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Many cancer therapies produce toxic side effects whose molecular mechanisms await full elucidation. The most feared and studied
side effect of chemotherapeutic drugs is cardiotoxicity. Also, skeletal muscle physiology impairment has been recorded after many
chemotherapeutical treatments. However, only doxorubicin has been extensively studied for its side effects on skeletal muscle.
Chemotherapeutic-induced adverse side effects are, in many cases, mediated by mitochondrial damage. In particular,
trastuzumab and sunitinib toxicity is mainly associated with mitochondria impairment and is mostly reversible. Vice versa,
doxorubicin-induced toxicity not only includes mitochondria damage but can also lead to a more robust and extensive cell
injury which is often irreversible and lethal. Drugs interfering with mitochondrial functionality determine the depletion of ATP
reservoirs and lead to subsequent reversible contractile dysfunction. Mitochondrial damage includes the impairment of the
respiratory chain and the loss of mitochondrial membrane potential with subsequent disruption of cellular energetic. In a
context of increased stress, AMPK has a key role in maintaining energy homeostasis, and inhibition of the AMPK pathway is
one of the proposed mechanisms possibly mediating mitochondrial toxicity due to chemotherapeutics. Therapies targeting and
protecting cell metabolism and energy management might be useful tools in protecting muscular tissues against the toxicity
induced by chemotherapeutic drugs.

1. Introduction

Many cancer therapies are known to have adverse effects.
Classic chemotherapeutic cytotoxic agents as well as mono-
clonal antibodies against tyrosine kinase receptors, tyrosine
kinase inhibitors, and antiangiogenic drugs exert cardiotoxic
effects and impair the cardiovascular system by enhancing
thrombotic events and by altering the hemodynamic flow.
An obvious explanation for the cardiotoxicity induced by
many cancer therapies is that they do not only target the
tumor but also target its microenvironment. In fact, signaling
pathways promoting cancer cell proliferation also protect
cardiomyocytes and endothelial cells, to give two examples.
Valid approaches for avoiding cancer therapy-induced cardi-
otoxicity need to exploit tissue-specific differences between

cancer cells and the other cell types in order to target cardio-
toxic mechanisms without altering the antitumor activity.

Mitochondrial dysfunctions play a prominent role in the
pathogenesis of several diseases and also the cardiotoxic side
effects of various drugs are often mediated by mitochondrial
damage [1]. Cardiomyocytes utilize an enormous amount of
ATP, therefore being in a constant energy-consuming con-
tractile state. Since mitochondria are the ATP-producer
organelles, damaged mitochondria are continuously replaced
by newly synthesized ones in order to sustain the constant
need for ATP. This replacement is due to processes including
mitochondrial biogenesis as well as their degradation by
mitophagy. These processes work in a tightly regulated man-
ner and mitochondrial fusion and fission are regulated to cre-
ate a dynamic mitochondrial network. Drugs interfering with
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mitochondrial functionality likely determine the depletion of
ATP reservoirs and, eventually, lead to subsequent myocar-
dial dysfunction. Mitochondrial damage may be induced in
many different ways: by impairing the respiratory chain, the
Krebs cycle, the oxidative phosphorylation, as well as the
fatty acid β-oxidation. They can also depend on the loss of
the mitochondrial membrane potential, on the increased oxi-
dative stress and on the reduced antioxidative capacity.
Moreover, the mitochondrial DNA (mtDNA) is proximal
to the respiratory chain where most of the oxidative stress
is produced. Since the mtDNA lacks both histones and repair
pathways, its vulnerability to the oxidative stress has been
suggested to be higher compared to nuclear DNA. mtDNA
oxidation damage is cumulative and might be a major
contributor to heart failure development [2–4]. Cardiac
abnormalities induced via these mechanisms include cardio-
myopathy, myocarditis, coronary heart disease, arrhythmias,
heart failure, and Takotsubo syndrome.

Cardiac function impairment could determine, by itself, a
general worsening in health, while mitochondrial dysfunc-
tions may induce abnormalities in different body districts.
Notably, skeletal muscle weakness combined with persistent
fatigue is a frequent side effect in chemotherapy-treated can-
cer patients. The effects of chemotherapy on skeletal muscle
have been found to persist for many years after treatment is
discontinued and have proven to be independent on the
abnormalities induced by cancer and leading to cachexia
[5–8]. Due to the high metabolic expense of the skeletal
muscle, the number of mitochondria is extremely high in this
tissue, although lower than in cardiomyocytes [9]. Mito-
chondrial toxicity and dysfunctions can determine skeletal
muscle-specific symptoms including weakness, atrophy,
insulin resistance, impaired regenerative capacity, and
exercise intolerance [10–12]. This suggests that chemother-
apy could induce skeletal muscle adverse side effects, in
particular, by targeting mitochondria, energy production,
muscle physiology, and muscle mass [13–16].

The adverse effects of chemotherapy on skeletal muscle is
more evident when therapy is administered during child-
hood. There is evidence that survivors of some cancers and
chemotherapy-treated during childhood have high rates of
skeletal muscle mass loss and dysfunction along with cardio-
vascular disease, insulin resistance, and metabolic syndrome
several years after the treatment [8, 16, 17]. Skeletal muscle
wasting affects the functional capacity of individuals but also
their metabolic health. Indeed, skeletal muscle has not only
contractile functions but also metabolic ones, including being
a principal site of lipid oxidation and glucose uptake and,
thus, a major determinant of insulin sensitivity. It has been
proposed that long-term skeletal muscle dysfunction and
atrophy might be preceded by mitochondrial reactive oxygen
species (mtROS) production, mtDNAmutations detrimental
on skeletal muscle structure and function and lasting the all
life, mitochondrial impairment, and altered Ca2+ handling.
These factors, along with DNA damaging-dependent impair-
ment of muscle satellite cell replication and regenerative
mechanisms, muscle denervation, and neuromuscular junc-
tion damage, all lead to muscle mass loss [8, 16, 18–20]. In
postmitotic muscle fibers, mutated mtDNA can persist and

accumulate; however, the impact of such mutations might
take many years to become evident through mtDNA
replication [16].

