim is to enhance their use through further application of ML
and AI.

Epigenetic changes can modulate the impact of risk-conferring alleles
of DNA polymorphisms that are associated with OA. For example, if a
polymorphism is in a gene-regulatory element and the risk allele reduces
gene expression, its effect can be attenuated or aggravated by DNA
methylation of that element in an allele-specific manner [4]. As such,
subgrouping OA patients by their genetic and epigenetic profile might
reduce the heterogeneity seen across patients and enhance the inter-
pretability of functional studies of genetic risk.

Large datasets generated from activity tracking through the increased
adoption of smartphones and wearables, are likely to provide further
opportunities to aid the stratification of OA populations. Activity moni-
toring research in OA populations has, in the past, been limited to
measurements over short durations (i.e. up to 7-days), hence providing
limited insight. Fitness trackers and smart phones have revolutionised
the opportunities to collect continuous activity data more reliably and
over longer time periods. Objective measures of physical activity can be
used for monitoring recovery e.g. following joint arthroplasty, to mea-
sure short term recovery in terms of daily step count change over the first
6

four weeks post-surgery [36]. Extending this approach over a large
sample population would allow an expected trajectory of recovery to be
developed such that patients deviating from it could, for example, be
flagged for follow-up consultation. Deeper analysis and modelling of the
inertial sensor data collected by wearables will be important for cate-
gorising OA populations. For example, multi-dimensional analyses of
activity data have been found to be more accurately associated with
functional test outcomes than step-count and sedentary time measures
alone [37].

ML was the only technology reaching 100% consensus in its ability to
improve OA subcategorisation in Round 2 of the Delphi, highlighting
recognition of its potential usefulness. During discussions, the impor-
tance of integrating data, especially ‘big data', across disciplines and the
application of ML approaches was highlighted as being of great impor-
tance. In big data science, ML is based on computer algorithms that can
learn to identify complex patterns based on real data [38,39]. The goal of
ML is to enable an algorithm to learn from past and/or present data and
then to make predictions or decisions for unknown future events [40].

ML/AI is of paramount importance to all technologies generating ‘big
data’, such as genomics, all omics and imaging modalities now used in
biomarker and molecular signature discovery in OA. The use of ML/AI in
integrating these advanced analytical techniques, provides the opportu-
nity to build and test complex models incorporating important non-
biomarker covariates. Multi-omics data has enabled biomarker genera-
tion for the stratification of patients into subgroups e.g. in oncology and
other chronic diseases such as asthma [41,42]. This allows sub-
categorisation into groups based on genetic variability and other bio-
markers so that medications may be tailored to individuals [43,44]. Big
data systems using multi-omics (genomics, proteomics, metabolomics
and epigenomics), enables understanding of interactions and functions of
the genome, often identifying unexpected functions or possibly illus-
trating the interplay between the genome, the cellular environment and
the progression of disease.

In summary, a Delphi-type exercise was undertaken as a route to
obtaining expert consensus from a range of disciplines, regarding the role
of novel experimental technology in OA research. It provided a valid
route to recommendations for the focus and direction that should be
adopted by the cross-disciplinary OA research community. Rather than
employing individual technologies, it is likely that combining several
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identified technologies (eg proteomics, imaging and clinical engineering,
together with machine learning), across sites, focussing on one or more
OA subgroups will reap real benefits and provide important advances in
the field of osteoarthritis research.
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