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ABSTRACT 

In some centers, monitoring the lumbar cerebrospinal fluid (CSF) is used to guide 

management of patients with acute traumatic spinal cord injuries (TSCI) and draining lumbar 

CSF to improve spinal cord perfusion. Here, we investigate whether the lumbar CSF provides 

accurate information about the injury site and the effect of draining lumbar CSF on injury site 

perfusion. In 13 TSCI patients, we simultaneously monitored lumbar CSF pressure (CSFP) 

and intraspinal pressure (ISP) from the injury site. Using CSFP or ISP, we computed spinal 

cord perfusion pressure (SCPP), vascular pressure reactivity index (sPRx) and optimum 

SCPP (SCPPopt). We also assessed the effect on ISP of draining 10mL CSF. Metabolites at 

the injury site were compared with metabolites in the lumbar CSF. We found that ISP was 

pulsatile, but CSFP had low pulse pressure and was non-pulsatile 21% of the time. There was 

weak or no correlation between CSFP versus ISP (R=-0.11), SCPP(csf) versus SCPP(ISP) 

(R=0.39) and sPRx(csf) versus sPRx(ISP) (R=0.45). CSF drainage caused no significant change 

in ISP in 7/12 patients, a significant drop by <5mmHg in 4/12 patients and by ~8mmHg in 

1/12 patient. Metabolite concentrations in the CSF versus injury site did not correlate for 

lactate (R=0.00), pyruvate (R=-0.12) or lactate-to-pyruvate ratio (R=-0.05) with weak 

correlations noted for glucose (R=0.31), glutamate (R=0.61) and glycerol (R=0.56). We 

conclude that, after a severe TSCI, monitoring from the lumbar CSF provides only limited 

information about the injury site and that lumbar CSF drainage does not effectively reduce 

ISP in most patients. 

 

Manuscript keywords: Cerebrospinal fluid, Clinical management of CNS injury, 

Microdialysis, Traumatic spinal cord injury 

  



	

INTRODUCTION 

Traumatic spinal cord injury (TSCI) is a devastating event that affects ~180,000 people 

globally each year.1 Prognosis is poor: more than1/3 of patients have complete paraplegia or 

quadriplegia, less than 1 % are discharged neurologically normal and their life expectancy is 

below the national average.2 There is no treatment proven to improve outcome after TSCI.3  

To optimize the early management of TSCI, we developed multi-modality monitoring 

from the injury site in patients in the intensive care unit (ICU);4 we monitor intra-spinal 

pressure (ISP) and compute spinal cord perfusion pressure (SCPP) as mean arterial pressure 

(MAP) minus ISP.5-7 We also monitor injury site metabolism by microdialysis (MD).8, 9 

These techniques are safe and analogous to multimodality monitoring in traumatic brain 

injury.10 Our data show that ISP and SCPP are clinically important parameters that correlate 

with injury site metabolism,11 neurological status12 and long-term neurological outcome.6  

Monitoring from the injury site allows intervention to reduce secondary damage, e.g. 

increasing SCPP to reduce cord ischemia. We showed that low SCPP and high SCPP may 

both be detrimental and proposed the concept of optimum SCPP (SCPPopt) as the SCPP that 

maximises vascular reactivity.12 ISP monitoring allows individualized management by 

targeting each patient’s SCPPopt rather than applying the same MAP to all.5 MD monitoring 

revealed that some periods of high ISP are associated with hypometabolim (low tissue 

glucose, high LPR, high glutamate, high glycerol) and may benefit from increasing SCPP, 

whereas other periods of high ISP are associated with hypermetabolism (low tissue glucose, 

LPR, low glutamate, low glycerol) and thus increasing SCPP may be detrimental.8, 9 MD 

monitoring has also revealed that fever is associated with metabolic derangement at the 

injury site. Thus, monitoring from the injury site may help clinical management (see13). 

Some doctors monitor lumbar cerebrospinal fluid pressure (CSFP) rather than ISP and 

compute SCPP(csf) as MAP – CSFP rather than SCPP(ISP) as MAP – ISP.14-16 Monitoring from 



	

the lumbar CSF is achieved by placing a lumbar catheter, which can easily be done in ICU. 

