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Introduction 

Pregnancy is a unique condition which greatly alters a women‟s physiology. In order to 

successfully meet the demands of a growing fetus, profound hemodynamic changes occur. Early 

in pregnancy peripheral vascular resistance (PVR) drops, inducing a substantial increase in 

cardiac output (CO).
1-7

 CO is the amount of blood the heart pumps into the arterial system 

(liters/minute). It is the product of stroke volume (SV) and heart rate (HR). SV is determined by 

the driving force filling the ventricles (preload), the contraction strength of the ventricle and 

resistance against which the heart has to pump (afterload). Blood pressure (BP) is a product of 

CO and PVR (BP = CO x PVR), linking these 3 hemodynamic parameters into one equation. 

 

During the course of pregnancy (placental and fetal growth, delivery) and possible pregnancy 

complications (preeclampsia, intra-uterine growth restriction, hypertension, sepsis, postpartum 

hemorrhage, thrombosis), large fluctuations in these hemodynamic parameters occur.
1, 8-21

 

Consequently, the interest in measuring these parameters during pregnancy has been growing.  

CO can be measured with several very different techniques. Most of them were primarily 

developed for use in critical care settings and non-pregnant populations. Many of them have 

been imported into obstetrics, however often without proper validation in pregnant women. 

Each technique has distinctive implications, benefits and limitations. It is of great importance to 

know these characteristics in order to select the most appropriate technique for the specific 

occasion.  

For example, if one wants to study hemodynamic adaptation to pregnancy in order to predict or 

manage hypertensive problems, intermittent but accurate measurements are appropriate. If one 

wants to compare findings between individuals, indexing for body composition can be 

important. On the other hand if one would like to monitor the hemodynamic condition during 

acute events, continuous operator independent trend monitoring can be more useful. 
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Important considerations are the degree of invasiveness, the degree of operator dependency, the 

availability, costs, whether intermittent measurements or continuous measurements are possible, 

the accuracy and precision in reflecting absolute values or trends and validation in pregnancy. 

The use of different techniques has sometimes resulted in conflicting findings, thus limiting the 

possibilities of comparing studies. 

This position statement aims at describing the characteristics of the different methods and 

standardizing the detection of CO and PVR in clinical practice and research studies on maternal 

hemodynamics. 
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Physiology in pregnancy 

Cardiac output 

As stated above, already in the first trimester of pregnancy a rapid increase in CO 

occurs which continues throughout the second trimester.
1, 22, 23

 There is a debate in 

literature concerning the changes in CO during the third trimester: some studies found a 

decline,
7, 24-26

 whereas others observed no change
2, 5, 6, 27

 or an increase towards term.
28, 29 

These differences have been attributed to variations in methodology and/or population 

characteristics.
24, 30

  

HR and SV and thus CO are very sensitive to changes in position and are highly variable 

among women.
6
 Doppler studies in the third trimester in normal pregnant subjects 

comparing measurements in lateral and supine positions, have shown no differences in 

cardiac output near term.
31, 32

 However, cardiovascular magnetic resonance (CMR) in 

pregnancy showed significant increment of left ventricle ejection fraction, SV and CO in left 

lateral position in third trimester pregnant subjects.
33, 34

 Therefore, it is highly recommended 

that CO-related assessments are performed in a left lateral position as early as from 20 weeks 

gestation. Multiple studies investigating CO during delivery using a modified pulse pressure 

method after arterial and central venous catheterization and CW ultrasound  suggested that  SV 

and CO increase during labor and immediately postpartum due to pain, maternal bearing-

down efforts and the increase in venous return by autotransfusion from the contracted uterus 

and the sudden release of inferior vena cava obstruction, which was readily accepted as 

common knowledge for several decades.
35-41

 Recent prospective studies using continuous 

measurement methods suggest a different perspective with similar baseline hemodynamic 

parameters during the course of labor (stage 1, 2 and postpartum) and substantial 

hemodynamic stress during contractions, without an increase in CO directly postpartum.
42, 

43
 

 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

 

Blood Pressure 

Mean arterial pressure (MAP) reduces by approximately 10% by the end of the second 

trimester. After this period, MAP starts to increase towards term.
1
 BP detection during 

pregnancy should be standardized to be taken in a seated or semi-recumbent position with 

the arm at the level of the heart and the feet supported or on the ground.
44-46

 When BP 

measurement is performed in association with the evaluation of CO for the calculation of 

PVR, BP should be taken as closely as possible to the CO assessment and in the same 

position as during CO assessment, to provide a reliable calculation of PVR from highly 

variable parameters in time. 

