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A B S T R A C T

Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in
frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this
issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia
(SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and
emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory
perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity
processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD
groups had impaired semantic and emotional congruity processing (after taking auditory control task perfor-
mance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory
semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal
and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and
striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive
mechanism and neural architecture underpinning frontotemporal dementia syndromes.

1. Introduction

Natural sensory environments or scenes often convey a cacopho-
nous mixture of signals. Successful decoding of such scenes depends on
resolution of the sensory mixture to enable a coherent behavioural and
emotional response. Competing or conflicting signals present an im-
portant challenge to this enterprise. Signal conflict (simultaneous ac-
tivation of incompatible or divergent representations or associations,
Botvinick et al., 2001) often requires modification of behavioural goals;
an appropriate behavioural response depends on detecting the salient
signal mismatch and decoding its semantic and emotional significance.
Equally, accurate determination of signal similarities and congruence is
essential to establish regularities in the environment that can guide
future adaptive behaviours. Analysis of signal ‘relatedness’ (conflict
versus congruence) and conflict resolution are integral to complex de-
cision making and emotional responses, particularly in social contexts
(Chan et al., 2012; Clark et al., 2015b; Moran et al., 2004).

In neurobiological terms, behavioural responses to sensory signal
relatedness reflect the operation of hierarchically organised generative
models (Cohen, 2014; Nazimek et al., 2013; Silvetti et al., 2014). These

models form predictions about the environment based on current and
previous sensory experience, detect unexpected or ‘surprising’ events as
prediction errors and adjust behavioural output to minimise those er-
rors (Friston, 2009; Moran et al., 2004). The underlying neural com-
putations engage large-scale brain networks: these networks encompass
posterior cortical areas that parse sensory traffic into component ob-
jects; medial fronto-parietal cortices that direct and control attention
and the detection of salient sensory events according to behavioural
context; antero-medial temporal areas that store previously learned
knowledge and schemas about sensory objects and regularities; insular
and prefrontal cortices that implement and assess violations in rule-
based algorithms; and striatal and other subcortical structures that code
emotional and physiological value (Christensen et al., 2011; Cohen,
2014; Dieguez-Risco et al., 2015; Dzafic et al., 2016; Gauvin et al.,
2016; Groussard et al., 2010; Henderson et al., 2016; Jakuszeit et al.,
2013; Klasen et al., 2011; Merkel et al., 2015; Michelon et al., 2003;
Nazimek et al., 2013; Remy et al., 2014; Ridderinkhof et al., 2004;
Rosenbloom et al., 2012; Silvetti et al., 2014; Watanabe et al., 2014),
Within this distributed circuitry, separable mechanisms have been
identified for the processing of semantic and affective congruence
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(Dieguez-Risco et al., 2015) and for elementary versus more abstract
levels of incongruity decoding (Paavilainen, 2013).

On clinical as well as neuroanatomical grounds, abnormal proces-
sing of conflict and congruence is a candidate generic mechanism of
disease phenotypes in the frontotemporal dementias (Warren et al.,
2013). These diseases collectively constitute an important cause of
young onset dementia and manifest clinically with diverse deficits of
semantic, emotional and social signal decoding, particularly in the
syndromes of behavioural variant frontotemporal dementia (bvFTD)
and semantic dementia (SD) (Downey et al., 2015; Fumagalli and
Priori, 2012; Irish et al., 2014; Kipps et al., 2009; Piwnica-Worms et al.,
2010; Snowden et al., 2003; St Jacques et al., 2015; Warren et al.,
2013). Although bvFTD is defined by early, prominent behavioural and
emotional impairments while SD is defined by progressive, pan-modal
impairment of semantic memory, these two syndromes substantially
overlap, both clinically and neuroanatomically (Gorno-Tempini et al.,
2011; Hodges and Patterson, 2007; Rascovsky et al., 2011; Warren
et al., 2013). Key deficits in both syndromes may reflect impaired in-
tegration of context and perspective taking (Ibanez and Manes, 2012).
Inability to reconcile different perspectives may contribute more spe-
cifically to loss of empathy and theory of mind (Baez et al., 2014; Irish
et al., 2014; Kipps et al., 2009), reduced self-awareness (Sturm et al.,
2013), aberrant resolution of moral and social dilemmas (Carr et al.,
2015; Eslinger et al., 2007) and abnormally polarised behaviours (Clark
and Warren, 2016). Defective recruitment of stored social and semantic
schemas may reduce adherence to social regularities (Zahn et al., 2007)
while impaired ability to modify behaviour in response to ‘surprising’
events may contribute to dysfunctional reward seeking and valuation
(Dalton et al., 2012; Perry et al., 2014). Abnormal conflict monitoring
has been documented early in bvFTD (Krueger et al., 2009) and it re-
mains uncertain as to what extent this reflects more general executive
dysfunction (Seer et al., 2015). Neuroanatomically, the candidate net-
work substrates for processing signal relatedness overlap key areas of
disease involvement in bvFTD and SD (Fletcher and Warren, 2011;
Hodges and Patterson, 2007; Perry et al., 2014; Warren et al., 2013).
Despite much clinical and neurobiological interest, fundamental or
generic models and mechanisms that can capture the clinical and
neuroanatomical heterogeneity of frontotemporal dementia are largely
lacking. There would be considerable interest in identifying a model
system that reflects important clinical deficits in these diseases, while at
the same time allowing those deficits to be more easily understood,
measured and tracked, with a view to the development and evaluation
of therapies.

Nonverbal sound is one such attractive model sensory system, with
particular resonance for frontotemporal dementia and the potentially
unifying theme of abnormal conflict and congruence signalling. Signal
prediction and detection of violated predictions are likely to be intrinsic
to the analysis of auditory scenes, in line with the commonplace ob-
servation that sound events (such as ‘things that go bump in the night’)
are often ambiguous and require active contextual decoding to prepare
an appropriate behavioural response (Fletcher et al., 2016). The re-
quirements for disambiguating competing sound sources, tracking of
sound sources dynamically over time and linking sound percepts to
stored semantic and emotional associations all impose heavy compu-
tational demands on neural processing mechanisms. Moreover, the
fronto-temporo-parietal and subcortical brain networks that instantiate
these mechanisms are selectively targeted by the disease process in
frontotemporal dementias (Hardy et al., 2017; Warren et al., 2013).
One might therefore predict abnormalities of sound signal decoding in
these diseases and indeed, a range of a auditory deficits have been
described, ranging from impaired electrophysiological responses to
acoustic oddballs (Hughes et al., 2013) to complex cognitive and be-
havioural phenotypes (Downey et al., 2015; Fletcher et al., 2015a,
2016, 2015b; Hardy et al., 2016). Many of these phenotypic features
might arise from impaired integration of auditory signals and impaired
processing of signal mismatch. However, the relevant cognitive and

neuroanatomical mechanisms have not been defined.
Here we addressed the processing of signal conflict and congruence

in auditory environments in two canonical syndromes of fronto-
temporal dementia, bvFTD and SD relative to healthy older individuals.
We designed a novel behavioural paradigm requiring decisions about
auditory ‘scenes’, each comprising two competing sound sources in
which the congruity or incongruity of the sources was varied along
semantic (identity relatedness) and affective (emotional relatedness)
dimensions independently. We constructed ‘model’ scenes that would
simulate naturalistic processing of the kind entailed by real world lis-
tening while still allowing explicit manipulation of the stimulus para-
meters of interest. The stimulus dimensions of semantic and emotional
congruity were anticipated to be particularly vulnerable to the target
syndromes, based on an extensive clinical and neuropsychological lit-
erature in auditory and other cognitive domains (Hardy et al., 2017;
Hodges and Patterson, 2007; Warren et al., 2013). Structural neuroa-
natomical associations of experimental task performance were assessed
using voxel-based morphometry in the patient cohort.