The lumbar catheter is also used therapeutically to drain CSF to increase cord perfusion in 

after TSCI and in patients undergoing aortic aneurysm repair.17-20 In contrast, monitoring 

from the injury site requires surgery to expose the dura at the injury site and insert probes 

intradurally under a microscope. Thus, monitoring from the lumbar CSF compartment is less 

invasive and easier to accomplish than injury site monitoring. 

In this study, we monitored simultaneously from the injury site and from the lumbar 

CSF space in patients with acute, severe TSCI to define the relationship between CSFP 

versus ISP, SCPP(csf) versus SCPP(ISP) and metabolite levels in the lumbar CSF versus injury 

site. We also determined the effect of draining lumbar CSF on ISP. 

 

MATERIALS AND METHODS 

Institutional Research Board Approvals. Approvals for the Injured Spinal Cord Pressure 

Evaluation (ISCoPE) study including the consent form and patient information sheet were 

obtained by the St Georges Joint Research Office and the National Research Ethic Service – 

Camberwell St Giles Committee (No 10/H0807/23). ISCoPE is registered at www.clinical 

trials.gov as NCT02721615. 

 

Inclusion/Exclusion Criteria. We recruited TSCI patients who were enrolled into the 

ISCoPE trial in the period October 2017 – February 2019. Inclusion criteria for ISCoPE are: 

severe TSCI defined as AIS grades A – C, age 18 – 70 years and surgery performed within 

72 hours of TSCI. Exclusion criteria are: major co-morbidities, inability to obtain consent 

and penetrating SCI. 

 



	

Clinical examination and imaging. All patients were admitted to the neurosurgical unit at 

St. George’s Hospital and underwent ISNCSCI AIS assessment by a neurosurgical resident 

trained in AIS. All patients had CT and MRI of the spine imaging before surgery and within 

two weeks after surgery. We measured the longitudinal extent of T2 cord signal change on 

the pre-operative MRI as a biomarker of cord edema. 

 

Probe insertion. Surgical decompression and spinal instrumentation were performed based 

on patient requirements and surgeon preference. During surgery an ISP probe (Codman 

Microsensor Transducer®, Depuy Synthes, Leeds, UK) and a MD catheter (CMA61: CMA 

microdialysis AB, Solna, Sweden) were placed intradurally on the surface of the injured cord 

at the site of maximal cord swelling. The dural opening was sutured and supplemented with 

fibrin glue (Tisseel®, Baxter, UK). At the end of surgery, a lumbar catheter was inserted at 

the L4/5 or L3/4 disc levels and advanced 15 – 20 cm from the skin edge. Fig. 1A shows the 

setup. 

  

Monitoring and lumbar CSF drainage. The ISP probe was connected to a Codman ICP 

box linked via a ML221 amplifier to a PowerLab running LabChart v.7.3.5 (AD Instruments, 

Oxford, UK). The lumbar catheter was connected to an external drainage system (Integra™ 

AccuDrain® External CSF Drainage System) which was attached to a pressure transducer and 

closed to the drain. It was then connected to the Philips Intellivue MX800 bedside monitoring 

system (Philips, Guildford, UK) and in turn connected to the PowerLab system. Nurses were 

instructed to keep the transducer at the level of the lumbar spine. Blood pressure was 

recorded from a radial artery catheter connected to the Philips Intellivue MX800 bedside 

monitoring system (Philips, Guildford, UK) and in turn connected to the PowerLab system. 

ISP and arterial blood pressure signals were sampled at 1 kHz and patients were monitored 



	

for up to 7 days. With the patient lying flat, up to 10 ml CSF was drained each time from the 

lumbar catheter to assess the effect on ISP. No more than 30 ml of CSF was drained in a 24-

hour period.  

 

Microdialysis setup and analysis. MD was started postoperatively in the ICU as described.8, 

9, 11 CNS perfusion fluid (CMA microdialysis AB) was perfused at 0.3 µL/min using the 

CMA106 pump (CMA microdialysis AB). MD vials were changed hourly and analyzed 

using ISCUS Flex (CMA microdialysis AB) for the following metabolites: glucose, lactate, 

pyruvate, glycerol, glutamate and LPR.  Samples of CSF were collected at each CSF 

drainage and were used to measure the same metabolites.  CSF metabolite levels were then 

compared against corresponding metabolite levels at the injury site obtained from the same 

hour of sampling.     