BP can be obtained invasively from appropriately levelled arterial catheters or non-

invasively using either a sphygmomanometer or automated oscillometric devices which are 

validated for use in pregnancy, all with an appropriate sized arm cuff.
44, 45, 47, 48

 Recent 

developments in technologies have provided new insight into the role of peripheral 

(typically brachial) and central (= aortic) BP, and the associated aortic stiffness.
49

 The role 

of aortic stiffness and central aortic BP in pregnancy remains to be fully determined.
50-54 

 

 

Peripheral Vascular Resistance 

The afterload represents the mechanical opposition to the movement of blood out of the left 

ventricle and can be divided into: a steady component (PVR) and a pulsatile component.
55

 

PVR is primarily due to the cross-sectional diameter of the resistance vasculature. During 

pregnancy the increased CO associated to the decline in MAP results in a decline in 

calculated PVR. The steady component of the afterload (i.e. PVR) decreases with 

pregnancy.
1, 5, 56-58

 The pulsatile component represents the load faced by the heart due to the 

response of the arterial tree to oscillations in pressure and flow.
55

 

The global arterial compliance increases with pregnancy, with most of the increase 

occurring early during gestation and remaining elevated thereafter. Reduced smooth muscle 

tone appears to be the likely mechanism responsible for increased vascular distensibility. 
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The increase in the global arterial compliance appears to be one of the body‟s adaptive 

mechanisms to accommodate greater intravascular volume without increasing mean arterial 

pressure. Moreover, the increased arterial compliance counterbalances the effects of 

reduced PVR and helps maintain the efficiency of left ventricle-to-arterial system 

mechanical energy transfer. Another aspect to underline is that increased compliance also 

balances the effect of reduced PVR on aortic diastolic pressure decay, thus preserving 

perfusion pressure to the coronary arteries and other vital organs.
55

 

The reduced PVR (steady component) allows to maintain MAP within the normal range at 

the time of greatly increased CO.
26

 Therefore, concomitant changes in arterial pulsatile load 

during normal pregnancy, especially arterial compliance, are such that the potentially 

deleterious effects of PVR reduction are mitigated.
55
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Methods of Cardiac Output measurements 

Invasive methods 

Pulmonary artery catheterization. 

A pulmonary artery catheter (PAC) is advanced via a brachial, subclavian or jugular vein, 

through the right atrium and ventricle into the pulmonary artery. The catheter has several 

lumens, injection and sampling ports and a thermistor and balloon at the tip, permitting various 

pressure (central venous pressure, pulmonary artery pressure and pulmonary capillary wedged 

pressure) and output measurements (illustrative video available via Kelly et al.).
59

 

The direct Fick method calculates CO by dividing the oxygen consumption (measured with a 

spirometer) by the difference in arterial and mixed venous oxygen content (sampled from the 

PAC). This method is rarely used in clinical practice. 

CO can also be measured by thermodilution based the law of conservation of energy. A bolus 

solution of known volume (5-10mL) and temperature (either ice-cooled or at room temperature) 

is injected as an indicator through a proximal port of the PAC and mixes with blood thereby 

cooling it. CO is deducted from curves of temperature difference over time between the 

injection site and the tip of the PAC using the modified Stewart-Hamilton equation. Intermittent 

CO values are obtained by averaging 3 to 5 thermodilution curves.  

Some manufacturers (Table 1.) incorporated an electric heating filament into the PAC 

permitting continuous CO trend measurements of every 30-60 seconds after initial and regular 

subsequent calibration with the intermittent bolus technique. The obtained values do not reflect 

the instantaneous CO but an average over the last 5 to 15 minutes. 

The technique is highly invasive with substantial procedure related risks and limited to ICU 

settings. Catheter insertion, performing measurements and interpreting the thermodilution 

curves can be technically challenging and requires specific expertise and training. Despite being 

considered the reference method for CO measurements, it is good to realize that even in optimal 

conditions the accuracy and precision of the method reflecting the “true actual CO” remains 

around 10-20% due to inherent technical limitations. It means that PAC, even as a reference 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

 

technique, can only reliably demonstrate changes in CO of at least 15-30%, being on average 

0.75-1,5 L/min for a mean CO of 5 L/min in adults.
60, 61

 

While popular in intensive care settings and obstetric critical care for hemodynamic monitoring 

and treatment guidance until the beginning of the 21st century, controversy about its 

risk/benefits ratio and the development of less invasive techniques make that PAC nowadays, 

especially in obstetrics, has mostly been abandoned, thereby depriving us of a generally 

accepted reference method to compare alternatives. Recommendation: PAC should only be used 

on strict clinical indication in critically ill pregnant women in either an intensive care setting of 

obstetrical critical care unit.   

 

Less or minimally invasive methods 

Pulse contour and pulse power analysis and pressure recording analytical method (PRAM) 

Pulse contour and pulse power analysis are less invasive methods to measure CO, both in 

essence based on the relation between arterial pressure and SV. By analyzing the peripheral 

arterial pressure waveform, taking several assumptions on aortic compliance, impedance and 

wave reflection into account, CO can be estimated in a continuous, real time and operator 

independent manner. The arterial waveform is obtained by an intra-arterial line. The methods 

require initial calibration to account for the assumptions on aortic compliance, impedance and 

peripheral resistance and regular subsequent recalibration, especially after major hemodynamic 

changes.  

The PiCCO® system (Figure 1) and Volume View/EV1000® systems (pulse contour; Table 1) 

use transpulmonary thermodilution similar to thermodilution with PAC. They require a central 

venous line and femoral or axillary arterial line with thermistor tip, and are only slightly less 

invasive as compared to PAC, limiting their use to ICU settings. In addition to CO and central 

venous and intra-arterial pressure, global end diastolic volume (as a measure of preload) and 

extravascular lung water (as a measure of pulmonary edema) can be obtained.   

