Age/	Primary diagnosis	Previous congenital	Direct cause of
Sex		cardiac surgeries	death
15F	ASD	Insertion of	No substrate
		Amplatzer device	identified
		(aged 5)	
38F	ASD	Insertion of STAR	No substrate
		atrial septal occluder	identified
275		(age unknown)	D 1 11 DIL 1
25F	Ostium primum defect	None	Probable PH and
			history of
295	Ostium primum defect	Not identified in life	Drohohlo DU
301	with "aloft of trifoliato	Not identified in file	Probable PH
	left AV valve		
28M	VSD of atrioventricular	Not identified in life	No substrate
20111	canal type		identified
35F	Muscular inlet VSD with	None	No substrate
	spontaneous closure by		identified
	septal leaflet of TV		
29M	TOF	Pulmonary homograft	Surgical related
		insertion with VSD	haemorrhage and
		closure (aged 2),	ischaemia
		percutaneous melody	
		valve implantation	
5016		(aged 25)	D ! . ! 1
72M	TOF	VSD closure and	Biventricular
í		pulmonary valve	fibrosis
`		triguanid valvo and	
		nulmonary valve	
		replacement (aged 69)	
48M	TOF with pulmonary	Repair and VSD	RV fibrosis and
101/1	atresia	closure (aged 18)	PH
21M	TOF with pulmonary	Repair, embolisation	RV fibrosis
	atresia	of collaterals and	
		VSD closure (aged	
		~1)	

	23M	TOF with pulmonary	Unifocalisation and	Pulmonary
		atresia	left BT shunt (aged	haemorrhage due
			7), right	to arteriovenous
			unifocalisation and	fistula
			right BT shunt (aged	
			9), radical repair with	
			RV to PA pulmonary	
			homograft (aged 10)	
	42M	TGA	BT shunt (aged 15	LV fibrosis
			months), Mustard	
			correction (aged 4),	
			atrial baffle insertion	
			(aged 6)	
	23F	TGA	Senning correction	LV fibrosis
			(aged 6 months)	
	55F	CCTGA	None	Left sided RV
				fibrosis
	11M	CCTGA	Double switch and	Right sided LV
			VSD closure (aged	hypertrophy and
			11)	left sided RV
				dilation
	32F	CCTGA with non-	Pulmonary	LV fibrosis and
		compaction of LV	homograft,	PH
			mechanical valve	
			placement, two	
			Amplatzer devices for	
			paravalvular leak	
١.			(ages unknown)	
	68F	Mirror imaged atria with	None	Right sided LV
		AV and VA concordance		fibrosis
	58F	Mirror imaged atria with	None	Biventricular
		AV and VA discordance		tibrosis, PH and
		and VSD		peripheral PE
	44F	Large perimembranous	None	Biventricular
		VSD with VA		fibrosis and PH
		discordance		

71F	Left atrial appendage	None	LV fibrosis and
	isomerism with quasi		sepsis
	mirroring		
37F	Double outlet right	PA banding (aged 8	Biventricular
	ventricle with double	months), Waterson's	fibrosis and PH
	inlet left ventricle	shunt (aged 6)	

Table 1. The table provides the individuals age at time of death and their sex along with their primary diagnosis, previous cardiac surgeries and direct cause of death. ASD: atrial septal defect; AV: atrioventricular; BT: Blalock-Taussig; CCTGA: congenitally corrected transposition of the greater arteries, LV: left ventricle; PA: pulmonary artery; PE: pulmonary emboli; PH: pulmonary hypertension; RV: right ventricle; TGA: transposition of the greater arteries; TOF: tetralogy of Fallot; VA: ventriculo-arterial; VSD: ventricular septal defect.

Figure 1. The images show how, in the setting of a Senning repair for so-called "transposition", the combination of concordant atrioventricular with discordant ventriculo-arterial connections, the atrial chambers can be distinguished according to the extent of the pectinate muscles relative to the atrioventricular junctions. The left hand panel shows the pectinate muscles extending to the crux, whilst in the right hand panel they are confined to the tubular appendage. The probe is showing an obstructed systemic venous channel.

Figure 2. The images, this time from a heart with congenitally corrected transposition, the discordant ventriculo-arterial connections being "corrected" by the discordant connections across the atrioventricular junctions, show again how the atrial chambers can be recognised on the basis of the extent of the pectinate muscles, which encircle the atrioventricular junction in the left hand panel, but are confined within the appendage in the right hand panel. Note also the different features of the right and left sides of the oval fossa. The relationships of the leaflets of the atrioventricular valves to the septum show that the valve in the left hand panel is of mitral morphology, lacking tendinous cords which attach its leaflets to the septum. Such cords are seen in the right hand panel. Since the valves always insert into their appropriate ventricles, these findings indicated that the morphologically right atrium is connected to the morphologically left ventricle (left hand panel), whilst the morphologically left atrium is connected to the morphologically right ventricle (right hand panel).