 

Signal analysis. Data was analysed using Labchart v.8 (AD Instruments, Oxford, UK) and 

ICM+ (www.neurosurg.cam.ac.uk/icmplus) to compare ISP versus CSFP signals including 

morphology of individual waveforms, entire period mean values and duration of pulseless 

CSFP. We also computed the running correlation between CSFP and ISP defined as the 

Pearson correlation coefficient of the preceding 60 one-second averages of CSFP vs. ISP, 

updated each minute. We argued that the timing of the ISP and CSFP waveforms will be 

greatly influenced by compliance, i.e. a more compliant compartment will transmit pulses 

more slowly than a less compliant one. We thus also computed two elements of pulse wave 

timing: the latency (l) between the onset of an ISP waveform and the onset of the 

corresponding CSFP waveform as well as the slope of each pulse wave (dP/dT). Frequency-

domain analysis of the ISP and CSFP waveforms was performed using a Fast Fourier 

Transformation to determine cardiac and respiratory contributions to these signals. Three 



	

two-hour traces of waveform signals were analyzed for each patient corresponding to periods 

that the CSFP was very-, minimally- and non- pulsatile. ISP and CSFP were also used to 

compute the following: SCPP = MAP – ISP, SCPP(csf) = MAP – CSFP, sPRxISP = running 

correlation coefficient between MAP and ISP, sPRx(csf) = running correlation coefficient 

between MAP and CSFP, SCPPopt(ISP) = SCPP at minimum sPRx(ISP), and SCPPopt(csf) = 

SCPP(csf) at minimum sPRx(csf).   

 

Statistics. The Pearson coefficient was used to examine the correlations between CSFP 

versus ISP, SCPP(csf) versus SCPP(ISP), SCPPopt(csf) versus SCPPopt(ISP), sPRx(csf) versus 

xPRx(ISP), metabolite concentrations in lumbar CSF versus microdialysate as well as extent of 

cord edema (length of T2 signal abnormality on pre-operative MRI) versus mean Pearson 

correlation coefficient between CSFP and ISP. The change in ISP (DISP) as a result of 

draining lumbar CSF was defined as 15-minute mean ISP prior to drainage minus 15-minute 

mean ISP ten minutes after drainage and was compared using Student’s t-test for all the 

repeats in each patient. dP/dT values for CSP versus ISP were compared using Student’s t-

test. The different l groups were compared by multiple Student’s t-tests with Bonferroni 

correction. 

 

RESULTS 

Patient Demographics. Data were collected from 13 consecutive patients aged 26 – 67 years 

(mean 47). Most (62 %) patients had complete (AIS A) injuries and most (70 %) had cervical 

injuries. All patients underwent posterior surgical bony decompression including 

laminectomy and fusion with 31 % also requiring concurrent anterior stabilisation. Mean 

duration of follow-up was about half a year. At follow-up, most patients (54 %) had 

improved by one of more AIS grade, some (38 %) remained the same and one patient (8 %) 



	

deteriorated by one AIS grade. Mean duration of monitoring was 4 – 5 days and mean 

number of MD-CSF matched sample pairs per patient was eight. Details are in Table 1.  

 

Complications. In three patients (23 %), the lumbar drain stopped working and was re-sited 

or removed. One patient (8 %) with poorly-controlled diabetes mellitus developed a post-

operative E. Coli septicaemia from urosepsis followed by E. Coli wound infection 17 days 

after surgery; the infection was eliminated with wound washout plus six weeks of 

intravenous antibiotics. Of note, this was the only ISCoPE patient who developed a wound 

infection out of the 76 who underwent multi-modality injury site monitoring to date (2010 – 

9) giving an overall infection risk of 1.3 %. CSF leak from the probe skin exit site was 

observed in 4/13 patients (31 %) and was successfully stopped by placing additional skin 

sutures. Six of the thirteen patients (46 %) had asymptomatic, non-compressive pseudo-

meningoceles noted on post-operative MRI, done within 2 – 3 months of TSCI, which 

resolved on the 1-year post-operative MRI. Details are in Table 2. 