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

 

LiDCOplus® system (pulse power; Table 1) dilutes small boluses of lithium chloride as 

indicator for calibration. Lithium can be administrated via a peripheral intravenous access and 

measured by a disposable sensor coupled to a peripheral arterial line. Being far less invasive, it 

can therefore be considered in obstetric high care settings. Lithium is contraindicated in the first 

trimester of pregnancy, being associated with an increased risk of Ebstein anomaly.
62

 However, 

a recent European registry-based study suggests the prevalence of Ebstein anomaly to be 

associated with maternal mental health problems generally rather than lithium specifically.
63

 

The amounts of lithium used to calibrate LiDCOplus® are very low, certainly as compared to 

standard therapeutic doses in pregnant women with bipolar disorders, however, lithium freely 

crosses the placenta.
64

 Two recent meta-analyses addressed the long term neurodevelopment 

outcomes in offspring with in utero exposure to lithium.
65, 66

 While preclinical data in animals 

suggested a potential adverse effect, clinical data in humans, although limited to 97 children, 

seem reassuring.
67

 The manufacturer does not advice against the use of LiDCOplus® in 

pregnant woman or during breast feeding, except in the first trimester.  

 

The same three manufacturers also developed systems requiring only a peripheral arterial line 

without prior calibration (Table 1). The assumptions for the algorithms are based on patient 

characteristics and experience obtained with their calibrated alternatives. Some of them permit 

calibration by an external source such as ultrasound. The pressure recording analytical method 

(PRAM) also derives CO continuously from a peripheral arterial waveform without need for 

prior calibration using a different algorithm (Table 1). 

LiDCOplus® has been validated in 18 postpartum severe preeclamptic women against PAC and 

showed good agreement with a low bias and percentage error within 30%.
68

 It has also been 

used in the second and third trimester of pregnancy.
69, 70

 It can serve as an alternative minimally 

invasive reference method in pregnant (after the first trimester of pregnancy) and postpartum 

women. It is mostly suited for short term real time continuous CO trend monitoring. 
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Most other systems (LidCOrapid®, FloTrac®, PiCCO®, ProAQT®, MostCare
up

®) have been 

used, but not been validated in pregnant women.
71-76

 Given the unique effects of pregnancy on 

arterial wall composition and function, it is questionable whether these techniques can be 

reliably used without prior calibration or validation, especially in rapidly changing 

hemodynamic conditions.  

Although substantially less invasive compared to PAC, the abovementioned techniques require 

insertion of arterial lines and performing dilution procedures to calibrate the devices, which in 

turn requires specific medical skill, training and learning curves. 

Recommendation: We recommend prior validation of these techniques in pregnancy before 

further use in clinical or research setting. LiDCOplus® can be used for short term real time 

continuous CO trend monitoring after the first trimester of pregnancy, taking the concerns on 

peripheral arterial cannulation and lithium use into account.  

 

Transesophageal Doppler monitor (TDM) 

With Transesophageal Doppler monitoring a 6mm Doppler probe is inserted either nasally or 

orally into the lower esophagus. It is then oriented and aligned to optimally measure blood flow 

using either continuous or pulsed wave Doppler in the thoracic aorta (Table 1). Continuous real-

time CO can be calculated by an algorithm assuming a correctly estimated fixed aortic cross 

sectional area, fixed blood flow distribution in the aorta and provided good probe alignment and 

limited probe movements. While most commonly used with sedation, the device is also 

tolerated in awake individuals as the procedure and discomfort is similar to the insertion of a 

nasogastric tube, notwithstanding the increased risk of aspiration in pregnant women. To obtain 

the necessary waveforms, experience with an intra-esophageal probe is required.  

TDM has been validated against PAC in 17 women with severe preeclampsia. While absolute 

values of cardiac output were consistently underestimated by 36%, in women above 40 years of 

age the accuracy increased.
77, 78
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Recommendation: TDM could potentially be of value for trend monitoring but needs further 

validation in pregnant women, especially in younger women. 

 

Non-invasive methods 

Cardiovascular magnetic resonance imaging  

CO can be calculated with CMR using either cine-CMR or phase contrast imaging technique 

without need for ionizing radiation or contrast agents. Cine-CMR produces high resolution 

images discerning the myocardium from the blood pool allowing detailed 3D measurements of 

cardiac dimensions during systole and diastole. It permits accurate and reproducible calculation 

of the SV without the necessity to rely on geometric assumptions. The phase contrast imaging 

permits flow analysis in a similar way as Doppler ultrasound, by relating measured phase shifts 

produced by moving blood in a vessel to velocity. When measured at the aortic root along with 

its diameter, LV output can be calculated. CMR data are usually acquired over multiple cardiac 

cycles with the subject holding its breath. CMR provides highly accurate information on cardiac 

functioning but only during the examination and cannot be used for continuous monitoring. In 

non-pregnant individuals, CMR is considered the reference method for non-invasive assessment 

of CO.
79, 80

 It is often the method of choice in complex structural heart disease. Operator 

dependency is less than for echocardiography, but CMR still requires specific expertise in 

obtaining high quality images and interpretation of the images. Thereby, a specific MRI device 

and set-up is needed. Subjects must lie still in a narrow tunnel during the image acquisition, 

which can be experienced as claustrophobic, especially in late pregnancy. The subject must be 

free of devices that might affect or react with the magnetic field, limiting the possibilities of 

simultaneous comparison of CO with other techniques. The availability and also costs make that 

it is not suitable for routine or bedside use. 