We hypothesised firstly that both bvFTD and SD (relative to healthy
older individuals) would be associated with impaired detection and
affective valuation of auditory signal relatedness, given that these
syndromes show qualitatively similar semantic and affective deficits
when required to integrate information from social and other complex
auditory signals (Downey et al., 2015; Fletcher et al., 2015a, 2016,
2015b; Hodges and Patterson, 2007; Rascovsky et al., 2007; Warren
et al., 2013). We further hypothesised that these deficits would be
evident after taking into account background auditory perceptual and
general cognitive competence. We anticipated that the decoding of both
semantic and affective auditory relatedness would have a neuroanato-
mical correlate in anterior temporal and insula cortical ‘hubs’ for pro-
cessing signal salience based on prior expectations (Christensen et al.,
2011; Groussard et al., 2010; Merkel et al., 2015; Nazimek et al., 2013;
Remy et al., 2014; Watanabe et al., 2014). Finally, we hypothesised that
the analysis of auditory semantic congruence would have an additional
correlate in fronto-parietal cortices previously linked to processing of
rule violations and conflict resolution (Chan et al., 2012; Groussard
et al., 2010; Henderson et al., 2016; Jakuszeit et al., 2013; Paavilainen,
2013; Remy et al., 2014; Ridderinkhof et al., 2004; Rosenbloom et al.,
2012; Strelnikov et al., 2006); while the analysis of auditory emotional
congruence would have an additional subcortical correlate in striatal
and mesial temporal structures previously linked to the processing of
emotional congruence and associated reward value (Dzafic et al., 2016;
Klasen et al., 2011; Schultz, 2013).

2. Methods

2.1. Participant groups

Twenty-nine consecutive patients fulfilling current consensus cri-
teria for bvFTD ((Rascovsky et al., 2011); n = 19, mean age 64 years
(standard deviation 7.2 years), three female) or SD ((Gorno-Tempini
et al., 2011); n = 10, mean age 66.2 (6.3) years, four female) were
recruited via a tertiary specialist cognitive clinic; 20 healthy older in-
dividuals (mean age 68.8 (5.3) years, 11 female) with no history of
neurological or psychiatric illness also participated. None of the parti-
cipants had a history of clinically relevant hearing loss. Demographic
and general neuropsychological characteristics of the study cohort are
summarised in Table 1. Syndromic diagnoses in the patient groups were
corroborated with a comprehensive general neuropsychological as-
sessment (Table 1). Genetic screening of the whole patient cohort re-
vealed pathogenic mutations in eight patients in the bvFTD group (five
MAPT, three C9orf72); no other pathogenic mutations were identified.
CSF examination was performed in six patients with sporadic bvFTD
and in five patients with SD: profiles of CSF neurodegeneration markers
in these cases provided no evidence for underlying AD pathology based
on local laboratory reference ranges (i.e., no patient had total CSF tau:
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beta-amyloid1–42 ratio> 1). In total 14 patients in the bvFTD group had
either a pathogenic mutation, consistent CSF neurodegenerative mar-
kers or both. Clinical brain imaging (MRI or CT) revealed variably
asymmetric but compatible profiles of atrophy across the patient cohort
(Table 1). No brain images showed a significant cerebrovascular
burden.

The study was approved by the local institutional ethics committee
and all participants gave informed consent in accordance with the
guidelines of the Declaration of Helsinki.

2.2. Experimental design

2.2.1. Auditory scene tests
We created auditory scene stimuli based on overlaid pairs of sounds

(examples in Supplementary Material on-line) in which the congruity of
the two sounds was varied independently along two dimensions; se-
mantic (whether the sounds would be likely or unlikely to occur to-
gether) and emotional (whether the sounds had similar or contrasting
affective valence). The procedure we followed in preparing the auditory
scene congruity tests is diagramed in Fig. 1.

Individual sounds were obtained from on-line digital databases to
sample semantic categories of human nonverbal sounds, animal sounds,
natural environmental noises and artificial noises (machinery and
tools).

Pairs of sounds were superimposed using Goldwave® software,
further details of stimulus synthesis are in Supplementary Material on-
line. The resulting auditory ‘scenes’ comprised four conditions (ba-
lanced for their constituent sounds) in a factorial matrix; semantically
congruous – emotionally congruous, ScEc (e.g., alarm clock- snoring);
semantically incongruous – emotionally congruous, SiEc (e.g., alarm
clock – pig grunting); semantically congruous – emotionally incon-
gruous (e.g., chiming clock – snoring); semantically incongruous –
emotionally incongruous, SiEi (e.g., chiming clock – roaring lion).
Auditory scene stimuli were edited to fixed duration (8 s) and mean
intensity level. Based on an initial pilot experiment in healthy older
individuals (details in Supplementary Material on-line), a final set of 60
auditory scene stimuli (comprising combinations of 43 individual
sounds) was selected from a larger set of 193 candidate auditory scenes,
using criteria of> 80% correct identification of both constituent
sounds in each scene and rated likelihood and pleasantness of the scene
(the sound combination) by the healthy pilot group.

The final auditory scene stimuli were arranged to create two tests,
each incorporating the four sound conditions (ScEc, SiEc, ScEi, SiEi),
but requiring a decision on either the semantic congruity or the emo-
tional congruity of the sound scenes. A forced-choice response proce-
dure was used in both tests. Stimuli for each test are listed in Tables S1
and S2 in Supplementary Material on-line. In constructing each test,
pilot control ratings were used to classify sound pairs for the parameter
of interest while balancing across conditions for the other, nuisance
parameter. For the semantic congruity test, likelihood of co-occurrence
was the relevant parameter and pleasantness discrepancy was the nui-
sance parameter; for the emotional congruity test, these roles were
reversed. An auditory scene was included in the final stimulus set if i)
both constituent sounds were identified correctly by>80% of the pilot
healthy control group and ii) the scene overall met an additional con-
gruity criterion, based on pilot group ratings (for the semantic con-
gruity test, rated likelihood of co-occurrence of the two sounds and for
the emotional congruity test, rated pleasantness discrepancy of the two
sounds). In addition, scenes were selected such that each test was ba-
lanced wherever feasible for the ‘nuisance’ congruity parameter (for the
semantic congruity test, the pleasantness discrepancy rating; for the
emotional congruity test, the likelihood rating) and the individual
sounds represented across conditions; and for the relative proportions
of pleasant and unpleasant sound pairs comprising the congruous
conditions. The semantic congruity test comprised 30 trials (15 con-
gruous, 15 incongruous); the participant's task on each trial was to

Table 1
General characteristics of participant groups.

Characteristic Healthy
controls

bvFTD SD

General
No. (m:f) 9:11 16:3 6:4
Handedness (R:L) 17:3 17:2 9:1
Age (yrs) 69 (5.3) 64 (7.2) 66 (6.3)
Education (yrs) 16.4 (2.0) 15.1 (2.8) 15.6 (2.6)
MMSE (/30) 29 (1.4) 24.3 (4.5) 21.3 (6.3)
Symptom duration (yrs) N/A 8.1 (6.3) 5.3 (2.9)
Neuroanatomical
Brain MRI atrophy:
Temporal predom L: symm:

predom R
N/A 0: 4: 7 9:0: 1

Frontotemporal symmetric N/A 8 0
Neuropsychological
General intellect: IQ
WASI verbal IQ 126 (7.2) 84 (22.2) 75 (17.0)
WASI performance IQ 124 (9.6) 102 (20.7) 106 (21.9)
Executive skills
WASI Block Design (/71) 45.4( 12.1) 32.5 (18.1) 36.8 (20.7)
WASI Matrices (/32) 26.5 (2.9) 18.4 (9.0) 19.8 (9.8)
WMS-R digit span forward (/12) 9.2 (2.2) 8.6 (2.8) 8.2 (2.6)
WMS-R digit span reverse (/12) 7.8 (2.2) 5.8 (2.5) 6.0 (3.0)
D-KEFS Stroop colour (s)* 32.0 (6.3) 46.9 (15.8) 60.7 (31.9)
D-KEFS Stroop word (s)* 23.7 (5.9) 32.2 (12.3) 36.2 (22.1)
D-KEFS Stroop interference (s)* 58.1 (17.0) 88.4 (31.3) 88.3 (48.8)
Letter fluency (F: total) 17.4 (4.4) 7.7 (5.4) 10.0 (4.8)
Category fluency (animals: total) 25.3 (5.0) 10.5 (6.8) 6.2 (5.1)
Trails A (s) 32.5 (7.4) 59.8 (34.4) 52.2 (17.8)
Trails B (s) 67.1 (18.0) 158 (81) 154 (112)
WAIS-R Digit Symbol (total) 54.9 (11.1) 35.6 (13.4) 39.7 (13.9)
Semantic memory
BPVS (/150) 149 (1.1) 123 (33.6) 95 (47.4)
Synonyms concrete(/25) 24.1 (0.76) N/A 16.3 (3.5)
Synonyms abstract(/25) 24.3 (0.91) N/A 18.8 (3.1)
Language skills
WASI Vocabulary (/80) 72.7 (3.27) 39.7 (21.2) 31.8 (19.9)
WASI Similarities (/48) 41.5 (2.9) 23 (12.0) 17.2 (11.0)
GNT (/30) 26.6 (2.3) 12.3 (9.6) 3.4 (6.1)†
NART (total correct/50) 43.2 (4.9) 30.4 (10.0) 19.2 (14.2)†
Episodic memory
RMT words (/50) 49.4 (0.9) 37.1 (8.9) 37 (6.7)
RMT faces (/50) 44.7 (3.6) 34.5 (7.8) 32.3 (7.0)
Camden PAL (/24) 20.5 (3.2) 10.7 (7.5) 3.8 (3.9)†
Posterior cortical skills
GDA (/24) 14.8 (5.6) 8.6 (6.8) 11.1 (9.0)
VOSP Object Decision (/20) 18.9 (1.6) 16.3 (2.6) 16.3 (4.3)

Mean (standard deviation) scores are shown unless otherwise indicated; maximum scores
are shown after tests (in parentheses). Bold denotes significantly different (p< 0.05) to
the healthy control group; † significant difference between disease groups. *Delis-Kaplan
Executive Function System versions of the traditional Stroop tests were used. Each con-
dition comprises a 10 (column) × 5 (row) grid of targets and the participant is required to
name all the targets from left to right in each row. In the ‘colour’ condition, the parti-
cipant must correctly name each patch of colour in the grid (“red/ blue/ green”). In the
‘word’ condition, they must correctly read each word in the grid (“red/ blue/ green”). In
the ‘interference’ condition, they must correctly identify the colour of the ink that each
word is written in; this will be incongruous with the written word (e.g. the correct re-
sponse to the word “red” printed in green ink is “green”). Scores here denote time taken to
complete each grid in seconds. BPVS, British Picture Vocabulary Scale (Dunn et al., 1982);
bvFTD, behavioural variant frontotemporal dementia; Category fluency for animal cate-
gory and letter fluency for the letter F in one minute (Gladsjo et al., 1999); GDA, Graded
Difficulty Arithmetic (Jackson and Warrington, 1986); GNT, Graded Naming Test
(McKenna and Warrington, 1983); MMSE, Mini-Mental State Examination score (Folstein
et al., 1975); N/A, not assessed; NART, National Adult Reading Test (Nelson, 1982); PAL,
Paired Associate Learning test (Warrington, 1996); predom L/R, predominantly left /
right temporal lobe atrophy; RMT, Recognition Memory Test (Warrington, 1984); symm,
symmetric (temporal lobe) atrophy; Synonyms, Single Word Comprehension: A Concrete
and Abstract Word Synonyms Test (E.K. Warrington et al., 1998); SD, semantic dementia;
Stroop D-KEFS, Delis Kaplan Executive Function System (Delis et al., 2001); Trails-
making task based on maximum time achievable 2.5 min on task A, 5 min on task B
(Lezak et al., 2004); VOSP, Visual Object and Spatial Perception Battery (E.K. Warrington
and James, 1991); WAIS-R, Wechsler Adult Intelligence Scale‐-Revised (D Wechsler,
1981); WASI, Wechsler Abbreviated Scale of Intelligence (D. Wechsler, 1997); WMS digit
span (Wechsler, 1987).
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decide whether or not the sounds in the scene would usually be heard
together. The emotional congruity test comprised 40 trials (20 con-
gruous, 20 incongruous); the participant's task on each trial was to
decide whether the sounds in the scene were both pleasant, both un-
pleasant or a mixture of pleasant and unpleasant. In addition, on each
trial in the emotional congruity test the participant rated the overall
pleasantness of the auditory scene (the sound combination) on a Likert
scale (1 = very unpleasant, to 5 = very pleasant).

2.2.2. Control tests
In order to interpret participants’ performance on the auditory scene

tests, we created control tests to probe auditory perceptual similarity
processing, auditory scene analysis and semantic knowledge of in-
dividual sounds.

In the perceptual similarity control test, we assessed each partici-
pant's ability to perceive acoustic similarity and variation between two
sounds. Concatenated sounds were presented such that the sequence of
sounds either comprised a single sound source or two sound sources of a
single kind (for example, a small dog and a large dog). The individual
acoustic tokens comprising the sequence were always varied (for ex-
ample, different barks from the same small or large dog). Thirty trials
(15 containing a change in source, 15 with no change in source) sam-
pling different semantic categories were presented; the task on each
trial was to decide if the thing making the sound changed or remained
the same. This task served as a control both for the perceptual analysis
of constituent sounds and the decision-making procedure used in the
tests of semantic and emotional congruity judgment.

In the auditory scene control test, we assessed each participant's
ability to parse superimposed sounds. We adapted an existing test
(Golden et al., 2015) requiring identification of a personal name (e.g.
‘Robert’) spoken over multi-talker babble. Twenty trials were pre-
sented; the task on each trial was to identify the spoken name.

In the auditory semantic (sound identification) control test, we

assessed each participant's ability to identify and affectively evaluate
individual sounds. All 43 constituent sounds composing the auditory
scene stimulus set were presented individually; the task on each trial
was to match the sound to one of three pictures representing the sound
source (e.g., duck), a closely semantically related foil (e.g., gull) and a
distantly semantically related foil (e.g., train). In addition, the partici-
pant was asked to rate the pleasantness of each sound on a Likert scale
(1 = very unpleasant, to 5 = very pleasant).

2.3. General experimental procedure

All stimuli were delivered from a notebook computer running
MATLAB® via headphones (Audio-Technica®) at a comfortable listening
level for each participant in a quiet room. Within each test, trials re-
presenting each condition were presented in randomised order.
Participants were first familiarised with each test using practice ex-
amples (not administered in the subsequent test) to ensure they un-
derstood the task instructions and were able to comply reliably.
Participant responses were recorded for offline analysis. During the
tests no feedback was given about performance and no time limits were
imposed.

2.4. Analysis of behavioural data

All behavioural data were analysed using Stata12®. Demographic
characteristics and general neuropsychological data were compared
between participant groups using (for categorical variables) Fisher's
exact test or (for continuous variables) either two sample t-tests or
Wilcoxon rank sum tests, where assumptions for the t-test were mate-
rially violated (for example, due to skewed data distribution).

