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ABSTRACT   

 

Objective 

This  UK-wide OATech+ Network consensus  study utilised a Delphi approach to discern levels  

of awareness across an expert panel regarding the role of existing and novel technologies  in 

osteoarthritis research. To direct future cross-disciplinary research it aimed to identify which could 

be adopted to subcategorise patients with osteoarthritis (OA).   Design  

An online questionnaire was formulated based on technologies which might aid OA research and 

subcategorisation.  During a two-day face-to-face meeting concordance of expert opinion was 

established with surveys (23 questions) before,  during and at the end of  the meeting (Rounds 1,2 

and 3, respectively). Experts spoke on current evidence for imaging, genomics, epigenomics, 

proteomics, metabolomics, biomarkers, activity monitoring, clinical engineering and machine 

learning relating to subcategorisation.   For each round of voting, ≥80% votes led to consensus and 

≤20% to exclusion of a statement. 

Results 

Panel members were unanimous that a combination of novel technological advances have potential 

to improve OA diagnostics and treatment through subcategorisation,. agreeing in Rounds 1 and 2 

that epigenetics, genetics, MRI, proteomics, wet biomarkers and machine learning could aid 

subcategorisation. Expert presentations changed participants’ opinions on the value of 

metabolomics, activity monitoring and clinical engineering, all reaching consensus in Round 2.   X-

rays lost consensus between Rounds 1 and 2; clinical X-rays   reached consensus in Round 3.  

Conclusion 

Consensus identified that 9 of the 11 technologies should be targeted towards OA subcategorisation 

to address existing OA research technology and knowledge gaps. These novel, rapidly evolving 

technologies are recommended as a focus for  emergent, cross-disciplinary osteoarthritis research 

programmes.  

Keywords (4-6 words). 
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INTRODUCTION 1 

 2 

It is predicted that there will be a 4- to 6-fold increase in the number of total joint replacements 3 

for osteoarthritis (OA) in the coming decades
[1]

.  Despite the increase in prevalence and the large 4 

body of literature existing on the subject, definitions of OA subgcategories, whether in clinical or 5 

research environments, are often disparate.  The OATech Network+, a multidisciplinary 6 

consortium, had identified this as a potential limitation to furthering OA research. Whilst X-rays 7 

are one of the most commonly used technologies for studying OA for decades, there have been 8 

many recent technological developments applied to the field, for example, in genomics and other 9 

‘omics’, different forms of imaging, and computational analysis of big data.  10 

 11 

The OATech Network+ organised a consensus meeting combining experts in a broad range of 12 

existing and novel technologies (with basic scientists and clinicians) to appraise the potential of 13 

existing and new technologies and improve OA subcategorisation. A Delphi approach was 14 

adopted, aiming to recommend improved  targeting of technology for OA subcategorisation  so 15 

that existing and emerging treatments could be applied more effectively to selected patients or 16 

subgroups.   17 

 18 

The meeting commenced with experts in the fields of engineering, rheumatology, orthopaedic 19 

surgery, radiology, physiotherapy, biology and OA pain perception sharing their experience of 20 

OA research. Experts in more recently developed technologies lectured on their OA research 21 

application, summarised below. 22 

 23 

Genetics and genomics  24 

 25 

The field of complex trait genetics has witnessed a revolution in technological advances over the 26 

last decade, enabling the genome-wide interrogation of sequence variation, leading to the 27 
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discovery of thousands of genetic risk loci. Recent methodological advances have also enabled 28 

deep molecular characterisation of disease-relevant tissues collected from human patients or 29 

studied in cellular and organismal models of disease. Together, these can help enhance our 30 

understanding of the mechanisms underlying disease development and progression
[2]

. Large-31 

scale genetics can help improve our understanding of the genetic aetiology of OA and related 32 

sub-groups by interrogating big data in genetics, genomics and medically-relevant phenotypes 33 

from rich epidemiological resources, patient collections and disease registries. Functional 34 

genomic approaches for integrated molecular phenotyping of relevant cell types can help 35 

translate insights from genomics into mechanisms of disease in order to overcome the critical 36 

barrier of there being currently no disease-modifying treatment for OA. The relevant diseased OA 37 

tissues are readily available from joint replacement surgery, enabling the study of molecular 38 

processes in the appropriate tissues, both to fill a gap in our fundamental understanding of 39 

biology and to identify novel therapeutic avenues. 40 

 41 

Epigenetics and Functional Analysis 42 

 43 

Epigenetics is a mechanism used by the cell, tissue and organ to regulate gene expression in a 44 

dynamic manner by reversible chemical changes to the genome. There are three epigenetic 45 

markers: DNA methylation, histone modification and the activity of regulatory RNAs
[3]