CMR is considered safe in the second and third trimester of pregnancy. While caution is advised 

in the first trimester, clinical data of occasional use seem to indicate that it is equally safe.
81

 

CMR has been evaluated next to TTE in 34 pregnant women in which CMR was proven to have 
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a higher reproducibility and smaller intra- and inter-observer variability.
82

 As with other 

methods it is essential not to forget to position pregnant women in a left lateral position as early 

as from 20 weeks gestation as CMR studies have clearly showed the effect of caval compression 

by the pregnant uterus on the CO.
33, 34

 A retrospective study by Romagano et al. showed CMR 

findings can alter the clinical management in pregnant women with complex cardiac disease or 

suspected aortic pathology in addition to the findings by TTE.
83

 CMR seems to be an accurate 

and precise method to assess maternal hemodynamics and is especially helpful in women with 

complex cardiac anatomy of suspected cardiac pathology. 

Recommendation: CMR could be considered as a reference method for CO assessment in 

pregnancy. However costs, availability and specific set-up limit its use for CO measurements in 

clinical and research settings.  

 

Transthoracic echocardiography 

Echocardiography and Doppler ultrasound have been widely used for the detection of 

CO during pregnancy,
3-8, 11-15, 24-30, 32, 56, 84-86

 demonstrating to be reliable against the 

invasive techniques.
3, 87, 88

 The general availability of the technique, low cost, 

portability and true noninvasiveness, make TTE an ideal method for rapid 

hemodynamic assessment in pregnancy. 

M-mode echocardiography 

Measurement of CO with this method is based on the calculation of left ventricular 

diastolic and systolic volumes from M-mode measurements. Left ventricular end-

diastolic and end-systolic diameters (D) are detected in the parasternal long axis view 

during M-mode tracing (Figure 2).
89

 Left ventricular volumes (V) are calculated according 

to the Teichholz formula from end-diastolic and end-systolic diameters V = 7D3 /(2,4 + 

D).
90

 SV is calculated as the difference between end-diastolic and end-systolic volumes. 

CO is calculated as the product of SV and HR derived from electrocardiographic 
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monitoring. Ejection fraction (EF) also can be calculated as the fractional reduction of the 

volumes (Supplementary video available on request). 

The Teichholz formula may potentially underestimate left ventricular volumes, 

particularly in patients with an extremely elliptic shaped left ventricle, with minor to 

major hemiaxis ratio < 0,33.
91, 92

 Because of the assumptions of the shape of the LV, which 

may change differentially across pregnancy in different mothers, this method has several 

limitations in the correct estimation of SV and CO.
93

  

Doppler studies 

The Doppler method estimates the area under the curve of the aortic flow velocity waveform 

while two dimensional echocardiography determines the area of the aortic valve. The diameter 

of the left ventricular outflow tract (LVOT) during systole is measured in the 2D parasternal 

long axis view; the aortic cross sectional area (CSA) is calculated from this diameter and is 

multiplied by the time-velocity integral of aortic flow (Figure 3). The SV is therefore obtained 

and CO can be calculated. This method has been validated against thermodilution in 3 studies 

including altogether 34 severally ill pregnant women.
3, 87, 88

  

LVOT CSA is determined from the maximum systolic diameter measured at the level of the 

valve annulus and averaged over three to five cardiac cycles.
94

 This can be done using M-mode 

or 2-D echocardiography although CO calculated by the latter method correlates most closely 

with invasive measurements.
4
 

The time-velocity integral of aortic flow can be measured with continuous wave Doppler (CW) 

or pulsed wave Doppler (PW). CW method is not incorrect, but in this case the velocity profile 

reflects the highest velocity of the moving blood cells; the measurement with CW is related to 

the cross sectional area (CSA) of the aorta more than to the annulus of the aortic valve. This will 

influence the calculation of SV and CO, which will result in higher values than those detected 

with PW.
94

 This is a general problem and a limitation when comparing SV, CO, and PVR from 

different studies performed with different methods (CW or PW). Most studies in pregnancy 

have measured flow across the aortic valve either recording velocities from the suprasternal 
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notch using CW Doppler
5, 8, 25, 95

 or from the apical five-chamber view using PW Doppler,
3, 21, 87, 

88
 one study reports on both methods.

28
 Also the coefficient of variation (6,7%) is lower as 

compared to Teichholz or Simpson method.
96

  

An advantage of the Doppler method is clearly its assessment of „hemodynamics‟, as it captures 

the blood velocity profile quite accurately. However, it is important to note that this method will 

not provide any information on the volumes of the heart in the filling state, nor following 

contraction. 

2D and 3D echocardiography 

LV volumes can be measured using 2D or 3D echocardiography. The detection of LV end-

diastolic and end-systolic volumes allows for the calculation of SV and, therefore CO. Volume 

calculations derived from linear measurements for the calculation of SV, in fact, may be 

inaccurate, since they rely on the assumption of a fixed geometric LV shape. Therefore, the 

Teichholz and Quinones methods are no longer recommended for clinical use,
 
as outlined in a 

previous paragraph.
95, 97

 

The most commonly used method for 2D echocardiographic volume calculations is the biplane 

method of disks summation (modified Simpson‟s rule), which is the recommended 2D 

echocardiographic method in any patient population (Figure 4).
97

 This method requires 

experienced echocardiographers in order to obtain reliable volume measurements and is much 

more operator-dependent than the Doppler technique. Besides, in pregnancy it can be more 

difficult to obtain an acceptable acoustic window due to body composition changes. 