On the perceptual similarity, auditory scene control and auditory
semantic control tests, the proportion of correct responses was analysed
using a logistic regression model owing to a binary outcome (correct /

Fig. 1. Procedure for creating auditory scene con-
gruity tests. The diagram summarises the key steps
we followed in preparing the auditory semantic and
emotional congruity tests in the main experiment. An
initial search of sound libraries (bottom panel; listed
in Supplementary Material on-line) identified 62
sounds drawn from the broad categories of human
and animal vocalisations, natural environmental
noises and artificial noises (machinery and tools), of
which a subset of nine sounds are represented pic-
torially here (from left to right, dentist's drill,
splashing water, baby laughing, lion, alarm clock,
grandfather clock, pig, bird chirping, snoring). These
sounds were superimposed digitally as pairs into
scenes (see Supplementary Material on-line) with
fixed duration and average loudness. In the pilot
experiment (middle panel; details in Supplementary
Material on-line), the 62 constituent sounds in-
dividually were assessed for identifiability and
pleasantness; and 193 sound scenes (composed from
paired sounds) were assessed for likelihood and
pleasantness of the combination. Auditory scene sti-
muli in the final semantic and emotional congruity
tests (top panels; 30 trials in semantic congruity test,
40 trials in emotional congruity test) comprised the
following conditions: ScEc, semantically congruous,
emotionally congruous; ScEi, semantically con-
gruous, emotionally incongruous; SiEc, semantically
incongruous, emotionally congruous; SiEi, semanti-
cally incongruous, emotionally incongruous (here,
semantic relatedness is coded using sound icon shape
and emotional relatedness using sound icon

shading). These final scene stimuli met inclusion criteria established from the pilot data (details in Supplementary Material on-line): all individual constituent sounds met a consensus
identifiability criterion and in addition, scenes in the final semantic congruity test met condition-specific likelihood criteria while scenes in the final emotional congruity test met
condition-specific pleasantness criteria. For each test, the ‘nuisance’ congruity parameter (emotional congruity in the semantic congruity test; semantic congruity in the emotional
congruity test) was also controlled within a narrow range across conditions.
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incorrect), with robust standard errors to account for clustering by
participant. Mean overall pleasantness ratings of individual sounds on
the auditory semantic control test were compared between participant
groups using linear regression with bias corrected, accelerated con-
fidence intervals from 2000 bootstrap replications due to the skewed
(non-normal) distribution of the data. In each model, participant group
was included as a categorical predictor and age, gender and reverse
digit span (an index of executive and auditory working memory func-
tion) were included as (where appropriate, mean-centred) nuisance
covariates.

In order to interpret the processing of auditory scene congruity in
the main experiment, we wished to take into account whether the
constituent sounds in a scene were identified correctly. Data for the
semantic and emotional congruity decision tasks on auditory scene
stimuli were pre-processed using data from the auditory semantic
(sound identification) control test. For each participant, congruity de-
cisions were scored only for those scene stimuli containing sounds that
were both identified correctly when presented in isolation in the au-
ditory semantic control test. Analyses were therefore based on different
subsets of the scene stimuli in each participant group (numbers of sti-
muli included in these subanalyses are indicated in Table S3 in
Supplementary Material on-line; note that all participants heard the
same full set of stimuli). This analysis strategy allowed us to assess
auditory scene semantic and affective processing independently of more
elementary auditory semantic knowledge about particular sounds. As
the subset of scene stimuli included in the final analysis could therefore
potentially vary between individual participants and groups, scene
parameters of likelihood and pleasantness (based on pilot data) were
assessed to ensure there was no systematic bias that might have altered
the effective difficulty of the stimulus subset for a particular participant
group; this post hoc analysis revealed that the likelihood and plea-
santness of the scene stimuli included in the final analysis were similar
across participant groups (details in Supplementary Material on-line).
For the auditory scene congruity tests, the proportion of correct re-
sponses for each test was compared between participant groups using
logistic regression on the binary outcome variable (correct / incorrect)
and allowing for a clustering of responses by individual. Participant
group was included as a categorical predictor in the model and (where
appropriate, mean-centred) nuisance covariates of age, gender, reverse
digit span and scores on the perceptual similarity and auditory scene
control tasks were also included. Although we did not anticipate dif-
ferential impairment according to the congruity of the stimuli, this was
formally tested by fitting a second logistic model with two-way inter-
action between participant and congruity condition, including the same
nuisance covariates.

Auditory scene pleasantness rating data in the emotional congruity
test were compared between participant groups using a multiple linear
regression model that allowed us to distinguish the effect of combining
sounds into scenes from individual sound pleasantness. Overall audi-
tory scene pleasantness might be biased by particular, strongly emo-
tional constituent sounds and the extent of any such bias might itself be
susceptible to disease. The model therefore incorporated separate terms
for participant group, each participant's own (potentially idiosyncratic)
pleasantness ratings of both sounds individually and the interaction of
the sounds in an auditory scene. This model allowed us to go beyond
any abnormal rating of individual sound pleasantness in the disease
groups, to assess group differences in the rating of sound combinations.
To account for violated normality assumptions, the analysis used bias
corrected, accelerated confidence intervals based on 2000 bootstrap
replications.

In separate post hoc analyses, for each patient group separately we
assessed for correlations between key cognitive measures of interest
using Spearman's correlation coefficient. Specifically, we assessed the
extent of any correlation between semantic and emotional scene con-
gruity performance; between semantic scene congruity and individual
sound recognition performance; and between congruity decisions and

performance on a standard test of nonverbal executive function (WASI
Matrices), a standard index of semantic competence (British Picture
Vocabulary Scale (BPVS) score) and a surrogate measure of disease
severity (Mini-Mental State Examination (MMSE) score)

A threshold p< 0.05 was accepted as the criterion for statistical
significance in all analyses.

2.5. Brain image acquisition and pre-processing

Volumetric brain MRI data were acquired for 27 patients (18
bvFTD, nine SD) on a Siemens Trio 3Tesla MRI scanner using a 32-
channel phased array head-coil and a sagittal 3-D magnetization pre-
pared rapid gradient echo T1-weighted volumetric sequence (echo
time/repetition time/inversion time = 2.9/2200/900 ms, dimensions
256 × 256 × 208, voxel size 1.1 × 1.1 × 1.1 mm). Volumetric brain
images were assessed visually in all planes to ensure adequate coverage
and to exclude artefacts or significant motion. Pre-processing of patient
brain MR images was performed using the Segment routine and the
DARTEL toolbox of SPM12 (Ashburner, 2007; fil.ion.ucl.ac.uk/spm/,
1994–2013). Normalisation, segmentation and modulation of grey and
white matter images used default parameter settings, with a smoothing
Gaussian kernel of full-width-at-half-maximum 6 mm. Smoothed seg-
ments were warped into MNI space using the “Normalise to MNI”
routine. In order to adjust for individual differences in global grey
matter volume during subsequent analysis, total intracranial volume
(TIV) was calculated for each participant by summing grey matter,
white matter and cerebrospinal fluid volumes following segmentation
of all three tissue classes. A study-specific mean brain image template,
for displaying results, was created by warping all bias-corrected native
space whole-brain images to the final DARTEL template in MNI space
and calculating the average of the warped brains. To help protect
against voxel drop-out due to marked local regional atrophy, a custo-
mised explicit brain mask was made based on a specified ‘consensus’
voxel threshold intensity criterion (Ridgway et al., 2009), whereby a
particular voxel was included in the analysis if grey matter intensity at
that voxel was> 0.1 in>70% of participants (rather than in all par-
ticipants, as with the default SPM mask). The mask was applied to the
smoothed grey matter segments prior to statistical analysis.

2.6. Voxel-based morphometry analysis

Using the framework of the general linear model, multiple regres-
sion was used to examine associations between voxel intensity (grey
matter volume) and behavioural variables of interest over the combined
patient cohort. In separate design matrices, voxel intensity was mod-
elled as a function of participant scores on the semantic and emotional
congruity tasks and the perceptual similarity, auditory scene and au-
ditory semantic control tasks. In all models, age, gender, TIV, syn-
dromic group and reverse digit span were included as nuisance cov-
ariates. For each model, we assessed both positive and negative
(inverse) grey matter associations of the behavioural variable of in-
terest. Statistical parametric maps were thresholded at two levels of
significance: p< 0.05 after family-wise error (FWE) correction for
multiple voxel-wise comparisons over the whole brain; and p< 0.05
after FWE correction for multiple voxel-wise comparisons within de-
fined regions of interest based on our prior anatomical hypotheses.