Figure 3. The images show the structure of the atrioventricular junctions in the setting of congenitally corrected transposition as found with mirror-imaged atrial arrangement. The left hand panel shows the left-sided junction. The pectinate muscles encircle the junction, showing that the left-sided atrium is morphologically right. The atrioventricular valve, however, has a solitary zone of apposition between its leaflets, identifying it as the morphologically mitral valve. This means that the left-sided ventricle is also morphologically left. The right hand panel shows the smooth vestibule of the right-sided atrium, identifying it as being morphologically left. It opens through a morphologically tricuspid valve into the right-sided morphologically right ventricle (see also Figure 4).

Figure 4. The images compare the arrangement of the ventricular chambers when congenitally corrected transposition is found in association with mirror-imaged atrial chambers (upper panel) as opposed to usually arranged atrial chambers (lower panel). The upper panel shows the smooth septal surface of the morphologically left ventricle, which is left-sided when associated with mirror-imaged corrected transposition (right handed ventricular topology). The lower panel shows the marked differences in apical trabecular pattern, with the morphologically left ventricle being right-sided in this example from a patient with congenitally corrected transposition and usual atrial arrangement. The ventricular mass shows left-handed topology.

Figure 5. The images show how both atrial chambers from the heart with mirror-imaged venous returns are largely smooth-walled. The right-sided atrium (right hand panel) is connected through a mitral valve to the right-sided morphologically left ventricle, which then gives rise to the aorta, which is positioned posteriorly and to the left (mirror-imaged arterial relationships). The left-sided atrium, seen in the left hand panel, connects through a tricuspid valve to the morphologically right ventricle, which is left-sided, but which gives rise to the pulmonary trunk, which spirals in mirror-imaged fashion relative to the aortic root as it extends into the mediastinum.

Figure 6. The images show the base of the heart before (left hand panel) and after (right hand panel) opening across the right and left atrioventricular junctions. There is straddling and overriding of the left atrioventricular (AV) valve. The atrioventricular junctions are supported mostly by the dominant right-sided left ventricle, with both arterial trunks arising from the left-sided incomplete ventricle. Both arterial valves are supported by complete muscular infundibulums. There was dome-shaped pulmonary stenosis, which had protected the pulmonary vasculature.

Figure 7. The images show the features of straddling tricuspid valve, but in this heart there are concordant atrioventricular connections, with discordant ventriculo-arterial connections, in other words "regular" transposition. The left hand panel shows how the tricuspid valve straddles the inferior part of the malaligned ventricular septum, which no longer extends to the crux of the heart. The right hand panel shows the base of the heart viewed from the apical aspect. The straddling septal leaflet of the tricuspid valve can be seen, along with the mitral valve, which guards a separate left atrioventricular junction. The heart does not have an "atrioventricular canal" defect.

Figure 8. The images show the features of the so-called "ostium primum defect, in reality an atrioventricular septal defect in a heart with common atrioventricular junction, but with shunting through the septal defect confined at atrial level. The left hand panel shows the view from the right side. There is a tongue of valvar tissue joining the superior and inferior leaflets, creating dual orifices within the common atrioventricular junction. The right hand panel, showing the left-sided aspect, then shows how the bridging leaflets of the common valve, along with the connecting tongue, are bound down to the crest of the "scooped-out" ventricular septum. The so-called "cleft" is, in reality, the zone of apposition between the left ventricular components of the two leaflets that bridge the ventricular septum.

Figure 9. The image shows the left ventricular outflow tract from a heart initially diagnosed as showing a "Gerbode" defect, which is an atrioventricular septal defect in the setting of separate atrioventricular junctions. The heart, however, shows at the features of a heart with common atrioventricular junction. The aortic root is "unwedged", and the left atrioventricular valve is trifoliate.

Figure 10. The images show the features of the septal defect in the heart also shown in Figure 9. As can be seen from the left hand panel, the defect opens on the ventricular aspect of the atrioventricular junction. The right hand panel shows that the tongue of tissue connecting the two bridging leaflets is attached to the leading edge of the atrial septum, thus confining shunting through the defect, which is an atrioventricular septal defect, at ventricular level.