Several studies have used 3D echocardiographic for the detection of left ventricular volumes in 

healthy subjects with a wide variability from study to study probably due to differences in 

populations, echocardiographic equipment, and analysis software, as well as variability in 

measurement techniques.
97

 

Despite ultrasound experience in most obstetric and fetal maternal medicine specialists, TTE 

requires specific echocardiographic expertise which can be obtained by training from 

cardiologists or certified echocardiographers.  
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Recommendation: TTE has been mentioned as the new reference standard for measuring 

CO in pregnancy. However, it remains a specialized technique in which obstetricians 

and/or obstetric anesthesiologists are only rarely trained. We therefore recommend 

more obstetricians with interest in maternal critical care should be trained in the 

technique to enhance the availability of TTE for hemodynamic monitoring in clinical 

care. 

 

Alternative Doppler technique  

Lately a new method has been introduced in pregnancy for the detection of SV and CO, the 

UltraSonic Cardiac Output Monitor (USCOM 1A®).
9, 10, 98-108

 This is a non-invasive Doppler 

method to determine hemodynamic values by placing a non-imaging continuous-wave Doppler 

transducer on the suprasternal notch to determine ascending transaortic blood flow (Figure 5). 

After manually adding a woman‟s BP, body mass and height into the system, USCOM 1A® is 

able to calculate the following cardiovascular parameters: CO, HR, PVR, inotropy index (INO) 

and time flow correct (TFC). This method is based on an algorithm, which takes into account 

the patient's height, to provide the outflow tract diameter. A limitation of this assumption is that 

it does not take into consideration a possible modification of aortic diameter and compliance 

during pregnancy. On the other hand it is easy to use and much less operator-dependent 

compared to echocardiography. A individual training session before using USCOM 1A® is 

advised, including up to 50 test cases prior to the use for research of clinical purposes.
106

  

To date, the validation of this method during pregnancy was performed against 2-D and 3-D 

TTE in respectively 98 and 92 women and showed good reproducibility, but variable accuracy 

and precision depending on which trimester and which USCOM waveform tracing technique 

was used.
102, 106

  

Recommendation: Despite the necessity for further validation, USCOM 1A® with its user 

friendly profile is promising and can provide important information about the maternal 

hemodynamic condition in clinical settings and at the outpatient clinic. 
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Inert gas rebreathing technique 

Using the technique, an O2 enriched mixture containing of two inert gases, one blood soluble 

(N2O) and one insoluble (SF6), are administered through a closed breathing assembly. Relative 

levels over a few respirations are measured by a gas analyzer in the mouthpiece, from which the 

Innocor® monitor calculates CO relying on Fick‟s principle (Figure 6). The method is based on 

the assumption that the rate of disappearance of the blood soluble gas from the alveolar space is 

proportional to the pulmonary blood flow being CO. The insoluble gas helps to ascertain the 

long volume from which the soluble gas disappears. The technique can be used in rest and 

during exercise and is operator independent.
109, 110

 

It is good to mention the inert gas rebreathing 

technique only represents the ventilated part of the lungs, so in subjects with increased alveolar 

dead space assumptions on CO may not hold. Also, in subjects with pulmonary edema such as 

in severe preeclampsia, there is no steady respiratory state and the assumptions may not apply. 

The technique has been validated in adults with heart failure against PAC using thermodilution 

and direct Fick method.
109

 While used in several studies in pregnant women, the method has not 

been validated in pregnancy.
17, 110-112

  

Recommendation: Further evaluation of the inert gas rebreathing technique during pregnancy, 

including the feasibility of the method for instance during labor, is needed prior to 

implementation in clinical care.  

 

Impedance cardiography and bioreactance 

The technique uses electrodes to transmit a very low amplitude high frequency current through 

the thorax and detect impedance changes (bioimpedance) or phase shifts (bioreactance) induced 

by changes in blood flow throughout the cardiac cycle. Interferences from other sources (e.g. 

respiration, movement, other devices) are filtered out. From these changes SV and CO can be 

derived. Some techniques also rely on impedance changes measured more peripherally. Several 

devices exist, each relying on specific algorithms with distinctive features and filters to remove 
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distortions intended at improving accuracy and signal stability. As such, by using 4-6 cutaneous 

electrodes on the thorax, CO can be measured in a continuous, easy, relatively cheap and 

operator independent way with high repeatability (E.g. Figure 7).
113

 Some devices reflect the 

actual instantaneous CO and can be used to assess rapid changes, others reflect mean CO over 

the last minute. 

Given its accessibility and ease of use which makes it operator independent, impedance 

cardiography (ICG) became very attractive for CO measurements in both pregnant and non-

pregnant populations.
96, 114-117

 Nevertheless, most validation studies in both non-pregnant and 

pregnant women, using any of the available devices, have not been able to show sufficient 

accuracy and precision as compared to reference methods like PAC or TTE in reflecting 

absolute CO values.
10, 96, 105, 106, 117-121

 As such, all these devices (Table 1) are at the moment 

probably not suited in reflecting “true CO” values. Nevertheless these techniques might be very 

convenient to monitor trends and relative changes over a shorter period of time as e.g. during 

labor, caesarean section or for monitoring therapy in acute conditions.  