. Epigenetic 46 

changes are context specific and show temporal and spatial effects. They act during 47 

skeletogenesis and joint formation, and have a role in OA
[3-5]

. As for genomic studies, the 48 

diseased joint tissues such as articular cartilage, synovium or bone, are used in relatively large 49 

quantities to extract DNA, chromatin and RNA for epigenetic analysis. Such studies have led to 50 

subcategorisation of OA by, for example, identifying individuals who appear to have an 51 

inflammatory component to their disease
 [4]

.  52 

 53 

Proteomics and Metabolomics 54 
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 55 

Proteomics and metabolomics can be used to identify molecules as possible predictors of early 56 

disease, disease progression and response to treatment.  Synovial fluid contains systemic 57 

proteins and metabolite markers of disease and holds significant potential for the discovery of 58 

proteins and metabolites to aid subcategorisation of the disease. 59 

 60 

Whilst transcriptomics can indicate the proteome, the relationship between mRNA and proteins 61 

is complex and thus identifying proteins in a sample and how they vary is paramount. 62 

Quantitative proteomic differences between sample groups can be identified using either 63 

absolute or relative quantification, with or without labelling (reviewed
[6]

). Absolute quantification 64 

has been used to measure up to 20 targeted proteins in a single experiment
[7]

. Label-free relative 65 

quantification using synovial fluid has been used and predictors of treatment outcome with 66 

autologous chondrocyte implantation (ACI) have been investigated for a number of biomarkers
[8]

.  67 

Nuclear magnetic resonance (NMR) and MS have been used in assessing metabalomics, being 68 

non-destructive, quantitative, reproducible and cost effective.  Both techniques have identified 69 

up to 32 differentially expressed metabolites in synovial fluid from OA and rheumatoid arthritis
[9].

 70 

 71 

Degradomics is another proteomic method that may be useful in OA subcategorisation, assessing 72 

cleavage products at different stages in OA
[8]

. A further development, Matrix Assisted Laser 73 

Desorption Ionization Mass Spectrometry Imaging (MALDI-IMS), has been used to identify 74 

proteins and neopeptides altered in cartilage ageing and OA
[8]

.  75 

 76 

Molecular signatures and biomarkers 77 

 78 

All the above techniques (genomics, epigenomics, proteomics) can assist in the search for OA 79 

biomarkers , in terms of the “Burden of disease, Investigative, Prognostic, Efficacy of intervention 80 

and Diagnostic (BIPED)” classification scheme
[10]

. To date, many candidate proteins, 81 
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carbohydrates and lipids
[11]

 have been investigated
[12]

. Several are associated with disease 82 

progression in OA cohorts, but are not able to stratify individuals
[13]

. A ‘molecular signature’ 83 

representing multiple protein or non-protein markers may be more realistic for OA than finding a 84 

single biomarker, perhaps better indicating relevant shared mechanisms within the disease.  85 

 86 

Although singleplex antibody-based assays remain the mainstay for investigation of candidate 87 

protein biomarkers, multiplexing with higher sensitivity and specificity for complex biological 88 

fluids is now possible by proprietary adaptive immunoassay approaches, such as 89 

electrochemiluminescence or proximity extension assays (combining antibody and PCR 90 

technology)
[14]

. Whether using immunoassay or mass cytometry (e.g. CyTOF), antibodies limit the 91 

absolute number and combinations possible, whereas non-antibody approaches circumvent 92 

these issues. Modified aptameric assays (aptamers being short sequences of nucleotides which 93 

are selected for their specificity to bind proteins in much the same way as an antibody) can be 94 

multiplexed to quantify thousands of proteins simultaneously in a single sample. These 95 

approaches have the ability to identify molecular endotypes (molecular subgroups in disease) or 96 

to predict drug toxicity and transform the way we are able to dissect molecular pathways or 97 

identify molecular signatures as biomarkers in biological fluids.  98 

 99 

Clinical Engineering 100 

 101 

The International Classification of Functioning, Disability and Health (ICF) provides a framework 102 

for understanding disability which links the body functions and structures to activity and 103 

participation.  Clinical movement analysis, in particular 3D gait analysis, allows clinicians to 104 

measure the impact of OA on walking.  This is important as patients often perceive their walking 105 

pattern as a cause as well as a consequence of the disease.  Patients with unilateral disease often 106 

develop bilateral symptoms
[15]