In this review, we will focus on three commonly used
chemotherapeutical agents eliciting cardiotoxicity: the
anthracycline doxorubicin, the erythroblastic leukemia
viral oncogene homolog 2 (ErbB2) inhibitor trastuzumab,
and the tyrosine kinase receptor inhibitor sunitinib. We
will consider the effect of these compounds on mitochon-
drial activity and their effects on skeletal muscle and dis-
cuss some potential protective therapies against their
adverse effects.

2. Doxorubicin

Anthracyclines, including doxorubicin, daunorubicin, and
epirubicin, are the best studied class of anticancer agents hav-
ing toxic side effects [21]. In particular, doxorubicin, discov-
ered in the late 1960s and isolated from a culture of
Streptomyces peucetius, is a potent anticancer agent and a
treatment of first choice for many cancers, for example, the
breast, liver, colon cancer, lymphoma, and leukemia [22].
However, its use is limited by a dose-dependent toxicity in
many organs (e.g., the heart, brain, liver, kidney, lung, skele-
ton, and skeletal muscle) [23, 24]. Among others, cardiac tox-
icity leading to cardiomyopathy is the most serious and
feared side effect of this anthracycline [23, 25, 26]; neverthe-
less, doxorubicin is still widely used.

Although cardiomyocyte is the most studied and elec-
tive cellular target of doxorubicin, other cell types have
been proposed as additional potential targets, making the
pathogenesis of anthracycline cardiomyopathy even more
complex [27]. The molecular mechanism of doxorubicin-
induced cardiotoxicity is controversial. Since most cardio-
myocytes are terminally differentiated cells, doxorubicin
toxicity might not be only related to its anticancer effects
which impair mostly DNA replication along with RNA
transcription due to doxorubicin DNA intercalation and
inhibition of topoisomerase II [10, 28], thus leading to cell
growth and division inhibition [8]. A major hypothesis to
explain doxorubicin cardiotoxicity, which is related to its
cardiac accumulation and to bioactivation to secondary
metabolites, involves the induction of mitochondrial
abnormalities at different levels (Figure 1).

Doxorubicin specifically binds the abundant phospho-
lipid cardiolipin located in the inner mitochondrial mem-
brane, which leads to mitochondrial accumulation of the
drug [29]. This would disrupt the electron transport chain
(ETC) by inhibiting complexes I and II [30, 31] and would
lead, in turn, to ROS production (Figure 1) [29, 32–35].
Indeed, doxorubicin-induced toxicity seems to be mostly
due to mitochondrial increase of ROS and reactive nitrogen
species (RNS), which have been proposed to be generated
by “redox cycling” reactions of doxorubicin with complex I,
this promoting the production of superoxide anion (O2

•−)
[36, 37]. More specifically, a quinone moiety in the chemical
structure of doxorubicin is reduced by the respiratory chain
complex I (accepting electrons from NADH or NADPH
and transferring them to doxorubicin) into a reactive
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semiquinone free radical via one-electron reduction [36, 38].
This event removes electron normally used for ATP produc-
tion and decreases the electron flow through the ETC. In nor-
moxic conditions, the formed semiquinone transfers an
electron to O2 and generates the superoxide anion O2

•− while
being oxidized to a stable quinone in a sequence of reactions
known as the “redox cycling” in which doxorubicin returns
to the quinone form and the cycle continues as long as
NADH is present (Figure 1). O2

•− might be transformed into
the low-toxic hydrogen peroxide (H2O2) by superoxide dis-
mutase (SOD) or into other ROS [39, 40].

Doxorubicin can also directly interact with iron to form
reactive anthracycline-iron complexes resulting in an iron
cycling between Fe3+ and Fe2+ associated with ROS produc-
tion—including the high-toxic hydroxyl radical (OH•)—by
the Fenton and Haber-Weiss reactions, thus altering iron

homeostasis [25, 41]. Therefore, the intramitochondrial
accumulation of iron is detrimental in presence of doxorubi-
cin and is caused by doxorubicin and its metabolites, as well
[25]. It is also conceivable that a secondary source of oxidants
activated by doxorubicin includes NADPH oxidase. Doxoru-
bicin also increases endothelial nitric oxide synthase (eNOS)
activity and expression and, by a direct binding to this
enzyme, leads to nitric oxide (NO) production and contrib-
utes to peroxynitrite formation [37, 42] (Figure 1). In line
with this, the cardiomyocyte-specific overexpression of
eNOS has been found to enhance the detrimental effects of
doxorubicin on the heart, while eNOS-KO mice show low
levels of ROS and preserved myocardial function after expo-
sure to doxorubicin.