The anatomical regions used for small volume correction (displayed
in Fig. S1 in Supplementary Material on-line) covered key areas in both
hemispheres that have been implicated in nonverbal sound and in-
congruity processing in the healthy brain, stratified for the contrasts of
interest. These regions of interest comprised: for all contrasts, a pos-
terior temporo-parietal region combining posterior superior temporal
gyrus, lateral inferior parietal cortex and posterior medial cortex (pre-
viously implicated in auditory scene parsing and incongruity proces-
sing: Chan et al., 2012; Groussard et al., 2010; Gutschalk and Dykstra,
2013; Pinhas et al., 2015; Zundorf et al., 2013); and for the contrasts
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based on semantic and/or congruity processing, additional regions
combining anterior and medial temporal lobe anterior to Heschl's gyrus,
combining insula and inferior frontal gyrus (previously implicated in
auditory semantic and rule decoding: Christensen et al., 2011;
Groussard et al., 2010; Henderson et al., 2016; Jakuszeit et al., 2013;
Merkel et al., 2015; Nazimek et al., 2013; Remy et al., 2014; Watanabe
et al., 2014; Zahn et al., 2007), and anterior cingulate cortex and
striatum (previously implicated in salience, emotion and reward eva-
luation: Ridderinkhof et al., 2004; Rosenbloom et al., 2012; Schultz,
2013; Watanabe et al., 2014). Regions were derived from the Oxford-
Harvard brain maps (Desikan et al., 2006) in FSLview (Jenkinson et al.,
2012) and edited using MRIcron (mccauslandcenter.sc.edu/mricro/
mricron/) to conform to the study template (participant mean) brain
image.

As a reference for interpreting the correlative analysis, we con-
ducted an additional, separate analysis to assess disease-related grey
matter atrophy profiles in each of the patient groups, comparing pa-
tients’ brain MR images with brain images acquired in the healthy
control group using the same scanning protocol. Groups were compared
using voxel-wise two-sample t-tests, including covariates of age, gender,
and TIV. Statistical parametric maps of brain atrophy were thresholded
leniently (p< 0.01 uncorrected over the whole brain volume) in order
to more fully delineate the profile of atrophy in each patient group.

3. Results

3.1. General characteristics of participant groups

The participant groups did not differ for age (p = 0.07) or educa-
tional background (p = 0.25) and the patient groups did not differ in
mean symptom duration (p = 0.32). Gender distribution differed sig-
nificantly between groups, males being significantly over-represented
in the bvFTD group relative to the healthy control group (p = 0.019);
gender was incorporated as a nuisance covariate in all subsequent
analyses. The patient groups showed the anticipated profiles of general
neuropsychological impairment (Table 1).

3.2. Experimental behavioural data

3.2.1. Auditory control task performance
Performance profiles of participant groups on the perceptual simi-

larity, auditory scene and auditory semantic control tests are sum-
marised in Table 2. On the perceptual similarity control task, the bvFTD
group performed significantly worse than both the healthy control
group (p<0.0001]) and the SD group (p = 0.027]), whereas the SD
group performed similarly to healthy controls (p = 0.153]). On the
auditory scene control task, both patient groups performed significantly
worse than the healthy control group (both p< 0.001]). There was no
significant performance difference between patient groups (p = 0.96]).
On the auditory semantic control (sound identification) task, both pa-
tient groups performed significantly worse than the healthy control
group (both p< 0.001). There was no significant performance differ-
ence between patient groups (p = 0.92). Overall pleasantness ratings of
individual sounds did not differ significantly for either patient group
versus healthy controls (bvFTD, β= 0.08 [95% confidence interval (CI)
−0.33 to 0.45, p> 0.05]; SD, β = 0.44 [95% CI −0.10 to 1.00,
p>0.05]) nor between patient groups (β = 0.36 [95% CI −0.22 to
0.88, p> 0.05]). Inspection of individual sound pleasantness ratings
suggests that affective valuation of particular constituent sounds was
similar between participant groups (see Table S4 in Supplementary
Material on-line); this factor is therefore unlikely to have driven any
group differences in the affective processing of sounds combined as
scenes.

3.2.2. Auditory scene congruity decisions
Performance profiles of participant groups on the congruity decision

tests are summarised in Table 2; individual raw scores are plotted in
Fig. 2 and further details are provided in Table S3 in Supplementary
Material on-line.

In the semantic scene congruity task (based on the scene stimulus
subset with intact identification of constituent sounds, for each parti-
cipant) there was an overall significant performance difference between
participant groups (p<0.0001). Both the bvFTD and SD groups per-
formed significantly worse than healthy controls (p =<0.001); there
was no significant performance difference between patient groups nor
evidence of an overall significant interaction between group and con-
dition (p = 0.62).

In the emotional scene congruity task (based on the scene stimulus
subset with intact identification of constituent sounds, for each parti-
cipant), there was again an overall significant performance difference
between participant groups (p = 0.0001), both the bvFTD and SD
groups performing significantly worse than healthy controls in the
congruous and incongruous conditions (all p< 0.005) with no sig-
nificant performance difference between patient groups. There was no
evidence of an overall significant interaction between group and con-
dition (p = 0.14). However, the SD group trended toward a greater
performance discrepancy between conditions than was shown by the
healthy control group (p = 0.053). This effect was driven by relatively
more accurate performance for scenes containing emotionally con-
gruous sounds.

3.2.3. Evaluation of auditory scene pleasantness
Individual ratings of auditory scene pleasantness in the emotional

congruity test are plotted in Fig. 3; further details of group profiles for
rating the pleasantness of auditory scenes are presented in Table S5 in
Supplementary Material on-line.

The SD group rated auditory scenes overall as significantly more
pleasant than did the healthy control group (β = 0.73 [95% CI
0.25–1.29, p<0.05]) while ratings of overall scene pleasantness by the
bvFTD group did not differ significantly from healthy controls’ (β =
0.41 [95% CI −0.14 to 1.01, p> 0.05]); the two patient groups rated

Table 2
Performance of patient groups on auditory tasks versus healthy controls.

Test bvFTD SD

CONTROL TASKS
Perceptual similarity 0.32 (0.19–0.54) 0.65 (0.36–1.17)
Auditory scene analysis 0.11 (0.05–0.29) 0.10 (0.04–0.26)
Sound identification 0.03 (0.008–0.12) 0.04 (0.01–0.19)
AUDITORY SCENE CONGRUITY
Semantic
ScEc 0.35 (0.15–0.81) 0.17 (0.06–0.50)
ScEi 0.44 (0.19–1.03) 0.37 (0.14–0.98)
SiEc 0.51 (0.21–1.19) 0.45 (0.18–1.14)
SiEi 0.10 (0.02–0.52) 0.19 (0.03–1.08)
All conditions 0.35 (0.19–0.67) 0.30 (0.17–0.53)

Emotional
ScEc 0.58 (0.26–1.31) 0.76.(0.37–1.55)
ScEi 0.18 (0.06–0.51) 0.37 (0.16–0.85)
SiEc 0.52 (0.20–1.35) 0.29 (0.11–0.78)
SiEi 0.21 (0.07–0.68) 0.11 (0.03–0.39)
All conditions 0.41 (0.22–0.75) 0.27 (0.14–0.52)

The Table shows performance of patient groups as odds ratios (95% confidence intervals)
referenced to healthy control group performance on the control tasks and auditory scene
semantic and emotional congruity tasks; analyses of congruity test performance for each
participant were based on scene stimuli containing sounds that were both individually
identified correctly by that participant. Odds ratios with confidence intervals overlapping
1 indicate performance not significantly different from healthy controls; bold denotes
significantly different from healthy controls (p<0.05). ScEc, semantically congruous -
emotionally congruous; ScEi, semantically congruous - emotionally incongruous; SiEc,
semantically incongruous - emotionally congruous; SiEi, semantically incongruous -
emotionally incongruous. bvFTD, patients with behavioural variant frontotemporal de-
mentia; SD, patients with semantic dementia. Raw data are summarised for all tests and
participant groups in Table S3 in Supplementary Material on-line.

C.N. Clark et al. Neuropsychologia 104 (2017) 144–156

149



sound scenes similarly for overall pleasantness (β = 0.32 [95% CI
−0.33 to 0.94, p> 0.05]).