. 107 

 108 
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Previous work
[16]

 has described gait in patients with single joint disease, who do not have a 109 

typically antalgic gait pattern, but have knee loading which is high throughout the stance phase, 110 

giving them a high moment impulse, combined with muscular co-contraction.  This co-111 

contraction, measured using electromyography (EMG) further increases contact forces in the 112 

joint.  3D gait analysis can detect bilateral overloading in both hip and knee joints in patients with 113 

unilateral, single joint disease.  The adopted tentative gait pattern seems to predispose other 114 

joints to OA . 115 

 116 

Whilst knee pain and loading measures improve after knee arthroplasty, some patients improve 117 

more than others and abnormal loading patterns often persist
[16]

.  3D gait analysis is useful in 118 

understanding the control and loading of the joints during movement and interpreting how these 119 

change in OA gait is important in providing appropriate therapies, such as bracing or biofeedback. 120 

 121 

In knee OA populations biomechanical measures at baseline have also been used to predict 122 

radiographic disease progression
[17]

, future total knee arthroplasty (TKA)
[18]

 and stratify response 123 

to interventions such as and lateral wedge insoles and TKA
[16]

. 124 

 125 

Activity monitoring 126 

 127 

Recent OARSI guidelines have advocated the use of activity monitoring devices to collect 128 

objective measures of physical activity
[19]

.  It is important for individuals with OA to remain 129 

physically active. Evidence indicates that it can reduce OA related pain,  in addition to increasing 130 

muscle strength, joint range of motion and cardiovascular fitness
[20]

. Physical activity levels 131 

measured in OA populations over the longer term (3-12 months post-surgery) show no 132 

substantial increases in activity after 12 months
[21] 

. Therefore more behavioural interventions are 133 

required to promote physical activity in the recovery period; a conclusion that could be missed 134 

when using more subjective self-reported measures.  135 
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 136 

Activity monitoring technology is rapidly advancing but for subgrouping of OA requires large 137 

amounts of data.  Smart phones and wearable technology now offer the potential to collect this 138 

data outside of the laboratory and unobtrusively.     139 

 140 

Machine Learning and ‘Big Data’  141 

 142 

Much of the technology described with potential to improve OA stratification creates very large 143 

data sets which require computational analysis; as the quantity of data increases, meaningful 144 

analysis becomes more challenging.  The use of complex artificial neural network architectures 145 

or machine learning (ML) have been shown to be capable of representing and learning 146 

predictable relationships in many diverse types of data.  These computational tools hold promise 147 

for transforming the future of ‘omics’ and other technologies which acquire huge data sets or 148 

Big Data
[22]

. 149 

 150 

Imaging modalities such as MRI are used as clinical diagnostic tools and contain vast amounts of 151 

information which lend themselves well to analysis via ML. In the following example, ML is 152 

applied to image analysis of OA in the spine, thus demonstrating the potential value of this 153 

technology in identifying subgroups of OA. ML has been used to develop an automated method 154 

for grading degeneration in the spine and intervertebral disc on MRIs
[23, 24]

,  as used in the 155 

Pfirrmann Score
[25] 

for degenerative disc disease or OA of the spine (developed as ‘SpineNet’). 156 

The system can robustly extract measurements for this, in addition to having the potential to 157 

identify other phenotypes such as spinal stenosis or ‘Modic’ changes in the vertebral endplates. 158 

This approach requires well defined cohorts of patients with appropriate levels of consent for 159 

this type of data storage and analysis, both for developing the program and then subsequently 160 

independent cohort(s) for validation. SpineNet also has the capability of producing so-called 161 

‘Hotspots’ or saliency images that can be used to visualize the parts of the MRI that are the likely 162 
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source of the output
[23]