The increased production of mitochondrial ROS and
RNS induced by doxorubicin leads to an excessive oxidative
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Figure 1: Doxorubicin-mediated cytotoxicity is mostly irreversible. Mitochondrial doxorubicin accumulation is due to its specific binding to
the phospholipid cardiolipin; this membrane perturbation inhibits complex I and complex II disrupting the electron transport chain and
inducing ROS production. ROS might also be produced by other doxorubicin-mediated mechanisms: a quinone moiety in the chemical
structure of doxorubicin is reduced by complex I into a reactive semiquinone free radical which transfers an electron to O2 and generates
the superoxide anion O2

•−. In turn, the semiquinone free radical is oxidized and returns to the quinone form in a sequence of reactions
known as the “redox cycling” of doxorubicin. Moreover, doxorubicin can directly interact with iron to form reactive anthracycline-iron
complexes resulting in an iron cycling between Fe3+ and Fe2+ associated with ROS production and altering iron homeostasis. Doxorubicin
also induces mtDNA damage and binds to eNOS enhancing its activity thus leading to NO production and contributing to peroxynitrite
(ONOO−) formation. It also disrupts Ca2+ homeostasis which triggers mPTP and dissipates the transmembrane potential (ΔΨ) along with
increasing mitochondrial permeability to apoptotic factors such as cytochrome c and leading to apoptosis or necrosis. The excessive
oxidative stress produced by doxorubicin can also be mediated by increasing levels of TNFα and by NADPH oxidase and leads to redox
modifications of macromolecules such as myofibrillar proteins. Doxorubicin also reduces the antioxidative defense of cells, and by
preventing Top2β activity, it alters the transcriptome, for example, downregulating PGC-1α, which negatively impacts on both oxidative
phosphorylation and mitochondrial biogenesis. IM: inner membrane space.
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stress and is strongly linked to cell damage involving reduced
protein synthesis and redox modifications of macromole-
cules (proteins, lipids, and DNA) such as nitrotyrosine
formation, protein carbonylation, and lipid peroxidation
which increase in doxorubicin-exposed cardiac muscle and
include cellular membrane damage [43]. This oxidative dam-
age results in production of stable and highly toxic aldehydes
which further attack macromolecular targets. Oxidative
modifications of myofibrillar proteins, such as troponin I,
tropomyosin, and actin, impair maximal contraction force
and compromise cardiac function [32, 33, 39, 44].
Doxorubicin-induced mitochondrial damage includes mito-
chondrial respiratory capacity impairment and alteration of
the levels of proteins crucial for oxidative phosphorylation,
as well as glycolysis and fatty acid β-oxidation reduction, so
leading to energy substrate shifts and defective energy signal-
ing [39] (Figure 1). Impairment of carnitine palmitoyl trans-
ferase I and β-oxidation is not followed by increased glucose
utilization as a compensatory response. Moreover, due to its
circular and covalently closed nature, mtDNA allows easy
access to intercalating agents such as doxorubicin which
forms adducts with mtDNA, damaging and oxidating it, thus
inducing mtDNA depletion or increased rate of transcrip-
tional errors both leading to mitochondrial dysfunctions
[45]. Along with defective mitochondrial respiratory enzyme
activity and increased ROS production, mtDNA damage and
mutations also accumulate with repeated doxorubicin treat-
ments [2, 46] (Figure 1).

Some authors have proposed that doxorubicin-triggered
production of ROS and subsequent contractile dysfunctions
might be mediated by increasing levels of tumor necrosis
actor α (TNFα) [47] (Figure 1). Along with increasing oxida-
tive stress, doxorubicin also reduces the antioxidative defense
of the cell, for example, reducing glutathione (GSH), SOD,
and catalase content or activity, this contributing to enhance,
prolong, and stabilize the mitochondrial damage [48, 49]. In
fact, doxorubicin elicits a cumulative, dose-dependent, and
largely irreversible cardiac damage characterized by both
structural and functional mitochondrial abnormalities and
ROS-induced apoptosis and replacement by fibrotic tissue
[21, 50]. By contrast, other studies have reported an increase
of antioxidant enzyme activities induced by doxorubicin, this
supporting the hypothesis of a cellular attempt to adapt to
doxorubicin damage [10].

It has been reported that infusion of GSH or overexpres-
sion of antioxidant enzymes—for example, manganese SOD
(MnSOD), catalase, glutaredoxin 2, glutathione peroxidase
(GpX), and metallothionein—as well as the antioxidants vita-
min E and N-acetylcysteine (NAC) reduces doxorubicin-
induced toxicity [10, 51]. In line with this, it has been shown
that the antioxidant and electron carrier coenzyme Q10 pre-
vents mtDNA deletions in cardiomyocytes, suggesting a role
for ROS also in mtDNA mutations [16, 52]. On the other
hand, some data show that the use of antioxidants does not
sufficiently protect from cardiotoxicity due to doxorubicin
[25]. This is one of the reasons why some authors have pro-
posed that the main mechanism by which doxorubicin
induces cardiotoxicity is not by inducing oxidative stress
but by impairing the cellular and mitochondrial Ca2+

signaling and homeostasis through a mechanism not yet
identified [25]. Doxorubicin inhibits the transcription of the
sarcoplasmic reticulum Ca2+-ATPase (SERCA) and therefore
reduces Ca2+ uptake. It also targets the ryanodine receptor
(RyR2) and calsequestrin type 2 (CSQ2), thus activating
Ca2+ release channels, so increasing citoplasmatic Ca2+ con-
centration [25, 53]. Doxorubicin binds to RyR2 and SERC2A
and modifies their thiols, so disrupting Ca2+ signaling via
multiple mechanisms [53]. Therefore, doxorubicin toxicity
might also be due to increased intracellular Ca2+ levels which
may promote ROS production and impair contractile func-
tion [54, 55]. Vice versa, oxidative stress induced by doxoru-
bicin might disrupts intracellular and mitochondrial Ca2+

homeostasis. Mitochondrial Ca2+ overload triggers mito-
chondrial permeability transition pore (mPTP) resulting in
the dissipation of transmembrane potential, increased per-
meability of the mitochondrial outer membrane to apopto-
tic factors such as cytochrome c leading to apoptosis [56],
and mitochondrial swelling leading to necrosis [25].
Cardiomyocyte death, both by apoptosis and necrosis
ROS-induced, is a primary mechanism for anthracycline-
induced cardiomyopathy [25].