The healthy control group exhibited an additive emotional effect of
combining sounds into scenes (a significant positive interaction of
sound pleasantness ratings) relative to individual sound pleasantness
rated separately. Emotionally congruous auditory scenes were sig-
nificantly more likely to be rated as pleasant than predicted from the
individual sound ratings alone (β= 0.13 for interaction of sounds [95%
CI 0.09–0.17, p< 0.05]; i.e., a 1 point increase in individual sound
pleasantness rating was associated with an additional 0.13 point in-
crease in scene pleasantness). This interaction effect was significantly
stronger in healthy controls than in either patient group (for bvFTD vs
controls, β = −0.09 [95% CI-0.15 to −0.003, p< 0.05]; for SD vs
controls, β = −0.14 [95% CI −0.22 to −0.06, p<0.05]). Indeed,
neither patient group showed evidence of the effect (interaction of
sounds in bvFTD, β = 0.05 [95% CI = −0.02 to 0.11, p> 0.05]; SD,
β = −0.003 [95% CI = −0.07 to 0.07, p>0.05]).

The healthy control group rated semantically congruous auditory
scenes (within the emotional congruity test) as significantly more
pleasant than semantically incongruous scenes (β = 0.15 [95% CI
0.05–0.26, p<0.05]). This effect was replicated in the bvFTD group
(β = 0.21 [95% CI 0.05–0.34, p<0.05], but not in the SD group
(β = 0.19 [95% CI −0.005 to 0.46, p>0.05]). The effect was sig-
nificantly stronger in healthy controls than in either patient group (for
bvFTD, β = 0.05 [95% CI −0.14 to 0.22, p>0.05]; for SD, β = 0.04

[95% CI −0.19 to 0.31, p>0.05]) but did not differ significantly be-
tween patient groups (β = −0.01 [95% CI −0.26 to 0.28, p>0.05]).

3.2.4. Correlations between experimental and background measures
Accuracy of semantic and emotional auditory scene congruity de-

cisions were significantly positively correlated in the bvFTD group (rho
0.80, p< 0.0001), but not the SD group (rho 0.54, p = 0.11). Accuracy
of semantic scene congruity judgment and constituent sound identifi-
cation (on the auditory semantic control task) were significantly posi-
tively correlated in the bvFTD group (rho 0.62, p = 0.005) but not the
SD group (rho 0.55, p = 0.10). Semantic scene congruity judgment was
significantly positively correlated with general executive capacity
(WASI Matrices score) in the SD group (rho 0.91, p = 0.0002), though
not the bvFTD group (rho 0.40, p = 0.09); with general semantic
competence (BPVS score) in the bvFTD group (rho 0.49, p = 0.04) but
not the SD group (rho 0.24, p = 0.51); and with a global measure of
cognitive function (MMSE score) in both patient groups (bvFTD rho
0.50, p = 0.03; SD rho 0.79, p = 0.006). Emotional scene congruity
judgment was significantly positively correlated with WASI Matrices
score in the bvFTD group (rho 0.65, p = 0.003) but not the SD group
(rho 0.47, p = 0.17); with BPVS score in both patient groups (bvFTD
rho 0.45 p = 0.06; SD rho 0.79 p = 0.007); and with MMSE score in
both patient groups (bvFTD rho 0.65, p = 0.004; SD rho 0.63, p =
0.049).

Fig. 2. Raw group data for semantic and emotional congruity
decisions on auditory scenes. Individual participant scores are
plotted as proportion of trials correct for each auditory scene
congruity task, for those scene stimuli comprising sounds that
were both individually recognised correctly by that participant
(note that there is therefore no ‘chance’ level of performance for
these reduced data). bvFTD, patients with behavioural variant
frontotemporal dementia; Control, healthy controls; SD, patients
with semantic dementia.

Fig. 3. Individual data for rating pleasantness of auditory scene stimuli. For all individuals in each participant group, mean pleasantness ratings of auditory scene stimuli presented in the
emotional congruity test (1, very unpleasant; 5, very pleasant) have been plotted against scene stimulus categories based on pilot healthy control group ratings of constituent sounds
(unpleasant, pleasantness of both constituent sounds rated< 3; mixed, pleasantness of one sound>3, other sound<3; pleasant, pleasantness of both sounds> 3). On each plot, the
solid line shows the calculated mean pleasantness rating of the two constituent sounds in each auditory scene, based on pilot healthy control group data; the dotted line shows the overall
mean pleasantness of auditory scene stimuli in each category, as actually rated by participants in the main experiment. bvFTD, patients with behavioural variant frontotemporal
dementia; SD, patients with semantic dementia.
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3.3. Neuroanatomical data

The patient groups showed the anticipated group-level, disease-re-
lated grey matter atrophy profiles: these encompassed bi-hemispheric
prefrontal, anterior cingulate, insular and anterior temporal cortices
and subcortical structures in the bvFTD group and leftward-asym-
metric, predominantly antero-mesial temporal areas in the SD group
(see Fig. S2 in Supplementary Material on-line).

Significant grey matter associations of behavioural measures for the
combined patient cohort are summarised in Table 3 and statistical
parametric maps of the behavioural correlates are presented in Fig. 4.

Impaired accuracy of judging the semantic congruity of auditory
scenes was associated with grey matter loss in distributed, bi-hemi-
spheric cerebral regions including precuneus, left supramarginal and
premotor cortices (all p< 0.05FWE corrected for multiple comparisons
over the whole brain), posterior cingulate, posterior and anterior su-
perior temporal, insular, medial prefrontal and inferior frontal cortices
and caudate nucleus (all p< 0.05FWE corrected for multiple compar-
isons within pre-specified anatomical regions). Impaired accuracy of
judging the emotional congruity of auditory scenes was associated with
grey matter loss in bi-hemispheric, anterior cortico-striatal areas in-
cluding anterior superior temporal sulcus, insula, putamen and caudate
nucleus (all p< 0.05FWE corrected for multiple comparisons within pre-
specified anatomical regions).

Significant grey matter associations were additionally identified for
each of the experimental auditory control tasks. Accuracy of judging
auditory perceptual similarity was associated with grey matter loss in

left inferior frontal cortex. Impaired auditory scene analysis (impaired
identification of spoken names from background babble) was associated
with grey matter loss in prefronto-temporo-parietal regions including
supplementary motor, anterior and posterior cingulate and posterior
superior temporal cortices. Impaired sound identification was asso-
ciated with grey matter loss in left inferior frontal cortex.

4. Discussion

Here we have shown that patients with bvFTD and SD have im-
paired processing of semantic and emotional congruence in auditory
scenes relative to healthy older individuals. Both patient groups ex-
hibited a similar profile of impaired congruence decisions about sound
scenes. These deficits were evident after controlling for general ex-
ecutive, auditory semantic and auditory perceptual competence and not
attributable to impaired identification or disordered affective valuation
of individual constituent sounds. Taken together, our findings support
the hypothesis that processing of auditory semantic and emotional re-
latedness is comparably impaired in both bvFTD and SD. Although
there was no strong evidence overall for a specific condition effect, the
SD group showed a tendency to more accurate determination of emo-
tional congruity than incongruity in auditory scenes, suggesting a
partial awareness of affective relatedness that was lost in the bvFTD
group; in addition, performance in decoding the semantic and emo-
tional congruity of auditory scenes was correlated in the bvFTD group
but not the SD group, suggesting that the underlying processes are at
least potentially dissociable. Previous work in SD and bvFTD has largely

Table 3
Summary of neuroanatomical associations of auditory task performance in the patient cohort.