, so possibly defining completely new phenotypes from this unbiased 163 

approach.  164 

 165 

A prerequisite for imaging biomarker discovery is the extraction of robust and discriminative 166 

radiological measurements from joint MRIs; however, the lack of imaging biomarker 167 

standardisation within the research community, the inherent intra- and inter-reader variability 168 

and time and cost has hampered research to date.  Clearly ML is providing a powerful tool to aid 169 

in the analysis of ‘big data’ and medical images with diverse applications too numerous to 170 

discuss here. Future ML, computational analysis and the development of automated programs, 171 

can offer robust, repeatable and rapid analysis of large datasets (MRI images or any other 172 

potential ‘biomarker’, provide important tools for subcategorization and identification of OA 173 

biomarkers . As novel markers of OA emerge across the biological, biomechanical, clinical and 174 

imaging interfaces, their combination will provide increasingly powerful datasets and 175 

opportunities for ML applications across OA diagnostics and classification domains.    176 

 177 

In summary, the technologies mentioned above have developed rapidly in the last decade.  For 178 

example, a literature search for ‘genomics’ or ‘epigenomics’ (using Medline and Embase) over 179 

the last 30 years highlights the increased awareness and use of such technology. From 1990-180 

1999 genomics or epigenomics shows a total of 10 publications, 2000-2009 shows 7,322 and 181 

2010-2019 shows 23,426.  With the continuous evolution of these technologies, it seemed 182 

appropriate that the OATech Network+ should address the topic of the potential of technologies 183 

for subcategorising OA and it was felt that a Delphi meeting would be an appropriate approach.  184 

 185 

METHODS 186 

 187 

This Delphi study consisted of a two-day focus group meeting (see programme in Supplementary 188 

Table 1),  together with online surveys using ‘Google Forms’, to assess the level of agreement on 189 
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a number of statements relating to OA and the use of different technologies (see Supplementary 190 

Table 2). The group consisted of a number of different specialists (listed in Table 2), all with 191 

expertise and significant interest in OA (Supplementary Table 3).  A questionnaire was 192 

formulated based on the most widely used technologies and research tools which may aid 193 

subcategorisation of OA. The technologies were chosen by the organisers from their knowledge 194 

of the field and review of the literature, including a search performed for this study.  Selected 195 

examples of OA categorisations were taken from the recent literature through primary searches 196 

(using Medline, EMBASE and PubMed with ‘definition of osteoarthritis’ as a search term) and 197 

articles known to the authors. Questions requiring free-text opinions of panel members were 198 

included in the questionnaire, for example, ‘were any questions missing’ and ‘what was their 199 

personal definition of OA?’. Answers to the latter were used to start discussions at the meeting 200 

and to assess the similarity of expert definition and understanding of OA. Expert consensus was 201 

reached for each statement when ≥80% participants agreed with the statement and rejected if 202 

≤20% of participants agreed, as commonly used in previous Delphi studies
[26]

.  203 

 204 

The questionnaire was tested on 3 world leading experts in the field of OA (Professors Richard 205 

Loeser, Mary Goldring and Virginia Kraus) and modified slightly on their advice, before being 206 

sent to the Delphi panel electronically.  Panel members were asked if they agreed/disagreed 207 

with each of the statements. Round 1 was completed before the two day meeting. Talks were 208 

given at the start of the meeting by experts in the technologies presented in the Introduction. All 209 

statements in Round 1 were retained for Round 2, viewed ‘live’ on the Delphi on Google Form; 210 

any questions/statements which did not reach consensus in Round 2 were discussed in fine 211 

detail with participants suggesting potential improvements to statements. Once unanimous 212 

agreement on the wording was achieved, the wording was altered in the survey for voting on in 213 

Round 3 at the end of day 2. These changes to wording are shown in Table 1. 214 

         Please insert Table 1 here  215 

 216 
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 217 

The aims of the Delphi study were to determine, using a panel of experts, 1. whether novel and 218 

existing technologies could aid in the subcategorisation of patients with osteoarthritis (OA) and 219 