 

ISP versus CSFP waveform shapes. Morphologically, the ISP waveforms were comparable 

to the intracranial pressure waveforms with three major peaks: percussion, tidal and 

dicrotic.21 In contrast, the CSFP waveforms appeared flatter than ISP and less pulsatile with 

non-pulsatile periods (Figs. 1B-D). Additional comparisons between ISP and CSFP 

waveforms are in the supplement. Frequency domain analysis for ISP revealed respiratory 

and heartbeat peaks (+ harmonics) with either peak the tallest. Flat CSFP had no frequency 

peaks, minimally pulsatile CSFP had only the respiratory peak whereas more pulsatile CSFP 

had both respiratory and heartbeat peaks with the respiratory peak always the tallest. Timing 

analysis revealed significantly steeper dP/dT slope for ISP than CSFP waveforms and 



	

significant delay, by >100 ms in most cases, between the onset of the CSFP pulse compared 

with the corresponding ISP pulse. 

 

ISP versus CSFP signals. When averaged over the entire monitoring period, ISP was higher 

than the CSFP by ~5 mmHg. A plot of average CSP versus average ISP for the 13 patients 

showed no overall correlation: in 6/13 patients, mean ISP – mean CSFP >5 mmHg, in 2/13 

patients mean CSFP – mean ISP >5 mmHg and in 5/13 patients mean ISP and mean CSFP 

were within 5 mmHg (Fig. 2A). Closer inspection of these signals revealed periods when the 

ISP and CSFP pulsations appeared uncorrelated and other periods when the CSFP and the 

ISP pulsations appeared almost identical (Fig. 2B). To evaluate this time-variability in the 

correlation between the CSFP and the ISP signals, we computed their running correlation 

coefficient (Fig. 2C-D). The running correlation coefficient was >0.7 for >75 % of the time 

in 3/13 patients (2 cervical +1 thoracic injuries), 25 – 75 % of the time in 3/13 patients (all 

cervical) and <25 % of the time in 7/13 patients (4 cervical + 2 thoracic + 1 conus).  We 

noted periods of positive CSFP versus ISP correlation, periods of no correlation and periods 

of anti-correlation. There was no significant difference in the running coefficient between 

cervical versus thoracolumbar TSCIs.  

 

SCPP, sPRx, SCPPopt and metabolites. Overall, there was no significant correlation 

between SCPP(csf) versus SCPP(ISP), sPRx(csf) versus sPRx(ISP) or SCPPopt(csf) versus 

SCPPopt(ISP) (Fig. 3). Also, the overall levels of metabolites measured from the injury site by 

microdialysis versus the corresponding levels in the lumbar CSF did not significantly 

correlate for lactate, pyruvate and LPR, though there were significant, albeit weak, positive 

correlations for glucose, glutamate and glycerol (Fig. 4). When we examined individual 



	

patients, significant positive correlations between injury site and lumbar CSF levels were 

found in 8/12 for glucose, 8/12 for glutamate, 6/12 for glycerol. 

 

Effect on ISP of CSF drainage. In 12/13 patients, we drained ~10 mL CSF through the 

lumbar catheter on several occasions. CSF drainage had variable effect on ISP: On average, 

in 7/12 patients there was no change in ISP, in 4/12 patients there was a significant small 

reduction in ISP by <5 mmHg and in 1/12 patients there was a large drop in ISP by 5 – 10 

mmHg (Fig. 5). In 3/12 patients, on some occasions, we observed the phenomenon of ‘dry 

tap’, where CSF would not be drained even though the lumbar catheter was patent (i.e. able 

to flush and transduced a pressure wave). This resolved in 2/3 patients, but persisted in 1/3 

(patient 10) after day 2 even though the lumbar drain appeared in the spinal canal on the post-

operative CT. 

 

Cord swelling and CSFP versus ISP Correlation. We hypothesized that if the injured cord 

is not very swollen, then it will be surrounded by CSF and, therefore, the ISP and the CSFP 

signals will be similar, i.e. their correlation will be high. Conversely, if the cord is very 

swollen, it will become compressed against the dura. In this case, the ISP is the pressure of 

the swollen cord against the dura, whereas the CSFP is the pressure in the lumbar CSF and, 

therefore, there will be loss of correlation between CSFP versus ISP. The longitudinal extent 

of cord signal change on pre-operative T2 MRI, used as a measure of cord edema, inversely 

correlated with the mean CSFP versus ISP correlation coefficient (Fig. 6). In other words, 

patients with less swollen spinal cords had stronger positive correlations between their CSFP 

and their ISP signals thus supporting our hypothesis. 