Recommendation: Before further use in pregnancy for trend monitoring we would recommend 

validation of bioimpedance and bioreactance devices for this purpose against established 

reference methods, which is under way for several devices.   

 

Non-invasive pulse contour analysis 

Similar to the minimally invasive counterparts, these devices rely on the on the relation between 

arterial pressure and SV and derive CO from the peripheral arterial waveform. The arterial wave 

form is obtained by several sometimes innovative methods varying from oscillometric BP cuffs 

to high tech volume clampfinger clips at various sites (brachial artery, finger, ankle). Multiple 

non-invasive pulse contour analysis devices have been developed over the last years (Table 1), 

all easy to use and operator independent (E.g. Figure 8). Nevertheless, validation studies both 

outside and during pregnancy often show inappropriate accuracy for absolute measurements.  
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Recommendation: While potentially interesting for short term trend monitoring, the same 

concerns and limitations apply as for their minimally invasive analogues and prior validation 

during pregnancy for this purpose remains essential before implementation in clinical or 

research setting.
122, 123
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Comparing methods of CO measurement 

When comparing techniques for CO determination both accuracy (potential of the technique in 

reflecting the “true CO”), as well as other factors like ease of use, degree of invasiveness, costs 

and operator dependency are to be taken into account. Ideally, the accuracy and precision (how 

often the same value is obtained if measurements are repeated) of a method are compared to a 

reference method. Usually an investigated technique is considered appropriate if accuracy and 

precision are at least equivalent to the reference method. However, one could still consider the 

acceptance of a technique with inferior accuracy and precision if the additional benefits 

outweigh this inferiority for its specific intended use. 

It is important to realise that CO, being the product of HR and SV, is highly variable in time. 

Therefore comparative measurements are best performed simultaneously at the exact same time. 

Also, all reference methods have inherent errors which can be calculated by assessing the 

coefficient of variation (calculated as the standard deviation / mean). As the traditional reference 

method, PAC with thermodilution, is not justifiable for comparative studies in pregnant woman 

anymore, LidCOplus®, CMR and TTE (using Doppler method) are probably the best 

alternatives, all with their inherent limitations. 

 

Several statistical approaches to validate new methods of CO measurement have been used in 

the past. Bland and Altman introduced a method in 1986 where bias (mean difference) and 

limits of agreements (1.96 * SD around the bias, wherein 95% of all points fall) are depicted in 

a simple plot.
124

  

For absolute CO measurements, Critchley and Critchley
125

 suggested that in all comparisons 

between techniques, mean CO, bias, limits of agreement and percentage error (limits of 

agreement divided/mean CO; PE) should be reported. The accuracy and precision of an 

investigated technique is traditionally considered sufficient if bias is low and PE is within +-30 

%. However, this is based on the precision of PAC thermodilution technique and ideally the 
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calculated precision of the used reference method in the study should be taken into account 

instead of the generally accepted precision of thermodilution.
125

  

 

To compare ability of CO monitoring devices, differences in CO are best plotted in a four 

quadrant or polar plot. Concordance rate, angular bias and radial limits of agreement can be 

calculated and added along with an exclusion zone for small differences in both graphs. The 

four quadrant plot is a visually more intuitive method to show trending ability, the polar plot is 

statistically a little more advanced but more difficult to interpret.
126, 127

 

For more in-depth information on the statistical approach of comparing methods, we 

recommend several recent reviews by Odor et al., Hapfelmeier et al., Cecconi et al., Saugel et 

al. and Critchley et al..
60, 61, 126-128
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Interpreting Cardiac Output measurements in pregnancy: when and how to index or 

normalize?  

The scientific basis and accuracy of CO measurement aside, the issue of how to interpret CO in 

pregnancy remains a contentious topic.  

Normal CO at rest ranges between 4-8 L/min in healthy non-pregnant women, but can rise up to 

more than 15-20 L/min during exercise.
129-134

 It shows that CO is a highly variable parameter 

which can easily be raised or lowered by modifying SV and/or HR. This flexibility permits the 

cardiovascular system to both meet varying tissue oxygen requirements and maintain 

cardiovascular homeostasis in a wide range of conditions, but requires a complex interplay with 

other cardiovascular parameters like vascular resistance, compliance, redistribution properties 

etc.. 

This variability is also influenced by body size, basal metabolic rate, degree of fitness, 

advancing age and gestational age. These factors have a significant impact on maternal tissue 

metabolic oxygen demands with advancing gestation in pregnancy, and by definition, impact on 

the interpretation of measured CO data in pregnancy. For example, a CO of 6 L/min is 

considered physiologically normal in a 35yr old woman weighing 60kg at 24 weeks‟ gestation, 

but may be considered hypodynamic in a 25yr old who reaches a weight of 90kg at 41 weeks‟ 

gestation. 

