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The gap between the development of new 3Rs (replace, reduce, refine) technologies and their implementation into routine 

use has been called the “Valley of Death”1. Reasons for reluctance in adoption of these approaches, particularly by industry, 

are often complex, and may be related to a lack of awareness of, or confidence in, 3Rs approaches. We report from the 

Valley of Death, on a long-term project developing the social amoeba Dictyostelium discoideum as an innovative 3Rs 

alternative to the use of animals for early identification of novel chemical entities (NCEs) with aversive and emetic 

properties, to provide guidance so others may learn from our experience. 

 The side-effects of nausea and vomiting are factors limiting drug development or may reduce patient compliance 

for established treatments (Holmes et al., 2009); identification of emetic effects of candidate drugs utilises in vivo animal 

studies. A bitter or pungent taste of a medication can also reduce patent compliance particularly in paediatrics (Mennella et 

al., 2013) and bitter tastants can be nauseagenic (Peyrot des Gachons et al., 2011). The taste profile of candidate drugs is 

assessed by the rodent Brief Aversion Taste Assay (BATA) (e.g. Soto et al., 2015). In these experiments, around 12 animals 

are housed individually with some confinement , and with water deprivation, where a specially designed apparatus allows 

the number of licks taken from bottles containing test substance to be measured (Clapham et al., 2012). Lick number 

provides an estimation of aversive or bitter taste (Soto et al., 2015). The BATA test falls within the European Union 

legislation 2010/63/EU (EU, 2010) regulating the use of animals in research (e.g. Soto et al., 2015) as it exceeds the 

threshold for a regulated procedure. Although this method provides the industry standard, it is time consuming and requires 

animal experimentation as does testing for emetic liability. 

 Microorganisms were proposed as an early non-animal methodology (NAM) in a tiered approach to identification 

of emetic liability and aversive properties of NCEs (Holmes et al., 2009). The social amoeba Dictyostelium discoideum (Fig. 

1) was considered particularly attractive due to its use at the time in pharmacogenetic studies (Waheed et al., 2014; Chang et 

al., 2012; Kelly et al., 2018) and its recognition by the US National Institute of Health as a biomedical model system, and its 

use as an innovative model in a range of biomedical-related studies (Muller-Taubenberger et al., 2013). 

 

 
Fig. 1: The social amoeba Dictyostelium discoideum  
(A) Dictyostelium is found in leaf litter of temperate forests, with a single cells life involving the consumption of microorganisms 
and division by binary fission. Cells are around 10 μm long, and have a structure typical of eukaryotes (with a nucleus, 
endoplasmic reticulum, and mitochondria) and are haploid. Cells can be grown in the laboratory in nutrient-rich media or in the 
presence of bacteria as a food source. (B) Following the initiation of starvation, Dictyostelium cells progress through a series of 
stages leading to differentiation and multicellularity leading to the formation of a mature fruiting body, around 1mm tall, 
consisting of a spore head held aloft by a stalk. Spores within this structure are dormant, and resistant to dehydration, and upon 
release germinate to form single-celled amoeba. (C) This development process can be easily reproduced in laboratory 
conditions, and can be employed as a useful model for development and pharmacogenetic studies. 
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 In a series of papers, we reported the utility of Dictyostelium as a model for bitter and emetic substance screening. 

These studies established the utility of Dictyostelium to detect emetic agents and bitter tastants (Robery et al., 2011), 

including proposing novel molecular targets (Robery et al., 2013). They demonstrated that the model responds (cell 

movement and shape change) in a concentration-dependent manner to bitter tastants occupying a diverse chemical space, and 

showed a correlation of response data from eleven bitter tastants between Dictyostelium and the rat BATA assay which itself 

correlated with human taste panel data (Cocorocchio et al., 2015; Otto et al., 2016). Overall, these results support the use of 

Dictyostelium to estimate the probability that an NCE will have a bitter, aversive taste and hence its continued consideration 

as a potential 3Rs model in the drug discovery and development pipeline. Comparisons between the human taste panel, 

rodent BATA and Dictyostelium for the detection of potentially aversive (particularly bitter tasting) substances shows some 

of the key features and advantages of each system (Tab. 1). It is unlikely that one system will provide comprehensive data 

regarding a NAM, but selective combinations of multiple systems, including Dictyostelium, may provide a fast, cheap, and 

animal reduction approach. 

 
Tab. 1: Comparison between bitter tastant model systems 

Parameter 

 Human taste panel 

 

 Rat BATA Dictyostelium 
cell behaviour 

Requires ethical 
approval/regulated in 
EU 

Yes Yes No 

Prior information on 
toxicity in vivo needed 

Yes Yes No 

Throughput capacity Relatively low Relatively low Relatively high 

Training required for 
subjects 

Yes Yes No 

Read out Perceived sensation & 
intensity  

Licks/unit time Cell behaviour 
(chemotaxis/cell 
shape) 

Automated data 
collection and analysis 
possible 

Yes Yes Yes 

Detects concentration 
related effects 

Yes Yes Yes 

ED50 measurement Yes Yes Yes 
Time taken per 
compound to identify 
ED50 

Hours Days Hours 

Face validity Excellent Yes, but readout is the 
response to the taste 
rather than the sensation 