2. whether there is good knowledge and awareness of these technologies. This could then help 220 

define what technology gaps exist to allow recommendations on the focus of future 221 

collaborative and cross disciplinary research. 222 

 223 

Participant identification and inclusion 224 

 225 

Experts were selected from a wide range of disciplines relevant to the field of OA.  All 130 226 

members of the OATech Network+ were invited to take part.  The Delphi questionnaire was 227 

emailed to 36 potential Delphi panel experts, who were all active in the OA field and expressed 228 

an interest in attending the meeting.   The minimum requirement for all invited experts was to 229 

complete all three rounds of the Delphi and attend the meeting.  230 

 231 

RESULTS  232 

 233 

Thirty three experts responded and completed the Round 1 questionnaires and attended the 234 

meeting, so becoming the Delphi panel (Supplementary Table 3). This consisted of basic science 235 

researchers, orthopaedic surgeons, physiotherapists, rheumatologists, engineers, radiologists, 236 

veterinary researcher and a clinical efficacy researcher from the UK (n=31), America (n=1) and 237 

the Netherlands (n=1).  However, several members were multi-faceted, e.g. being clinically 238 

active and performing basic research and running clinical trials. The questionnaire showed 37% 239 

of the panel members were actively treating patients whilst 63% were not, but might have 240 

patient contact.  Twenty seven percent of panel members had been working in the field of OA 241 

for 0-5 years, with 24% being involved for >20 years (Supplementary Figure 1). Although the 242 

Delphi panel was made up of a diverse group of experts, none were experts in Delphi 243 
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methodology. However, several panel members had significant, relevant experience of the 244 

process to mitigate this limitation. 245 

          246 

The wording in the statements and the results of the Delphi questionnaire over 3 rounds are 247 

shown in Table 1 and summaries of the definitions of OA provided by participants from different 248 

disciplines in Table 2. Not all panellists answered the question on defining OA as all questions 249 

were optional for panel members, so results are shown from those available, with only small 250 

variations between and within professions. 251 

                                         252 

None of the six categorisations of OA taken from recent literature reached consensus in any 253 

round (Table 1). Furthermore, 4 of the 6 literature-derived definitions demonstrated a decrease 254 

in agreement between Rounds 2 and 3 (following the face-to-face meeting).  255 

                Insert Table  2 here. 256 

In contrast, there was unanimous agreement in Rounds 1 & 2 that the latest technological 257 

advances could be used to improve OA subcategorisation (Table 1 & Figure 1). Of the 258 

technologies identified, only the statement ‘X-rays alone can be used to categorise OA 259 

phenotype’ failed to reach consensus in rounds 1 and 2, whilst there was no consensus in Round 260 

2 for either X-rays or ultrasound as technologies which would to improve clinical OA 261 

subcategorisation (Table 1). 262 

Insert Figure 1 here. 263 

The technologies which gained greatest consensus in Round 2 for being of use in improving 264 

subcategorisation of OA were: ML (100%), genetic analysis and MRI (both 97%), proteomics and 265 

wet biomarker analysis (both 93.8%), activity monitoring (90.9%), metabolomics (both 90.6%), 266 

epigenomics and clinical engineering (both 88%).  Eighty three percent of participants thought X-267 

rays could aid subcategorisation of OA in Round 1, but this reduced to 49% in Round 2, whilst for 268 

ultrasound this changed from 59% in Round 1 to 67% in Round 2.  Ultrasound was described as 269 

useful for identifying inflammation in the knee and could therefore be valuable in 270 
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subcategorising OA, although some members did not feel that there was sufficient evidence 271 

presented to make an informed decision as this technology was not presented at the meeting. 272 

 273 

There was much discussion on the usefulness of X-rays and the commonly used Kellgren-274 

Lawrence (KL) score for staging disease.  Discussions highlighted that radiography is considered 275 

outdated and flawed, but that X-rays are still the gold standard (alongside clinical criteria) for 276 

diagnosis and assessing OA in the clinic, e.g. for suitability for arthroplasty.  277 

 278 

DISCUSSION 279 

 280 

Whilst OA has long been recognised as a heterogeneous multi-faceted disorder, progress into 281 

defining subgroups or categories has been poor; this is a likely reason why several clinical trials 282 

of novel pharmaceuticals or Disease Modifying Osteoarthritis Drugs (DMOADs) have failed
[27-29]

.  283 

In other areas of medicine such as asthma, subcategorisation has been achieved according to 284 

the pathological mechanisms (i.e. molecular endotyping) and clinical phenotyping
 [30]