Regional association Area Side Cluster (voxels) Peak (mm) Z score P value

x y z

SEMANTIC CONGRUITY
Parieto-temporal Precuneus L 609 −3 −70 33 4.86 0.032

SMG L 757 −58 −20 33 4.83 0.036
PCC L 59 −10 −58 22 4.51 0.005

L 497 −6 −34 34 4.33 0.009
R 276 2 −34 34 3.91 0.038

Retrosplenial L 27 −12 −42 4 4.15 0.017
Post STG/STS L 327 −57 −48 22 4.48 0.005

Ant temporal Ant STS L 100 −62 −6 −15 4.11 0.018
Temporal pole R 908 24 −2 −45 4.14 0.030

Insula Ant insula L 428 −34 2 −2 3.84 0.025
R 546 38 18 −14 3.90 0.014

Post Insula R 65 39 −15 8 3.79 0.021
Pre-frontal Premotor L 351 −39 14 54 4.79 0.042

mPFC/ACC R 42 3 48 3 4.20 0.014
IFG L 160 −50 15 21 4.43 0.003

Striatum Caudate head L 409 −12 10 −2 3.82 0.045
EMOTIONAL CONGRUITY
Ant temporal Ant STS L 52 −58 −9 −16 3.82 0.039
Insula Ant insula R 64 40 14 −14 3.49 0.046
Striatum Putamen L 709 −24 −2 3 4.07 0.017

Caudate head L −15 0 14 4.07 0.018
PERCEPTUAL SIMILARITY CONTROL
Pre-frontal IFG L 24 −54 34 −2 3.73 0.029
AUDITORY SCENE CONTROL
Parieto-temporal PCC L 105 −10 −58 22 4.44 0.004

R 99 2 −33 44 4.03 0.024
Post STS L 21 −66 −44 4 3.86 0.039

Pre-frontal SMA L 182 −3 −3 64 4.85 0.034
SEMANTIC CONTROL (SOUND IDENTIFICATION)
Pre-frontal IFG L 29 −50 15 21 3.61 0.047

The Table shows grey matter associations of performance on experimental tasks for the combined patient cohort, identified using voxel-based morphometry. All local maxima exceeding
significance threshold p< 0.05 after family-wise error correction for multiple voxel-wise comparisons, either over the whole brain (italics) or within pre-specified anatomical regions of
interest (Supplementary Fig. S1) in clusters> 20 voxels in size are presented. Peak (local maxima) coordinates are in MNI standard space. Only positive grey matter associations are
shown; no negative (inverse) associations were identified at the prescribed significance threshold. ACC, Anterior cingulate cortex; Ant, anterior; IFG, inferior frontal gyrus; L, left; mPFC,
medial prefrontal cortex; PCC, posterior cingulate cortex; Post, posterior; R, right; SMA, Supplementary motor area; SMG, supramarginal gyrus; STG/STS, superior temporal gyrus/
sulcus. See Section 2.2 for further details of experimental contrasts.
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addressed the impaired semantic and affective coding of individual
sensory objects, for which these syndromes show distinctive profiles of
impairment. In contrast, the processing of semantic and affective re-
latedness might plausibly engage higher-order, associative and reg-
ulatory mechanisms, instantiated in extensive brain circuitry and
jointly vulnerable in both syndromes. We therefore argue that the
convergent deficits shown by our bvFTD and SD groups on these high-
order semantic and affective tasks are consistent with previous studies
of sensory object processing in these syndromes. The present findings
corroborate a growing body of evidence for impaired processing of
conflict and congruence in the auditory and other domains in bvFTD
and SD, including striking impairments of socio-emotional signal de-
coding (Ahmed et al., 2014; Baez et al., 2014; Downey et al., 2015;
Fletcher et al., 2016; Hughes et al., 2013; Ibanez and Manes, 2012; Irish
et al., 2014; Krueger et al., 2009; Piwnica-Worms et al., 2010).

The present paradigm demonstrates a generic mechanism relevant
to decoding of sensory signals in natural environments that might un-
derpin a range of difficulties that patients both with bvFTD and SD
experience in the more complex scenarios of daily life (for example,
those surrounding ambiguous emotional communication, violation of
social norms or conflicted moral choices (Carr et al., 2015; Downey
et al., 2015; Eslinger et al., 2007; Kipps et al., 2009; Zahn et al., 2007)).
Whereas defective detection of unexpected salient events would tend to
promote the rigid and maladaptive behaviours that typify bvFTD and
SD (Fumagalli and Priori, 2012; Snowden et al., 2003; Warren et al.,
2013), inability to determine signal congruence could preclude the
extraction of environmental regularities required for probabilistic
learning and appropriate reward seeking (Dalton et al., 2012; Perry
et al., 2014). Consistent with previous work (Krueger et al., 2009; Seer
et al., 2015), the present study does not support a clear dissociation of
congruence judgment from other aspects of executive function, but
rather suggests this may be an ecologically relevant marker of failing
executive processes. Nonverbal executive deficits have been shown to
develop during the evolution of SD as well as bvFTD (Bozeat et al.,
2000; Corbett et al., 2015; Gontkovsky, 2016; Smits et al., 2015). In this
regard, it is of interest that the bvFTD group (but not the SD group) also
showed a deficit on the auditory perceptual control task, in keeping
with a more fundamental impairment of change detection or mon-
itoring in this syndrome.

In addition to impaired cognitive decoding, as anticipated both the
bvFTD and SD groups here showed altered affective valuation of au-
ditory scenes. The SD group (though not the bvFTD group) tended to
rate auditory scenes overall as more pleasant than did healthy controls.
While this appears somewhat at odds with the high reported frequency
of daily life sound aversion in this syndrome (Fletcher et al., 2015a), it
is consistent with other evidence suggesting substantial modulation of
affective responses by particular sounds in frontotemporal dementia
syndromes (Fletcher et al., 2015b). More informative in the current
context was the emotional effect of embedding sounds into scenes.
Healthy controls rated emotionally congruous auditory scenes as more
pleasant (and incongruous auditory scenes as less pleasant) than pre-
dicted from their own constituent individual sound ratings (Fig. 3,
Table S5), whereas neither patient group showed evidence of this effect.
In addition, healthy individuals rated semantically incongruous audi-
tory scenes as less pleasant than congruous scenes: this effect was also
evident (albeit attenuated) in the bvFTD group but not the SD group. In
healthy individuals, affective integrative or ‘binding’ effects of com-
bining emotional stimuli have been demonstrated previously in other
modalities (Muller et al., 2011) and incongruity generally has increased
aversive potential compared with congruity in various contexts
(Piwnica-Worms et al., 2010; Schouppe et al., 2015). Information
concerning the impact of neurodegenerative diseases on these processes
remains very limited. The present findings suggest that both bvFTD and
SD have impaired sensitivity to contextual modulation of affective
signals, consistent with the more pervasive impairments of emotion
processing documented in these syndromes (Kumfor and Piguet, 2012),
whereas some sensitivity to the affective overtones of signal mismatch
is retained in bvFTD but entirely lost in SD, consistent with the relative
degree of semantic impairment in each syndrome.

The overlapping but partly separable neuroanatomical correlates of
semantic and emotional congruity processing identified here suggest a
framework for understanding the brain mechanisms that process dif-
ferent dimensions of auditory signal relatedness. These neuroanato-
mical substrates are in line with our experimental hypotheses and with
previous neuroanatomical work in auditory and other modalities.
Processing of both semantic and emotional auditory congruence had
substrates in anterior temporal and insula cortices that are likely to
constitute ‘hubs’ for processing signal patterns and salient deviations

Fig. 4. Neuroanatomical associations of auditory
task performance in the patient cohort. The Figure
shows statistical parametric maps (SPMs) of regional
grey matter volume associated with performance on
experimental tasks for the combined patient cohort,
identified using voxel-based morphometry. Grey
matter associations of semantic congruity processing
in auditory scenes (left column), emotional congruity
processing in auditory scenes (middle column) and
auditory control tasks (right column) are presented
(see text for details of contrasts). SPMs are overlaid
on representative sections of the normalised study-
specific T1-weighted mean brain MR image; the MNI
coordinate (mm) of the plane of each section is in-
dicated (the left cerebral hemisphere is shown on the
left in the coronal sections and at the top in the axial
section). Colour bars code T-score values for each
SPM; SPMs are thresholded here at p<0.001 un-
corrected over the whole brain for display purposes,
however regional local maxima were significant at
p<0.05FWE corrected for multiple voxel-wise com-
parisons within pre-specified anatomical regions of
interest (see Table 3).
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based on prior expectations or stored templates (Christensen et al.,
2011; Clark et al., 2015b; Gauvin et al., 2016; Groussard et al., 2010;
Merkel et al., 2015; Michelon et al., 2003; Nazimek et al., 2013; Remy
et al., 2014; Watanabe et al., 2014). These regions are engaged during
matching of incoming signals against previously learned semantic and
affective schemas (Groussard et al., 2010; Zahn et al., 2009). The pro-
cessing of auditory semantic congruence had additional correlates in
distributed medial and lateral prefronto-parietal areas previously im-
plicated in the processing of rule violations and reconciliation with
previously established regularities, under a range of paradigms (Chan
et al., 2012; Clark et al., 2015b; Gauvin et al., 2016; Groussard et al.,
2010; Henderson et al., 2016; Jakuszeit et al., 2013; Michelon et al.,
2003; Paavilainen, 2013; Pinhas et al., 2015; Remy et al., 2014;
Ridderinkhof et al., 2004; Rosenbloom et al., 2012; Strelnikov et al.,
2006; Watanabe et al., 2014).