Determining normality within this variability can thus become challenging. Researchers and 

clinicians have divided approaches to overcome this issue. Some prefer to use the raw, absolute 

data despite its variability, considering that this actual value is the most accurate. Others opt to 

index the absolute values in an attempt to correct for the abovementioned factors, still 

acknowledging that none of the indexing tools can fully compensate for the whole complexity 

of the variation and the inherent limitations of the indexing tool itself which could introduce an 

additional error in the value. 
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Indexing can be done for actual maternal BSA (body surface area), pre-pregnancy BSA or using 

pregnancy CO ranges: 

Indexing by maternal BSA at each visit 

The relationship between body mass and metabolic rate is negatively allometric, resulting in 

metabolic rate (and by definition oxygen demand) being more closely related to BSA than 

BMI.
135

 Neither BSA nor BMI changes accurately reflect changes in pregnancy due to the 

uterus, amniotic fluid and fetus and maternal body composition of fat and muscle so any use of 

BSA or BMI must take into account the inherent assumptions involved in this calculation. Even 

correction of CO for BSA has a known limitation – inaccuracy at extremes of body weight and 

height, where this indexing is likely to be unreliable whether pregnant or not. A limitation 

specific to pregnancy is the assumption that metabolic activity in pregnancy is the same as the 

non-pregnant state. Available data indicates that the basal metabolic rate in pregnancy is some 

1.5-times higher than the non-pregnant state, suggesting that indexing for BSA is systematically 

under-correcting for the potential increase in pregnancy metabolic and oxygen demands.
136

 

Indexing by pre-pregnancy BSA 

This allows all measurements to start from the same „point‟ but does not take into account for 

change in weight and significant increase in metabolic demands with advancing pregnancy. 

Normalizing using pregnancy CO reference ranges 

Gestational age and preferable device specific reference ranges for hemodynamic parameters in 

normal pregnancy constructed from women of differing ages and weights would permit the 

interpretation of measured CO as a fraction of expected CO.
137

 Individual values can then be 

converted to gestation specific z-scores, multiples of the median (MoMs) or percentiles to allow 

comparison. Although this represents the most accurate way to index CO measurements in 

pregnancy, the availability of such constructed reference ranges is currently limited. 

 

Despite all controversy, it is probably much more important to consider when and how to index 

rather than whether or not to index. There are certainly situations in which indexing can offer a 
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different perspective and, thus, be of additional value in interpreting the raw absolute data. It 

very much depends on the indication why cardiac output was determined. 

When comparing single measurements between individuals or assessing one‟s cardiovascular 

status based on a single measurement (e.g. to predict her risk of preeclampsia or degree of 

shock), indexing can offer a distinctive perspective that helps interpreting the absolute data. 

When comparing evolution in CO over a longer (e.g. CV adaptation in the course of pregnancy) 

or shorter (e.g. effects of treatment, CO during course of labor or acute illnesses) period of time, 

the differences between trajectories or absolute values are of importance and the individual 

becomes their own control. The additional value for indexing is then far less prominent. 
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Overall recommendations for clinical use 

 At present, there is no ideal method for CO measurement in pregnancy. All methods 

have particular strengths and limitations. Which method is best selected, strongly 

depends on the indication why CO needs to be assessed.  

 PAC should only be used on strict clinical indication in critically ill pregnant women, 

which is extremely rare. 

 CMR provides accurate CO values in pregnancy and could be considered as a reference 

technique for comparison, if available and simultaneous measurements are possible.  

 TTE using Doppler technique is more readily available and can be considered as an 

alternative reference technique for CO determination in pregnancy. 

 Taking the necessity for an arterial line and concerns of lithium use in pregnancy into 

account, pulse pressure analysis using lithium calibration with the LiDCOplus® system 

can be used for accurate CO determination and trend analysis. 

 Other techniques like non-imaging continuous-wave Doppler, impedance cardiography, 

inert gas rebreathing techniques and non-calibrated pulse contour analysis can be 

promising, but need prior validation in pregnancy for absolute values and/or trend 

monitoring.  

 Different techniques measure in different ways relying on different assumptions and 

should not be used interchangeably. 

 When individual measurements of CO over longer periods in time (e.g. each trimester) 

are indicated, CMR, TTE (Doppler) or inert gas rebreathing technique is the preferred 

method. 

 When continuous monitoring of CO over a shorter period of time is indicated (e.g. 

during labor, or to monitor short-term treatment), pulse pressure/contour analysis or 

impedance cardiography is most applicable. 

 When rapid and instantaneous evaluation of CO is indicated, TTE or USCOM 1A® 

could be the method of first choice. 
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 When CO is assessed in a supine pregnant woman, she should be turned to a left lateral 

position of at least 15 ° as from 20 weeks of gestation. 

 Inherent limitations in the precision of most reference techniques mean that only 

changes of at least 20% can be reliably be considered as valid.  

 BP should be taken in the seated or semi-recumbent position with the arm at the level of 

the heart and the feet supported or on the ground.  

 When BP is taken for the calculation of PVR, it should be taken at the end of the 

examination in the same position as during the method used to determine CO. 

 Depending on the indication for CO determination, indexing can be of additional value 

in interpreting absolute CO values. 

 In case of indexing of the hemodynamic parameters, this is ideally performed from - 

where available - device specific, established reference ranges from normal pregnancies 

that take into account maternal age, height, weight and gestational age.  

 Comparison of techniques should be performed using mean values bias, limits of 

agreement and percentage error for absolute values and four quadrant plot or polar plot 

for trend monitoring. 
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Recommendations for future research 

 Non-invasive methods for measurement of CO should be validated in both healthy and 

complicated pregnancies.  