.  It is to be 285 

hoped that this can be achieved for OA, resulting in improved diagnosis, understanding of 286 

disease mechanisms, identification of novel therapeutic targets, the development of new 287 

therapies and, subsequently better stratification and improved treatment of patients.  Indeed, 288 

this was a conclusion of the inaugural meeting of an EPSRC-funded UK initiative for the OATech 289 

Network+, with the subsequent decision to utilise a Delphi-style process to address this topic.   290 

 291 

As technology becomes more sophisticated and specialised there is a danger of working 292 

increasingly in silos.  This process, including expert participants (>20% having >20 years’ OA 293 

research experience), from several disciplines, facilitated an appraisal across key areas where 294 

technology has made great advances.  The benefits associated with this were indicated in 295 

participant feedback, for example, the change in consensus on technologies such as clinical 296 

engineering.  The process highlighted a consensus belief that adopting key existing and emerging 297 
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technologies (ML, genetic analysis, MRI, proteomics, wet biomarker analysis, activity monitoring, 298 

metabolomics, epigenomics and clinical engineering), would increase successful delivery of 299 

improved OA subcategorisation and discussions raised many suggestions as detailed below.  In 300 

contrast, existing literature provided little agreement on the approach to OA categorisations and 301 

indeed, other studies that have highlighted the urgent need for updated definitions and 302 

categories
[31,32]

. 303 

X-rays, discussed at length, are well known to have limitations, especially with regard to the KL 304 

scoring system for radiographic diagnosis of OA
[33,34]

.  The inclusion of clinical and non-clinical 305 

participants was particularly beneficial with orthopaedic surgeons highlighting that X-rays 306 

remain a valued clinical technology, being relatively simple, cheap, readily available and 307 

routinely and useful for diagnosis and treatment decisions.   The KL radiographic classification 308 

scheme for OA, first described in 1957
[33]

, remains the most widely used clinical tool for the 309 

radiographic diagnosis of OA
[34]

, despite its known limitations. Hence X-rays should be retained in 310 

OA studies and based on previous improvements
[35]

, the optimistic aim is to enhance their use 311 

through further application of ML and AI. 312 

 313 

Epigenetic changes can modulate the impact of risk-conferring alleles of DNA polymorphisms 314 

that are associated with OA. For example, if a polymorphism is in a gene-regulatory element and 315 

the risk allele reduces gene expression, its effect can be attenuated or aggravated by DNA 316 

methylation of that element in an allele-specific manner
[4]

. As such, subgrouping OA patients by 317 

their genetic and epigenetic profile might reduce the heterogeneity seen across patients and 318 

enhance the interpretability of functional studies of genetic risk.    319 

 320 

Large datasets generated from activity tracking through the increased adoption of smartphones 321 

and wearables, are likely to provide further opportunities to aid the stratification of OA 322 

populations. Activity monitoring research in OA populations has, in the past, been limited to 323 

measurements over short durations (i.e. up to 7-days), hence providing limited insight. Fitness 324 
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trackers and smart phones have revolutionised the opportunities to collect continuous activity 325 

data more reliably and over longer time periods. Objective measures of physical activity can be 326 

used for monitoring recovery e.g. following joint arthroplasty, to measure short term recovery in 327 

terms of daily step count change over the first four weeks post-surgery
[36]

. Extending this 328 

approach over a large sample population would allow an expected trajectory of recovery to be 329 

developed such that patients deviating from it could, for example, be flagged for follow-up 330 

consultation. Deeper analysis and modelling of the inertial sensor data collected by wearables 331 

will be important for categorising OA populations. For example, multi-dimensional analyses of 332 

activity data have been found to be more accurately associated with functional test outcomes 333 

than step-count and sedentary time measures alone
[37]

. Similarly, studies have investigated 334 

longer term monitoring with follow-up measures at 3-12 months post-surgery
[21]

. Interestingly, 335 

there was no substantial increases in activity after 12-months, concluding that more behavioural 336 

interventions are required to promote physical activity in the recovery period.  337 

 338 

ML was the only technology reaching 100% consensus in its ability to improve OA 339 

subcategorisation in Round 2 of the Delphi, highlighting recognition of its potential use .  During 340 

discussions, the importance of integrating data, especially ‘big’ data, across disciplines and the 341 

application of ML approaches was highlighted as being of great importance.  In big data science, 342 