Another mechanism of action of doxorubicin indirectly
impacting on mitochondria involves the main target of its
anticancer effect which are topoisomerase 2α (Top2α) and
its isoenzyme Top2β which is expressed in cardiomyocytes.
By preventing the Top2β activity, doxorubicin alters the tran-
scriptome and downregulates the peroxisome proliferator-
activated receptor-γ (PPARγ) coactivator-1α and β (PGC-
1α and β), thus impairing oxidative phosphorylation and
mitochondrial biogenesis and contributing to metabolic fail-
ure. Notably, SIRT1, via PGC-1α deacetylation, has been
implicated in the regulation of mitochondrial biogenesis. In
this regard, the protective effects of SIRT1-activation in a
model of anthracycline cardiotoxicity, mainly attributed to
the reduction of oxidative stress and cell death, might likely
also involve SIRT-1 action on mitochondrial biology and cell
energetics [57, 58]. It has also been proposed that doxorubicin
may additionally and indirectly act on mitochondria by act-
ing on mitochondria-interacting desmin [49].

Finally, upregulation of apoptotic proteins and cell death
is typical of doxorubicin-induced ROS-mediated cardiotoxi-
city [59]. Moreover, damaging the DNA, ROS, and RNS also
determines the activation of the nuclear enzyme poly-ADP-
ribose polymerase-1 (PARP-1) that responds to DNA dam-
age by inducing repair using energy cofactors such as NAD+

[60, 61]. This determines depletion in the NAD+ pools and,
as a consequence, in ATP stores which finally leads to inner
mitochondrial membrane potential (ΔΨ) depletion and
opening of mPTP, thus leading to energy homeostasis pertur-
bation, mitochondrial swelling, outermembrane rupture, and
also release of apoptotic mediators propagating the apoptotic
signaling [61]. Moreover, glycolysis and tricarboxylic acid
cycle (TCA), some steps of which depend on NAD+ availabil-
ity, are also impaired by NAD+ depletion; as a consequence,
substrate delivery to ETC and ATP synthesis is reduced.

2.1. Doxorubicin in Skeletal Muscle. Patients exposed to
doxorubicin experience muscle weakness not relieved by rest
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(e.g., a slower chair-rise time and a decreased hand-grip
force) up to five years following the cessation of therapy,
and similarly, doxorubicin administration to rodents has
been demonstrated to reduce their muscle strength [10,
47, 62]. Doxorubicin-associated skeletal muscle wasting
may occur secondary to vascular dysfunction and reduced
blood flow to skeletal muscles caused by doxorubicin-
derived cardiac dysfunctions. However, despite the lower
amount of studies on skeletal muscle, it has clearly been
proven that doxorubicin directly interacts and damages
skeletal muscle, reducing its strength in a dose-dependent
fashion [19, 36, 63, 64].

Also in skeletal muscle, doxorubicin accumulates prefer-
entially into mitochondria, by binding to cardiolipin. Inter-
estingly, it has been found that a higher accumulation of
doxorubicin occurs in oxidative skeletal muscles compared
with the glycolytic ones [65], although this has recently been
questioned [65, 66]. This might partially be explained with
the higher mitochondrial mass typical of oxidative muscles.
However, this cannot be the only explanation since it has
been shown that doxorubicin accumulates in higher amounts
in some mitochondria while being undetectable in others,
possibly due to the different membrane lipidic composition
of differently located mitochondria into the myofiber. More-
over, the muscle damage cannot be fully associated to the
accumulation of doxorubicin also because doxorubicin
metabolites (such as doxorubicinol) are more toxic than
doxorubicin itself [65, 66].

Since mitochondrial density is high in skeletal muscle,
it is not surprising that doxorubicin-induced mitochon-
drial toxicity can lead to skeletal muscle-specific symptom-
atology including muscle wasting, impaired regenerative
capacities, and exercise intolerance [7, 10–12]. It has been
shown that direct injection of doxorubicin induces skeletal
muscle mass decrease and alters myofilament structure in
mammals including humans, as reviewed by Gilliam and
St. Clair [10]. Also, systemic doxorubicin treatment dis-
rupts skeletal muscle myofibrillar organization and func-
tion. Similarly to myocardium, this is thought to mainly
occur through disruption of redox signaling and oxidative
stress induction [10, 47, 67]. In fact, circulating markers of
oxidative stress, such as lipid peroxidation and protein
carbonyl content, are elevated in doxorubicin-treated can-
cer patients. These markers might also include skeletal
muscle-derived oxidants, although specific markers for
skeletal muscle are not available [10]. Besides inducing
protein oxidation altering myofilament structure, doxoru-
bicin impairs mitochondrial proteins, extensively affecting
muscle contractile function [10, 44, 62, 68–71]. Moreover,
in skeletal muscle, similarly to myocardium, doxorubicin-
induced ROS might occur also via increased levels of
TNFα [47, 72].