 

DISCUSSION 



	

Our key finding is that, after acute severe TSCIs, the values of physiological (i.e. ISP, SCPP, 

sPRx, SCPPopt) and biochemical (i.e. glucose, lactate, pyruvate, LPR, glutamate, glucose) 

parameters measured at the injury site markedly differ from equivalent measurements from 

the lumbar CSF. Lack of correlation between ISP and CSFP likely occurs when the injured 

cord is compressed against the dura, i.e. there is no CSF around the injury site. The presence 

of periods with high correlation between ISP and CSFP suggests that cord compression is a 

dynamic process. These ideas are supported by our earlier finding of a pressure profile along 

the injured cord12, 22 and our current observation that patients with more cord swelling on pre-

operative MRI have poorer correlation between ISP and CSFP. 

ISP and CSFP pulse timings suggest that the injury site and the lumbar CSF have 

different physical properties. CSFP pulses have lower dP/dT and lag behind ISP pulses; this 

means that ISP pulses are in a ‘tight’ compartment (low compliance, cord compressed against 

dura), but CSFP pulses are in a ‘loose’ compartment (lumbar CSF).23 ISP has two prominent 

frequency peaks (cardiac, respiratory), as previously shown,12, 21 but CSFP may be flat (no 

peaks), a little pulsatile (respiratory peak only) or more pulsatile (two peaks, respiratory taller 

than cardiac). Lack of lumbar CSF pulsatility in TSCI was also noted by Kwon et al. who 

found correlation with cord compression on MRI16. We propose that the swollen cord inhibits 

the caudal transmission of cord and CSF pulsations to the lumbar CSF thus causing CSFP 

pulsatility to diminish. In our ventilated patients, lung pressure fluctuations likely produce 

venous pressure fluctuations that are transmitted to the CSFP regardless of cord compression. 

This may explain why the respiratory frequency peak in CSFP often persists even when the 

cardiac frequency peak has disappeared. 

Over the last few years, we showed how the ISP signal can be used to derive several 

physiological parameters (SCPP, sPRx and SCPPopt)12, 21, 24, 25 that correlate with injury site 

metabolism,11 acute neurological status12 and long-term neurological outcome6 and may 



	

guide the management of TSCI patients in ICU. We observed major differences between 

these parameters computed using ISP versus CSFP. The differences arise because of the 

overall lack of correlation between ISP and CSFP. During periods that the spinal cord is not 

compressed, ISP » CSFP and thus SCPP(ISP) » SCPP(csf). Therefore, SCPP(csf) carries some 

information about SCPP(ISP); this may explain why SCPP(csf) has some predictive power in 

TSCI15. Neurological outcome correlates better with SCPP(ISP)
6

  than SCPP(csf),15 probably 

because SCPPISP carries more information about the injury site than SCPPCSF. Together, our 

findings suggest that CSFP monitoring is less cumbersome than ISP monitoring, but cannot 

reliably estimate ISP, SCPP, sPRx or SCPPopt. 

Lumbar CSF drainage has been used to improve cord perfusion after TSCI in 

patients16 and pig models.26 In our study, CSF drainage did not reliably reduce ISP in most 

TSCI patients, probably because of the lack of CSF around the injury site. Our observation of 

‘dry taps’ on several occasions, also noted by Kwon et al.,16 supports the idea of a block in 

the flow of CSF caused by the swollen cord compressed against the dura. In patients with 

CSF around the injured cord, lumbar CSF drainage is predicted to reduce ISP (Patient 4, Fig. 

5). Even in this patient, however, ISP decreased only on some occasions, which suggests that 

the cord is intermittently compressed. Ways to reliably increase SCPP include vasopressors 

to increase MAP12 or expansion duroplasty to reduce ISP.27 

Tissue MD is widely used when managing patients with brain injuries.28 We showed 

that MD also provides clinically important information after TSCI.8, 9 Our data suggest that 

metabolite levels at the injury site differ from corresponding levels in the lumbar CSF. An 

explanation is that the MD catheter samples metabolites from the extracellular space at the 

injury site, but metabolites are shed into the lumbar CSF not only from the injury site, but 

also from the cord below. Differences in metabolite levels at the injury site versus lumbar 

CSF were more pronounced for lactate, pyruvate and LPR probably because the cord below 



	

the injury has healthier metabolism than the injury site. Tissue [glucose] at the injury site 

correlated with lumbar CSF [glucose]; a possible explanation is that both concentrations are 

influenced by serum [glucose].8,29 [Glutamate] and [glycerol] at the injury site also correlated 

with lumbar CSF levels; this may be because the normal cord does not release glutamate or 

glycerol, i.e. the glutamate and glycerol in the lumbar CSF originated entirely from the injury 

site. Despite reaching statistical significance, the correlations of injury site versus lumbar 

CSF for [glucose], [glutamate] and [glycerol] were weak with large inter-patient variability. 