ML is based on computer algorithms that can learn to identify complex patterns based on real 343 

data
[38, 39]

. The goal of ML is to enable an algorithm to learn from past and/or present data and 344 

then to make predictions or decisions for unknown future events
[40]

.  345 

 346 

ML/AI is of paramount importance to all technologies  generating ‘big data’, such as genomics, 347 

all omics and imaging modalities now used   in biomarker and molecular signature discovery in 348 

OA.  The use of ML/AI in integrating these advanced analytical techniques, , provides the 349 

opportunity to build and test complex models incorporating important non-biomarker 350 

covariates.  Multi-omics data has enabled biomarkers generations for the stratification of 351 
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patients into subgroups e.g. in oncology and other chronic diseases such as asthma
[41,42]

. This 352 

allows subcategorisation into groups based on genetic variability and other biomarkers so that 353 

medications may be tailored to individuals
[43, 44]

. Big data systems using multi-omics (genomics, 354 

proteomics, metabolomics and epigenomics), enables, understanding of interactions and 355 

functions of the genome, often identifying unexpected functions or possibly illustrating the 356 

interplay between the genome, the cellular environment and the progression of disease.   357 

 358 

In summary, a Delphi-type exercise was undertaken as a route to obtaining expert consensus 359 

from a range of disciplines, regarding the role of novel experimental technology in OA research. 360 

It provided a valid route to recommendations for the focus and direction that should be adopted 361 

by the cross-disciplinary OA research community.  Rather than employing individual 362 

technologies, it is likely that combining several identified technologies (eg proteomics, imaging 363 

and clinical engineering, together with machine learning), across sites, focussing on one or more 364 

OA subgroups will reap real benefits and provide important advances in the field of 365 

osteoarthritis research. 366 

 367 
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Figure legends 610 

Figure 1.A. Frequency histogram indicating change of panel members’ response as to whether 611 

different technologies were able to improve OA stratification in Round 1 (before the focus meeting) 612 

and Round 2 (after the instructive lectures at the start of the meeting). Nine of the 11 technologies 613 

reached consensus after the 2
nd

 round.  B. The modified question related to X-ray and ultrasound 614 

technologies for the 3
rd

 round for the clinic and research and the % agreement. 615 
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Table 1. Statements used in the DELPHI and the percentage of participants who agreed with the 654 

statements at each Round. 655 

 

 DELPHI statement/Question 

Round 1 Round 2 Modified question for 

round 3 

Round 3 

Percentage agreement with statement 

 

1 OA is a disease of  

i. Bone  

ii. Cartilage  

iii. Bone and cartilage 

 

1. 2.9 

2. 5.7 

3. 91.4 

 

1. 3.1 

2. 0 

3. 96.9 

  

2 OA always involves other tissues in 

the joint in addition to bone and or 

cartilage 

63.9 87.9 OA involves other tissues 

in the joint in addition to 

bone and cartilage 

100 

3 Early OA needs categorising 

differently to ‘established OA 

86.1 87.9 Panel decided not to take 

this question forward 

 

4 Osteoarthritis needs re-defining 65.7 69.7   

5 OA is a continuum 88.6 97   

6 Subcategorising OA is useful 94.3 100   

7 The definition of OA needs to be 

joint specific 

55.6 69.7 The definition of OA needs 

to encompass joint 

specific differences 

66.7 

8 OA phenotypes should rely on 

underlying mechanisms 

73.5 84.8   

9 X-rays alone can be used to 

categorise OA phenotype 

5.6 6.1   

10 The Kellgren-Lawrence (KL) is the 

most appropriate for categorising OA 

on X-ray 

50 74.2 There is a need for an 

improved scoring system 

than the Kellgren-

Lawrence for X-rays 

93.9 

11 MRI has no role to play in 

categorising OA 

2.8 9.1   

12 A universal OA categorisation system 

can be used for all clinical cases of 

OA 

44.4 56.3 Panel decided not to take 

this question forward 

 