Doxorubicin alters mitochondrial respiration with a sub-
sequent increase in H2O2 emission and muscle damage.
Transgenic overexpression of catalase in muscle cells blunts
H2O2 emission and protein oxidation, hence protecting
mitochondria as well as global muscular function. This con-
firms the hypothesis that mitochondrial oxidants are media-
tors of doxorubicin-induced skeletal muscle dysfunction

[60]. In line with this, the cell-permeable peptide Bendavia
(SS31), localizing to mitochondria and able to reduce ROS
production, can inhibit doxorubicin-induced oxidants pro-
duction in C2C12 myotubes [64, 73]. Doxorubicin treatment
of myofibers has been found to lead to decreased respiratory
activity, both NADH (complex I) supported and FADH2
(complex II) supported, along with a quick increase of
H2O2 production [74]. The same authors showed that while
the respiratory chain impairment remains constant, the ΔΨ,
as well as the production of H2O2, decreases after a longer
time of doxorubicin exposure, this indicating a decline of
the overall mitochondrial function with increased sensitivity
to mPTP opening and collapse of the proton motive force.
More in general, doxorubicin leads to inability to maintain
energy homeostasis; in fact, following doxorubicin adminis-
tration, in addition to inhibition of the ETC, energy expendi-
ture decreases, thus suggesting an impairment of the overall
basal oxidative metabolism and of energy stores, for example,
the activity of creatine kinase, a key enzyme for the balance of
energy metabolites, decreases. Mitochondrial dysfunction
might also be caused by electron leakage from the respiratory
chain due to respiratory protein alterations caused by
mtDNA mutations [52]. Indeed, mtDNA deletions increase
with doxorubicin depending on its dosage and exposure time
and by progressive amplification of mtDNA mutation,
although some authors reported that skeletal muscle mass
depletion by doxorubicin was associated to ROS production
and respiration impairment but not to mtDNAmutation [8].

Along with enhanced ROS production, doxorubicin
depletes crucial redox buffering systems, such as GSH [10,
72, 75]. Administered NAC has been found, by some authors,
to be beneficial to skeletal muscle dysfunctions caused by
chemotherapy [76, 77]. However, as discussed above, the
effect of antioxidants is controversial also on skeletal muscle;
in fact, some authors reported that the mitochondrial dam-
age and cardiotoxicity due to doxorubcin were not reversed
or prevented by NAC [78–80].

Similarly to myocardium, the DNA breaks induced by
doxorubicin determine the activation of repairing enzymes
among which PARPs which use energy cofactors, in par-
ticular NAD+, thus increasing ATP consumption and
being detrimental and energetically expensive for the skel-
etal muscle [16, 61, 81–83]. Notably, PARP activation also
reduces SIRT1 activity, mitochondrial biogenesis, and glu-
cose metabolism, while shifting skeletal muscle fibers from
the oxidative type to the glycolytic one, further promoting
skeletal muscle metabolic dysfunction [16, 61, 83, 84]. In
addition, a truncated form of PARP-1 has been found to
act on mitochondrial proteins, this reducing mitochondrial
respiration. PARP-1 pharmacological inhibition might pos-
sibly protect from NAD+ depletion and from metabolic
impairment during chemotherapy.

High production of ROS due to doxorubicin triggers
death pathways and apoptosis within skeletal muscle, involv-
ing calpain and caspase-3 activation which act also on myo-
filament proteins, such as the giant myofilament protein
titin, this leading to sarcomere disorganization and contrac-
tile dysfunction [73, 85–87]. Doxorubicin also increases the
proteasomal catabolism and induces skeletal muscle mass
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loss by upregulating the E3 ubiquitin ligase atrogin-1 and the
ubiquitin–proteasome system [16, 64, 69, 73, 88]. Moreover,
it has been suggested that damaged mitochondria might also
be removed by mitophagy, possibly contributing to skeletal
muscle atrophy [16].

Finally, doxorubicin reduces skeletal muscle mass also
by affecting Ca2+ homeostasis through impairment of
SERCA function and decreased Ca2+ uptake with increased
susceptibility of the mPTP to Ca2+-induced opening.
Doxorubicin might act like caffeine, also sensitizing the
RyR2 and stimulating Ca2+ release from the endoplasmic
reticulum [18, 53, 89, 90].

Although skeletal muscle atrophy is a common side
effect of several chemotherapeutic drugs, only doxorubicin
has been sufficiently studied for its direct effect on skeletal
muscle [16].

3. Trastuzumab

Trastuzumab is a monoclonal antibody that inhibits the acti-
vation of the human epidermal growth factor receptor 2
(HER2)/neu also called ErbB2 in nonhumans, a transmem-
brane glycoprotein receptor with tyrosine kinase activity
interfering with breast cancer growth. HER2-positive breast

cancer is a highly aggressive form occurring in, approxi-
mately, one in five women [91]. The neuregulin-1/ErbB2 sig-
naling was first recognized as having a crucial role in normal
fetal heart development. Later on, the use of trastuzumab in
cancer patients has highlighted the protective role of the
ErbB2 signaling also on the adult heart; this signaling is
essential for survival, growth, and apoptosis inhibition of car-
diomyocytes [92]. In fact, the concomitant use of trastuzu-
mab and doxorubicin was found to lead to a fivefold
increase of chronic heart failure incidence in cancer patients
compared to doxorubicin alone [93].