Limited 

Construct validity Yes Yes Yes 

Predictive validity Total Yes, based on relatively 
limited data 

Yes, dependent upon 
additional validation 

Experimental genetic 
manipulation possible 

No Yes Yes 

Mechanistic studies 
feasible 

Potentially, but 
complex 

Yes, but complex Yes, relatively 
straightforward 

 

 Despite the progress made over the last 10 years, much of it in collaboration with the potential end-user (i.e., 

industry), we have been unable to obtain further support to finally validate (or not) the Dictyostelium assay as a 

reduction/replacement technology for the BATA assay and exit the Valley of Death. The basis for this lack of support is 

likely to be multifactorial. Firstly, a single celled organism, without a mouth, gut or nervous system and lacking a range of 

proteins that may provide a mechanistic target for aversive effects clearly has limited face validity. Secondly, in this area 

industry seems fundamentally conservative, with a strong focus on maintaining consistent testing using established models. 

Finally, funding environments remain highly selective, with grant applications often relying upon guidance from experts 

working in currently established technologies without a drive to supplant these technologies with new approaches, and the 

smallest criticism can lead to the rejection of a funding application. In an industry setting, significant financial investment in 

novel technologies without a strategic decision to move into that technology is likely to block the development of new 

initiatives. Industry commitment to novel 3Rs technologies is sometimes difficult to identify. It is particularly interesting to 

note that one shortcoming of approaches for the development of alternative methods is “little input from end users”, and that 
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methods were produced that “did not adequately meet the testing requirements of end users”2. In our study, although we had 

input from a major industry partner at an early stage in the project to address these points, this did not ensure continued 

research support to fully assess the potential for industry adoption. 

 We believe that the barriers we have encountered are not unique and hence the lessons we have learned may have 

wider applicability; we make some recommendations for researchers looking to develop other NAMs. 

 1. Develop a relationship with industry partners. Key to implementing a new technology is to address all 

concerns of the end user, in this case our industrial partner. Thus, listening to their concerns, and addressing these issues is 

essential for them to ultimately engage with the technology. Relationships with industry can also give access to unpublished 

animal or human data enabling comparison with NAM data2 to facilitate validation. One difficulty with engaging large 

multinational partners is that it may be hard to find the right person to contact regarding 3Rs-orientated research, and 

ensuring that applications for funding reach both the 3Rs coordinator and the decision maker in the section where the 

technology will be relevant. In our case, trying to develop a novel technology to improve identification of a potential side 

effect was not a standard type of novel drug-target or mechanism-related approach regarding a particular therapeutic area. 

Furthermore, we had developed good working relationships with various industry colleagues, who understood and supported 

the new technology, but perhaps we should also have focused on developing relationships with those who decide on future 

research initiatives and subsequent investment. 

 2. Publish, publish, and publish. Validation of new technologies is considerably strengthened through the 

peer review process in publishing papers. Publications provide clear evidence of innovation or discovery that has been 

reviewed independently, increasing trust in the technology. This approach also enhances outreach and supports further 

funding applications. The journals to publish in may also be worth considering – where impact factor may not be as 

important as access to the target audience, and should this audience be the relevant industry-focused group, or those with 

specific interest in 3Rs-technology or a broad readership from all areas of science and society?  

 3. Network. Develop impact through targeted industry and academic networks. Presenting talks at industry, 

academic or government meetings is likely to both improve the potential for engaging industry partners and will additionally 

provide feedback on concerns that still need to be addressed. We gave at least 12 presentations on our Dictyostelium research 

model including several to predominantly industrial audiences, with subsequent discussions related to project and funding. 

 4. Don’t give up but recognise the limitations. With the highly competitive state of funding, all potential 

avenues of support must be investigated to maximise chances of continued investment, so keep looking for alternative 

mechanisms of support. However, projects such as this, where funding is required at the final step to validate a method for 

reduction/ replacement, are particularly problematic as the final data set (a graph of ID50 values for a range of substances in 

Dictyostelium vs. rodent, and human data) may look like the pilot data just with more data points and a better correlation 

statistic. In addition, the number of animals that would be replaced if Dictyostelium exactly matched the predictability of the 

BATA assay would be relatively small, partially because of repeated use of individuals. We suspect that a few thousand 

animals are used globally in the BATA assay but the number used by industry is impossible to know. In competition with 

projects developing methods aimed at reducing/replacing a large number of animals in procedures with severity classified as 

moderate or even severe (particularly involving pain) it seems inevitable that a project aiming to reduce/replace fewer 

animals in a mild procedure will have a lower priority. Finally, our project focuses on detecting a potential drug side effect 

rather than investigating disease or drug mechanisms and this may also reduce the priority in competition with other projects. 

 Thus, following 10 years of research into developing a 3Rs model for screening NCE for emetic and aversive 

effects, we have arrived in the Valley of Death from which few 3Rs projects seem to emerge. Through highlighting key 

points in advancing the development of new 3Rs technologies that we have recognised through this time, we hope to help 

others champion their new technologies into industrial settings. 
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