The processing of auditory emotional congruence had an additional
correlate in striatal structures broadly implicated in the evaluation of
emotional congruence and reward (Dzafic et al., 2016; Klasen et al.,
2011; Schultz, 2013). Although emotion and reward processing have
classically been associated with ventral striatum rather than the dorsal
striatal structures identified here, it is increasingly recognised that these
striatal subregions participate in intimately integrated functional net-
works; moreover, dorsal striatum is particularly engaged during con-
tingency monitoring and programming behavioural decisions on emo-
tionally salient or incongruous stimuli (Haber, 2016).

A further potentially relevant issue is the lateralisation of cerebral
regional atrophy profiles, which showed considerable variation across
our patient cohort (Table 1). Based on other work in patients with
right– versus left-predominant temporal lobe atrophy (Binney et al.,
2016; Kamminga et al., 2015), one might anticipate impaired proces-
sing of ‘rule-based’ semantic relatedness particularly in leftward
asymmetric cases and impaired processing of affective relatedness in
rightward asymmetric cases. As we adjusted for syndromic variation of
atrophy profiles in our VBM analysis, it is unlikely that this factor
confounded the neuroanatomical correlates observed. Moreover, pre-
vious work has also demonstrated that the temporal lobes participate
jointly in a distributed semantic appraisal network and left- and right-
lateralised presentations show extensive clinical overlap; it is therefore
likely that substantially larger cohorts and functional neuroimaging
techniques that can directly capture inter-hemispheric interactions will
be required to resolve this issue.

The neural correlates of auditory semantic and emotional con-
gruence decisions here overlapped with cortical associations of per-
formance on the auditory control tasks, suggesting that these regions
may be engaged as a functional network and that particular network
components may play a more generic role in the analysis of stimulus
relatedness. Performance on the auditory scene analysis control task
had a substrate in temporo-parietal junctional and supplementary
motor areas known to be fundamentally involved in parsing and
monitoring of the auditory environment in healthy and clinical popu-
lations (Gauvin et al., 2016; Golden et al., 2015; Goll et al., 2012;
Gutschalk and Dykstra, 2013; Zundorf et al., 2013). The temporo-par-
ietal junction may serve as a domain-independent detector of salience
associated with signal mismatch in diverse situations (Chan et al.,
2012). Performance in both the perceptual similarity and sound iden-
tification control tasks here had a correlate in inferior frontal cortex:
this region has been implicated previously in categorisation of sound
stimuli particularly under conditions of high perceptual or cognitive
load (Gauvin et al., 2016). The additional prefrontal, anterior temporal,
insular and striatal correlates of auditory congruence processing iden-
tified here (see Table 3) might plausibly constitute domain-general
substrates of signal relatedness decoding; again, however, this may only
be substantiated by functional neuroimaging techniques that can assess
communication between brain regions under different sensory mod-
alities.

We regard this study as establishing proof of principle for the utility

of the auditory congruence paradigm: the study has several limitations
and suggests a number of directions for future work. Group sizes here
were relatively small; studying larger cohorts would increase power to
detect effects, particularly differences between syndromic groups (such
as the bvFTD and SD groups here). The present findings have not es-
tablished any strong specificity of auditory congruence deficits for
particular neurodegenerative syndromes. There would be considerable
interest in comparing these frontotemporal dementia syndromes with
other syndromes and diseases, in order to assess the specificity of be-
havioural and neuroanatomical profiles of auditory signal relatedness
processing for particular neurodegenerative pathologies. Alzheimer's
disease, for example, might be expected to show a quite different profile
of auditory conflict signalling based on available neuropsychological
and neuroanatomical evidence (Fong et al., 2016). Equally pertinent
will be longitudinal analyses to assess how the deficits identified here
evolve over the course of illness, including presymptomatic stages in
carriers of genetic mutations: core brain regions such as the insula have
been shown to be involved prior to clinical symptom onset in genetic
frontotemporal dementia (Rohrer et al., 2015) and behavioural corre-
lation might yield a novel biomarker of imminent clinical conversion. In
the world at large, signal integration and mismatch detection are rarely
confined to a single sensory modality or time-point: multi- and cross-
modal paradigms will likely amplify the findings here and it will also be
of interest to assess the extent to which patients are able to learn new
auditory ‘rules’ and adapt responses accordingly (Dalton et al., 2012;
Michelon et al., 2003). Related to this, it will be relevant to assess the
interaction of semantic and affective signal decoding, anticipated to
drive much decision-making in real-world social exchanges (particu-
larly the decoding of speech signals, as exemplified by sarcasm: Kipps
et al., 2009). Structural neuroanatomical methods like those used here
cannot capture dynamic processing and interactions between neural
network components: future work should employ electrophysiological
modalities with temporal resolution sufficient to track the dynamic
signature of signal conflict and salience processing (Strelnikov et al.,
2006) as well as connectivity-based anatomical techniques such as
fMRI. Autonomic recordings would provide complementary informa-
tion about the arousal potential of cognitive and affective decision-
making on these auditory signals; this would likely help define disease
phenotypes more fully (Fletcher et al., 2016, 2015b; Fong et al., 2016).
Assessing the relevance of model systems of this kind will ultimately
require correlation with clinical indices of socio-emotional functioning,
which were not collected here.

Acknowledging the above caveats, this study suggests that auditory
scene decoding may be a useful model paradigm for characterising the
effects of dementias on signal processing in the more complex scenarios
of daily life. From a clinical perspective, effective treatment of the de-
mentias will likely depend on an accurate picture of the disability these
diseases produce, in domains such as social and emotional cognition
that are most sensitive to patients’ everyday functioning (St Jacques
et al., 2015; Sturm et al., 2015); this in turn will require an informed
deconstruction of complex, ill-defined symptoms to more tractable
building blocks that can distil processes of clinical interest (Cicerone
et al., 2006; Clark et al., 2015a). Our findings suggest that model au-
ditory scenes can be constructed and manipulated relatively simply to
achieve this. From a neuroanatomical perspective, we have shown that
processing of signal relatedness in these simple auditory scenes engages
the extensive brain circuitry of scene analysis, rule decoding and re-
ward valuation. Targeting of large-scale intrinsic brain networks by
neurodegenerative proteinopathies has proven to be a concept of con-
siderable explanatory power (Zhou et al., 2010); the correlates of au-
ditory scene decoding identified here do not respect conventional de-
marcations of the ‘salience’, ‘default-mode’ and other such networks.
Rather, our data suggest that auditory semantic and emotional con-
gruence analysis may depend on neural components distributed among
intrinsically-connected networks. This interpretation is in line with an
emerging paradigm emphasising network interactions in the processing
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of real-world, dynamic signal arrays that direct adaptive behaviours
(Chiong et al., 2013). More speculatively, analysis of signal relatedness
may engage a fundamental cognitive mechanism that is co-opted to the
analysis of relatedness at different (sensory, perceptual, semantic, af-
fective) levels of abstraction (Cohen, 2014). Template matching is one
candidate universal algorithm that might support the necessary pre-
diction testing, conflict detection and resolution in sensory systems
(Friston, 2009); moreover, neural network architectures for template
matching have been proposed and may be targeted by neurodegen-
erative pathologies (Clark and Warren, 2016; Warren et al., 2013). Key
challenges for future work will be to establish whether sensory conflict
and conguence signalling accesses a vulnerable neural architecture of
this kind; and to determine whether this signal decoding paradigm can
model the behavioural symptoms that blight patients’ daily lives.
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