Under biomechanical stress, hypoxia, and antracycline
treatment, neuroregulin-1 secreted by the coronary endo-
thelial cells binds to and activates ErbB4 which dimerizes
with ErbB2. ErbB2/ErbB4 heterodimers promote growth
and cardioprotective signaling by activating the phosphoi-
nositide 3-kinase (PI3K), the mitogen-activated protein
kinase (MAPK), and the focal adhesion kinase (FAK) sur-
vival pathways which reduce ROS production and inhibits
cardiomyocyte mitochondrial apoptosis by acting on the
ratio among the B-cell lymphoma 2 (Bcl-2) protein super-
family components (Figure 2) [92, 94]. By blocking the
ErbB2 survival pathway, trastuzumab reduces the cancer
mass along with being also severely cardiotoxic and
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increasing the risk of cardiovascular events whose fre-
quency is highly variable and depends on trastuzumab
association with other anticancer drugs (e.g., with or with-
out concomitant or sequential anthracyclines), on patient
age and on comorbidities [95–104].

Mice with a cardiac-specific deletion of ErbB2 develop
dilated cardiomyopathy and demonstrate a robust systolic
dysfunction after pressure overload compared with wild-
type mice [105, 106], which confirms that the ErbB2 pathway
is cardioprotective. This survival pathway is also activated
following exposure to anthracyclines as a protective signaling
against anthracycline-induced myocardial injury. Indeed,
several clinical studies showed that, by disrupting this cardi-
oprotective mechanism mediated by the ErbB2, trastuzumab
exacerbates anthracycline-induced cardiac damage provok-
ing an extremely high incidence of symptomatic heart failure
[103]. Interestingly, ErbB2 also activates signaling molecules
regulating metabolism and mitochondrial function and pro-
motes cancer cell growth and glycolysis which are reduced by
trastuzumab [107, 108]. Recent studies also have shown that
ErbB2 can translocate to the nucleus, possibly acting as a
transcription factor and that the expression of cytochrome c
oxidase (COX) subunit II depends on the levels of ErbB2
expression [109, 110] (Figure 2).

By inhibiting ErbB2, trastuzumab reduces the protec-
tion from mitochondrial damage in cardiomyocytes. Tras-
tuzumab induces cardiomyocyte toxicity through a
mitochondrial pathway depending on ROS production
and oxidative stress and reversed by the antioxidant
NAC [111]. Indeed, cells lacking Bax and Bak which
mediate cell death through a mitochondrial pathway are
resistant to deleterious effects induced by trastuzumab.
The mitochondrial apoptosis is regulated by the Bcl-2 pro-
tein superfamily which is also regulated by the HER2 sig-
naling. The ratio between proapoptotic and antiapoptotic
proteins determines whether the cardiomyocyte will
undergo apoptosis or just reversible contractile impairment
dependent on mitochondrial dysfunction. Trastuzumab
activates proapoptotic proteins such as Bax and can induce
the opening of mPTP, eventually leading to mitochondrial
defects and dysfunctions. In fact, trastuzumab toxicity is
reversed by mPTP inhibition which also reverses ROS pro-
duction [111]. HER2 inhibition by trastuzumab is associ-
ated with a dramatic increase in expression of the
proapoptotic Bcl-xS and decreased levels of antiapoptotic
Bcl-xL [112]. These alterations induce mitochondrial dys-
functions, loss of ΔΨ, and ATP depletion with the disrup-
tion of cardiomyocyte cellular energetic and reversible
contractile impairment (Figure 2).

These are the main contributors to trastuzumab cardiac
toxicity associated with severe dilated cardiomyopathy but
occurring with low apoptosis and alterations of the cardio-
myocyte histology and ultrastructure [38, 106, 112, 113]. As
a consequence, the cardiotoxic effect of trastuzumab is not
cumulative or dose-related and is considered reversible, as
reported in many clinical studies [50, 104, 114, 115],
although this has been recently questioned [91]. Trastuzu-
mab does not cause the typical biopsy changes observed with
anthracyclines (vacuoles, necrosis, myofibrillar disarray,

myocyte death) but leads to myocyte dysfunction and swol-
len mitochondria. Moreover, many studies have reported
that the incidence of cardiac dysfunction does not increase
with prolonged follow-up. In line with this, cardiomyopathy
of mice with cardiac-specific deletion of HER2 might be res-
cued by the antiapoptotic Bcl-xL which supports the revers-
ibility of cardiac toxicity associated with HER2 inhibition
[105] by trastuzumab. Indeed, while blocking the ErbB2 sig-
naling by trastuzumab leads to apoptosis of cancer cells
[116], cardiomyocytes are particularly resistant to mitochon-
drial apoptosis [105, 106] possibly due to the increased
expression of X-linked inhibitor of apoptosis (XIAP) and
decreased expression of apoptotic protease activating
factor-1 (Apaf1) [117, 118].

Based on these observations, the cardiac dysfunction
induced by antineoplastic drugs such as trastuzumab has
been classified for many years as type II reversible cardiotoxi-
city [104, 119], in opposition to the antineoplastic drugs
anthracyclines leading to irreversible cardiotoxic side effects
(type I cardiotoxicity). However, more recently, this classifi-
cation has been questioned since an increased incidence of
heart failure has been reported by some studies many years
after the trastuzumab therapy, thus indicating that
trastuzumab-related cardiotoxicity is not always reversible
[120, 121]. On the other hand, early treatment of
anthracycline-related cardiotoxic effects might, in some
cases, recover cardiac function [120, 121].