By analogy with intracranial pressure monitoring for brain injury, ISP monitoring for 

TSCI may be helpful to guide management in the most severely injured patients.13 To date, 

we have only monitored ISP and MD in patients with severe TSCI, i.e. AIS A, B or C at 

baseline. Potential risks of injury site monitoring include mechanical spinal cord damage, 

subdural haematoma, dural CSF leak causing pseudomeningocele or leak though the skin, 

meningitis and probe retention requiring surgery to remove. In a study of 42 patients who had 

ISP monitoring, complications were probe displacement in 2.4 %, CSF leak requiring wound 

re-suturing in 7.1 % and asymptomatic pseudomeningocele in 19.0 % that resolved within 6 

months.10 There were no serious probe-related complications such as meningitis, wound 

infection, subdural hematoma, wound breakdown or neurological deterioration. 

Based on our findings, we urge caution when interpreting data obtained from the 

lumbar CSF in TSCI patients. To monitor pathological events within the injured cord, we 

advocate directly accessing the injury site, which is safe10 and may be used to obtain multi-

modality data including ISP, SCPP, sPRx, SCPPopt and MD.9, 12  

 

CONCLUSIONS 

In 13 patients with TSCI, monitoring from the injury site was compared with monitoring 

from the lumbar CSF. The effect of draining lumbar CSF on injury site perfusion was also 



	

assessed. We conclude that monitoring from the lumbar CSF offers limited information about 

the injury site and that drainage of lumbar CSF does not improve cord perfusion in most 

patients. 
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FIGURE LEGENDS 

Fig. 1. Monitoring setup. A. Schematic to illustrate ISP, CSFP and MD monitoring. With 

the patient lying flat, ISP is monitored by a pressure probe placed subdurally at the injury site 

and CSFP from a catheter placed in the lumbar CSF space. A MD catheter is also placed next 

to the pressure probe. B. Typical ISP and CSFP waveforms. P1 percussion peak, P2 tidal 

peak, P3 dicrotic peak. Examples of ISP and simultaneously-measured CSFP signals over C. 

2 – 3 seconds and D. 5 minutes. 

 

Fig. 2. ISP versus CSFP. A. Average ISP versus average CSFP for entire monitoring period. 

Best-fit straight line, R = -0.11. White circles (|ISP – CSFP| ≤ 5 mmHg), gray circles (CSFP 

– ISP > 5 mmHg), black circles (ISP – CSFP > 5 mmHg). B. Example of ISP signal and 

simultaneously-recorded CSFP signal, monitored over 10 hours, that correlate (top) poorly 

and (bottom) well. C. Distribution of running Pearson R between ISP and CSFP for each 

patient. D. Example of ISP signal and simultaneously-recorded CSFP signal, monitored over 

10 seconds, with (left) negative, (middle) positive, and (middle) no correlation. Below are 

corresponding plots of Pearson R versus time.  NS, not significant. 

 

Fig. 3. Physiological parameters computed from ISP versus CSFP. A. Average SCPP 

computed from CSF (SCPPCSF) versus average SCPP computed from CSFP (SCPPISP), R = 

0.39. White circles (|SCPP(csf) – SCPP(ISP)| ≤ 5 mmHg), gray circles (SCPP(csf) – SCPP(ISP) > 5 

mmHg), black circles (SCPP(csf) – SCPP(ISP) < 5 mmHg). B. Average sPRx computed from 

CSF (sPRx(csf)) versus average sPRx computed from ISP (sPRx(ISP)), R = 0.45. White circles 

(|sPRx(csf) – sPRx(ISP)| ≤ 0.05), gray circles (sPRx(csf) – sPRx(ISP) > 0.05), black circles 

(sPRx(csf) – sPRx(ISP) < 0.05). C. Overall SCPPopt computed from CSF (SCPPopt(csf)) versus 

overall SCPPopt computed from ISP (SCPPopt(ISP)), R = -0.22. White circles (|SCPPopt(csf) – 



	

SCPPopt(ISP)| ≤ 5 mmHg), gray circles (SCPPopt(csf) – SCPPopt(ISP) > 5 mmHg), black circles 

(SCPPopt(csf) – SCPPopt(ISP) < 5 mmHg). Best-fit straight lines. NS, not significant. 