13 The same categorisation system for 

OA can be used in the clinic and or 

research studies 

57.1 59.4 The same categorisation 

system for OA should be 

used in the clinic and or 

research studies 

78.8 

14 The latest technological advances 

can be used to improve OA 

subcategorisation 

100 100   

15 Please say if you agree or disagree 

that the application of the following 

technologies can improve clinical OA 

subcategorisation 

Epigenomics 

Genetic analysis 

MRI 

X-ray 

Ultrasound 

Metabolomics 

Proteomics 

Wet biomarker analysis 

Machine learning (AI) 

Activity monitoring 

Clinical engineering 

 

 

 

 

 

84.8 

91.4 

100 

82.9 

58.8 

78.8 

87.9 

97.1 

88.9 

68.6 

72.2 

 

 

 

 

87.5 

97 

97 

48.5 

66.7 

90.6 

93.8 

93.8 

100 

90.9 

87.5 

 Clinical 

 

 

 

 

 

 

87.9 

75.8 

Research 

 

 

 

 

 

 

75.8 

69.7 
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16 Different OA subcategorisation 

systems have been suggested in the 

literature recently.  Please say if you 

agree or disagree with the following 

statements taken from the literature. 

A. Examples of OA can be: 

Hip/knee/hip and or knee
[45]

 

 

B. Pain, symptoms, clinical 

examination and X-rays are 

the most useful factors in 

diagnosing early OA
[46]

 

 

C. Pain, psychological distress, 

radiographic severity, BMI, 

muscle strength, 

inflammation and 

comorbidities are all 

associated with clinically 

distinct OA phenotypes
[47]

 

 

D. Minimal joint disease, 

malaligned, biochemical, 

chronic pain, inflammatory 

metabolic syndrome and 

bone and cartilage 

metabolism are all main 

phenotypes of OA
[48]

 

 

E. Knee OA phenotype is 

defined by patient reported 

frequent knee pain, 

cartilage damage and the 

presence of degenerative 

meniscal tissue
[49]

 

 

F. OA can be classified by 

symptomatic radiographic 

OA (primary criteria) and 

pain alone (secondary 

criterion). 

 

 

 

 

 

 

 

58.3 

 

 

45.7 

 

 

 

 

60 

 

 

 

 

 

 

 

61.8 

 

 

 

 

 

 

 

58.8 

 

 

 

 

 

 

31.4 

 

 

 

 

 

 

 

 

 

 

72.7 

 

 

36.4 

 

 

 

 

69.7 

 

 

 

 

 

 

 

72.7 

 

 

 

 

 

 

 

48.5 

 

 

 

 

 

 

24.2 

  

 

 

 

 

51.5 

 

 

42.4 

 

 

 

 

51.5 

 

 

 

 

 

 

 

48.5 

 

 

 

 

 

 

 

39.4 

 

 

 

 

 

 

36.4 
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Table 2.  Definitions of OA from different professions on the Delphi panel. 671 

Profession OA definition 

Physiotherapists A syndrome affecting the joints of the body 

Joint pathology leading to pain and functional limitation that involves 

genetics and epigenetic factors 

Rheumatologists Structural alteration of cartilage and bone in a joint which results in 

pain and loss of function 

A disease of the whole joint with distinct clinical and structural 

phenotypes 

A disease of many tissues of the joint including cartilage and bone, 

associated with pain or stiffness 

Osteoarthritis is a whole-joint disease, affecting articular and 

periarticular tissues.  It has components of degeneration, 

regeneration and low-grade inflammation that differ in extent and 

clinical consequences between joints, disease stages and patients 

Orthopaedic Surgeons Structural and biological derangement of joint (that isn’t 

rheumatoid/ankylosing spondylosis/psoriatic 

A painful condition involving changes in multiple tissues of the joint 

Engineers A disease of the joint, characterised by pain, loss of function and 

degeneration/progressive damage of structures in/around the joint 

Musculoskeletal disease possibly triggered by altered joint 

biomechanics and biological signalling leading to joint tissue 

degeneration, inflammation and pain 

Radiologist Degenerative joint change currently based on exclusion of other 

causes 

Vet Degenerative whole joint disease with an inflammatory component 

Scientists (researcher) Joint disease that results in cartilage degeneration, bone changes and 

pain 

Degenerative disorder of the joint 

A degenerative disease of the bone and cartilage.  Can lead to 

cartilage loss, joint inflammation, changes in the bone and pain 

* The number of comments shown indicates the number of people who provided definitions in each 672 

profession. 673 
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Figure 1. 694 
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