Cardiomyocytes respond to biomechanical stress also by
upregulating the regulator of metabolism AMPK which stim-
ulates ATP production in order to protect the myocardium
from apoptosis. ErbB2/ErbB3 heterodimer controls Bcl-X
and AMPK, reducing ATP depletion and destabilization of
mitochondrial membrane, thus protecting cardiomyocyte
contractile function [50, 91]. It has been suggested that the
cardiotoxicity of trastuzumab might also be related to its
inhibition of AMPK and depletion of ATP stores [122]. By
contrast, another ErbB2 inhibitor (initamib) is less cardio-
toxic since it activates AMPK and increases ATP production,
although not through ErbB [104]. Trastuzumab has a stron-
ger detrimental effect on cardiomyocytes if compared with
similar drugs, possibly due to its requirement of phosphatase
and tensin homolog (PTEN) and of a nontruncated form of
the ErbB2 receptor necessary for the ErbB2-dependent sur-
vival pathway. Finally, trastuzumab-induced cardiac toxicity
has also been related to its inhibition of nuclear factor kappa
beta (NFκβ) [104].

4. Sunitinib

Targeted chemotherapy with tyrosine kinase inhibitors (e.g.,
sunitinib, lapatinib, and imatinib) is a highly selective
approach which has improved the antitumor activity and
the management of cancers such as renal cell carcinoma,
chronic myeloid leukemia, and gastrointestinal stromal
tumors along with reducing toxicities in comparison to tradi-
tional chemotherapies [123]. However, tyrosine kinase inhib-
itors also inhibit normal variants of these molecules in
nontumor cells, which can lead to toxic side effects such as
cardiotoxicity [124–126]. Sunitinib inhibits all receptor
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tyrosine kinases among which those for the platelet-derived
growth factor (PDGF) and those for the vascular endothelial
growth factor (VEGF) which are involved in angiogenesis
and tumor proliferation. Sunitinib can also inhibit the AMPK
pathway, as a so-called off-target toxicity. The inhibition of
these pathways causes the impairment of the cardiac function
[127], although the incidence of sunitinib serious adverse
events is lower compared to other chemotherapeutical drugs.
Sunitinib impinges on cardiac energy homeostasis by inhi-
biting multiple growth factor pathways (also mediated by
PDGFR and VEGFR), all playing important roles in cardi-
omyocytes [127, 128], but also via disrupting the mito-
chondrial function by inhibition of the AMPK signaling,
which have been extensively investigated in cultured cardi-
omyocytes and in mice fed with oral sunitinib (Figure 3)
[127, 129]. The authors examined the endomyocardial
biopsies from two gastrointestinal stromal tumors patients
who had developed severe left ventricular dysfunction
under sunitinib treatment; mitochondrial structure abnor-
malities were revealed by transmission electron micros-
copy. In addition, rat neonatal cardiomyocytes treated
with high doses of sunitinib showed mitochondrial cyto-
chrome c release and activation of caspase-9, leading to
apoptosis. The exposure to sunitinib also induced ΔΨ dis-
ruption and a massive decrease in intracellular ATP [130].
Examination of cardiac tissue from mice treated daily with

sunitinib revealed features similar to those observed in
humans: abnormal histopathological changes including
mitochondrial swelling indicating mPTP opening and
energetic failure and distrupted crista. Notably, inducing
hypertension in mice through administration of phenyl-
ephrine and feeding them with sunitinib showed that these
animals develop a sevenfold increase in cardiac apoptosis
compared to mice treated with phenylephrine alone
[129]. This evidence suggests that mitochondrial dysfunc-
tion induction is the main mechanism mediating this
drug’s adverse effects, while cell death has been proposed
to be secondary to additional cardiac impairment.

In a context of increased cardiac stress, the role of AMPK
is essential in maintaining cardiac energy homeostasis; there-
fore, sunitinib-induced disruption of the AMPK signaling
may result in the observed cardiac dysfunction [131]. AMPK
acts as a master metabolic controller under conditions of
metabolic stress, promoting the switch to energy generation
and inhibiting anabolic pathways. AMPK regulates the activ-
ity of acetyl-CoA-carboxylase (ACC) which controls the
uptake and metabolism of free fatty acids, a major source of
energy in cardiomyocytes. Administration of sunitinib to
animals reduces the phosphorylation of ACC in the myocar-
dium, which indicates a reduction of AMPK activity. Under
conditions of pressure overload, impaired AMPK signaling
might result in failed adaptation to systolic pressure overload

Sunitinib

Er
bB

2

AMPK 
(mitochondrial dysfunction)

Autophagy

Reversible
damage

V
EG

FR

PD
GF

R

Low apoptosis

Δ�훹 dissipation
ATP decrease

Cyt c release

Bad

mPTP

RSK

Reduced adaptation
to cardiac stress

Systemic
hypertension

Swollen
mitochondria

Disrupted cristae

Angiogenesis

Figure 3: Sunitinib-mediated cytotoxicity is mostly reversible. Sunitinib impinges on cellular energy homeostasis, via disrupting the
mitochondrial function through the inhibition of AMPK signaling. This induces mPTP opening, ΔΨ dissipation, swollen mitochondria,
disrupted cristae, and a massive decrease of intracellular ATP, but low cytochrome c release and apoptosis. Sunitinib has been suggested to
be also able to increase the autophagic flux and to inhibit ribosomal protein S6 kinase (RSK), thus activating Bad. By inhibiting VEGFR
and PDGFR, sunitinib impairs angiogenesis and reduces adaptation to cardiac stress.
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and might induce profound cardiac dysfunctions [132]. For
this reason, the inhibition of the AMPK signaling exerted
by sunitinib results in cardiac dysfunction and heart failure
under increased cardiac stress conditions and may be at least
partially responsible for the sunitinib-induced cardiotoxicity
[130]. In fact, it has been found that overexpression of a
mutant form of constitutively active AMPK protects cardio-
myocytes from stress induced by sunitinib [130]. Moreover,
a familial form of hypertrophic cardiomyopathy was found
associate with a mutation in an AMPK regulatory subunit,
which reinforces the hypothesis that AMPK signaling
impairment causes heart failure, although with not fully eluci-
dated mechanisms [133]. The AMPK activator 5-aminoimi-
dazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) has
been studied as a potential therapy for reducing myocardial
ischemic injury in both humans and animals. AMPK is a
purine nucleoside analogous and is supposed to be cardiopro-
tective acting on different pathways including reduction
oxidative stress and platelet aggregation [134]. Terai and col-
leagues have demonstrated that AICAR attenuates cell death
in rat cardiomyocytes exposed to hypoxic stress and this effect
was reversed by blocking AMPK signaling [135].