 

Fig. 4. Biochemical parameters at injury site versus CSF. Plots of MD versus lumbar CSF 

values with best-fit straight line for A. [Glucose] in mM (R = 0.32), B. [Lactate] in mM (R = 

0.0007), C. [Pyruvate] in µM (R = -0.12), D. Lactate-to-pyruvate ratio – LPR (R = -0.05), E. 

[Glutamate] in µM (R = 0.61), and E. [Glycerol] in µM (R = 0.56). Data from 12 patients. P 

< 0.0001††; NS, not significant. 

 

Fig. 5. Effect of draining lumbar CSF on ISP. A. Setup. With the patient lying flat, ISP is 

monitored by a pressure probe placed subdurally at the injury site whilst 10 mL lumbar CSF 

were drained. B. Examples from two patients (black, red) of ISP traces during draining 10 

mL lumbar CSF. C. Plot of DISP as a result of draining 10 mL lumbar CSF (circles are 

individual values, lines are means) from 12/13 patients. P < 0.05*, 0.01**, 0.005#, 0.001##, 

0.0005†; NS, not significant. 

 

Fig. 6. Relation between cord edema and concordance between ISP and CSFP signals. 

A. T2 mid-sagittal MRI showing length of cord signal change. B. Plot of length of cord 

signal change in mm versus mean Pearson R (ISP versus CSFP). R = 0.66, P < 0.05.		

  



	

Table 1. Patient demographic characteristics 

PATIENT 
NO. 

AGE 
YEARS SEX SITE 

TYPE OF 
SURGERY 

POST / 
ANT+POST 

ADMISSION 
AIS GRADE 

 
FOLLOW 

UP AIS 

 
DURATION OF 
FOLLOW UP 

(months) 

 
DURATION OF  
MONITORING 

(hours) 

 
NUMBER OF 

SIMULTANEOUS MD and 
CSF SAMPLES  

 

1 67 M C3 Post A A 1 104.25 0  

2 67 M C4 Post C C 12 127.93 8  

3 32 M C4 Ant+Post C D 10 150.93 3  

4 39 M T7 Post A B 15 113.12 11  

5 35 M C4 Ant+Post C A 12 84.5 7  

6 27 M L1 Post C D 6 111.78 9  

7 50 M C5 Post B B 2 139 14  

8 47 M T8 Post A C 12 105.63 9  

9* 57 M C4 Post A A 3 147.15 12  

10 66 M C4 Post A A 4 128.5 12  

11 46 M T12 Post A C 4 51.78 3  

12 52 M C5 Ant+Post A B 2 127.56 12  

13 26 M C6 Ant+Post A B 1 70.5 8  

Ant, anterior; M, male; Post, posterior. *Permanent pacemaker so did not have MRI 

	



	

 

 
 

Table 2. Complications 

COMPLICATION NO. OF 
PATIENTS COMMENTS 

Wound infection 1 

 
Brittle diabetes and E. Coli bacteraemia from urosepsis. 
Wound swabs also grew E Coli. Infection eradicated by 
wound washout and 6 weeks ceftriaxone.  
 

CSF Leak around probes 4 

 
All managed with re-suturing of probe exit site with no 
further leaks. 
 

Lumbar drain blocked 2 

 
In one patient, lumbar drain stopped transducing a 
pressure wave and would not drain nor flush so lumbar 
drain was removed. In the second patient, lumbar drain 
was re-sited without complication.  
 

Pseudo-meningocele on 6 week 
MRI 6 

 
All clinically asymptomatic. In 3/6, pseudo-
meningocele resolved on MRI at one year. 3/6 awaiting 
one year follow up MRI. 
 

 

	

 

  



	

  



	

  



	

  



	

  



	

  



	

  



	

 