Based on this data, mitochondrial dysfunction might
likely be the main mechanism mediating sunitinib toxicity.
Another hypothesis involves the sunitinib-dependent cyto-
chrome c release and apoptosis, which might result from
the activation of the proapoptotic factor Bad following the
ribosomal S6 kinase (RSK) inhibition achieved by sunitinib
(Figure 3) [136]. By contrast, Zhao and colleagues showed
that sunitinib displays antiproliferative effect on H9c2 rat
cardiac muscle cells without inducing apoptosis. In fact, all
the apoptotic markers analyzed (including caspase 3 cleav-
age, cleaved PARP, and chromatin condensation) were not
detectable after sunitinib treatment, whereas, in these cells,
sunitinib dramatically increases the autophagic flux, as
revealed by the high expression of microtubule-associated
proteins 1A/1B-light chain 3 (LC3) II which suggests that
autophagy is another sunitinib-induced process associated
with its cytotoxicity [137].

We have discussed above that mitochondrial dysfunc-
tion can lead to skeletal muscle toxicity as well, including
skeletal muscle atrophy, weakness, and insulin resistance.
A few data are available on the effect of sunitinib on skel-
etal muscle. It has been found that skeletal muscle atrophy
in patients with cancer is a significant predictor of dose-
limiting toxicity in patients receiving sunitinib [138, 139]
and that cachectic patients experience a higher sunitinib-
related toxicity. Vice versa, more recently, some authors
found that sunitinib prevents cachexia and muscle wasting
prolonging survival of mice bearing a renal carcinoma
[140]. Sunitinib was able to reverse cachectic phenotype
and this was not associated to a direct antitumor activity
of this drug. Although conflicting with previous data, the
authors showed that skeletal muscle mass loss was also
prevented in cachectic mice bearing the C26 colon
carcinoma, possibly due to the ability of sunitinib to
reduce the overactivation of catabolic pathways normally
enhanced in cancer-induced cachexia, including STAT3
and MuRF-1 pathways [140].

5. Therapeutic Approaches for the Management
of Chemotherapeutic Agent-Induced Damage

Among the strategies aimed at reducing the side effects of
anticancer drugs [13, 141], physical activity and drugs
able to protect mitochondrial metabolism are receiving
increasing attention.

Exercise has been shown to mitigate doxorubicin-
induced ROS production. It also protects the heart against
ROS by enhancing endogenous antioxidant protective path-
ways [142]. Moreover, aerobic training is a potent modulator
of AMPK activity in cardiac tissue and in skeletal muscle
[143, 144]. Coven and colleagues have demonstrated that
acute exercise increases total AMPK activity as well as the
levels of the AMPK catalytic subunit isoforms and of all
AMPK downstream targets [145]. Given that chemothera-
peutic drugs induce downregulation of AMPK, future inves-
tigations should consider the effects of exercise on AMPK
activation on cardiac and skeletal muscle function.

It has also been demonstrated that exercise is a strong
activator of neuregulin release which leads to ErbB2 activa-
tion, this being a strategy to limit myocardial injury. In fact,
exercise protects against Ca2+-induced mPTP in myocar-
dium and reduces cell death due to doxorubicin administra-
tion, possibly by the activation of the neuregulin/ErbB2
survival pathway [146, 147]. Indeed, exercise prevents
doxorubicin-induced increases of proapoptotic mediators
such as Bax and caspase-3 cleavage [148].

Based on these premises, it seems conceivable that,
besides exercise, molecules acting as “exercise mimetics”
might also be of interest in the attempt to counteract the
adverse side effects of chemotherapeutical agents. This would
more likely occur when such adverse effects are mostly
reversible and mainly involving mitochondrial impairment,
like the ones induced by trastuzumab and sunitinib, while
they might be less effective or ineffective in the case of
doxorubicin-induced side effects.

Perturbation of energy homeostasis is a potent stimu-
lus leading to skeletal muscle atrophy [11, 16]. Therefore,
targeting the metabolism in order to regain the energy
balance might attenuate the adverse side effects of some
chemotherapeutics. We have above cited the peptide
SS31, localizing to mitochondria and able to inhibit
doxorubicin-induced ROS production in C2C12 myotubes
[64, 73]. Also ranolazine, a member of the “metabolic
modulators” group, has been found to attenuate both left
ventricular diastolic and systolic dysfunction and to pre-
vent the progression of cardiomyopathy, thus decreasing
mortality, in doxorubicin-treated animals [55, 149] and
in a model of cardiac cachexia [150, 151]. Notably, trime-
tazidine, another member of the “metabolic modulators”
group, similarly to ranolazine, is able to optimize cellular
energy management and has been found able to protect mito-
chondrial metabolism and to have effects similar to those
achieved by exercise [152–154]. This drug and others with
similar features are promising pharmacotherapeutics for
future research in this field. Moreover, further studies are
required to understand the long-term effects of anticancer
treatments on skeletal muscle in order to facilitate the devel-
opment of appropriate counter-measures.
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