 Hemodynamic adaptations should be studied in pregnancy complications such as 

preeclampsia. 

 The effects of therapies on hemodynamic values in hypertensive and critically ill 

pregnant women  should be investigated. 

 The hemodynamic responses to and the value of functional hemodynamic testing during 

pregnancy should be studied.  
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Figure legends: 

Figure 1. Overview on PiCCO® technology. After thermodilution calibration by 

bolus injection through a central venous catheter (CVC), the PiCCO®  catheter 

located in a peripheral artery continuously sends the arterial waveform to the 

output monitor and several hemodynamic parameters, including cardiac output, 

are calculated. 

 

  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

 

Figure 2. Transthoracic echocardiography using M-mode tracing to measure end 

diastolic diameter (EDD) and end systolic diameter (ESD) of the left ventricle in the 

parasternal long axis view. Left ventricular volumes are calculated according to the 

Teichholz formula from EDD and ESD and stroke volume (SV) is calculated as the 

difference between end-diastolic and end-systolic volumes. Cardiac output is 

calculated as the product of SV and heart rate derived from electrocardiographic 

monitoring.  
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Figure 3. Transthoracic echocardiography using the Doppler method for 

calculation of left ventricular cardiac output. In the parasternal long axis view, the 

diameter of the left ventricle outflow tract (LVOT) during systole is measured, 

which then is used to determine LVOT cross sectional area (CSA). By pulsed wave 

Doppler the LVOT velocity time integral (VTI) is measured. Multiplying the LVOT 

CSA by LVOT VTI provides the stroke volume (SV) of the left ventricle and by 

multiplying SV times heart rate (HR) provides the left ventricular cardiac output 

(CO). 

 

Figure 4. Transthoracic echocardiography from the apical four chamber view. By 

using the biplane method of disks summation (modified Simpson's rule) left 

ventricular end-diastolic and end-systolic volumes are calculated, which allows for 

the calculation of stroke volume and therefore cardiac output.  
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Figure 5. With the USCOM 1A® device a non-imaging continuous wave Doppler 

transducer is placed on the suprasternal notch to determine ascending transaortic 

blood flow. After manually adding the blood pressure, body mass and height of the 

subject, USCOM 1A® is able to calculate various cardiovascular parameters, 

including cardiac output. The method is based on an algorithm to provide the left 

ventricular outflow tract diameter of the subject. 

 

Figure 6. Inert gas rebreathing technique: an O2 enriched mixture containing two 

inert gases (blood soluble N2O and insoluble SF6) is administered through a closed 

breathing assembly. Relative levels over a few respirations are measured by a gas 

analyzer in the mouthpiece, from which the Innocor® device as shown on the right side of the image, calculates cardiac output relying on Fick’s principle. 
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Figure 7. Impedance cardiography uses 4-6 cutaneous electrodes on the thorax to 

transmit a very low amplitude high frequency current and to measure impedance 

changes by changes of blood flow throughout the cardiac cycle. From these 

changes stroke volume can be derived. On the left side an example of impedance 

signals and abnormalities is shown, on the right side the PhysioFlow®  device is 

shown in use during exercise testing. ECG=electrocardiogram. d(HD-

Z)/dt=derivative impedance signal divided by derivative over time. 

 

Figure 8. With peripheral pulse contour analysis the arterial waveform is obtained 

either by oscillometric blood pressure cuffs or, as shown here by the ClearSight®  

device, by photo-plethysmographic volume recordings. Since the device is limited 

to 8 hours of continuous monitoring on one finger, two cuffs on two fingers are 

used to guarantee uninterrupted monitoring. 
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Table 1: Overview on methods for cardiac output monitoring. 

 

Invasiveness Technique Device (Manufacturer) if applicable 

Invasive 

 Pulmonary artery catheterization with 

intermittent thermodilution 

 

Pulmonary artery catheterization with 

thermodilution and continuous CO 

measurements 

Swan Ganz continuous cardiac output catheters (Edwards Lifesciences Corporation) 

TDQTM and OptiQ® continuous cardiac output catheter (ICU Medical Inc.) 

Less or minimally invasive 

 Peripheral pulse contour analysis with 

transpulmonary thermodilution calibration 

Volume View/EV1000® (Edwards Lifesciences Corporation) 

PiCCO® (PULSION medical systems SE) 

Peripheral  pulse power analysis with lithium 

calibration 

LiDCOplus® (LiDCO) 

Peripheral pulse contour analysis without 

calibration 

ProAQT® (PULSION medical systems SE) 

FloTrac/Vigileo® (Edwards Lifesciences Corporation) 

CardioFloTM (ICU Medical Inc.) 

Peripheral pulse power analysis without 

calibration 

LiDCOrapid® (LiDCO) 

Peripheral pressure recording analytical 

method without calibration 

MostCareup® (Vytech) 

Transesophageal continuous-wave Doppler 

monitor 

CardioQ-ODM® (Deltex Medical Ltd.) 

Transesophageal M-mode and pulsed-wave 

Doppler monitor 

HemoSonic 100® (Arrow International) 

Non-invasive 

 Cardiovascular magnetic resonance imaging  

Transthoracic echocardiography  

Non-imaging continuous-wave Doppler  USCOM 1A® (Uscom Limited) 

Inert gas rebreathing  Innocor® (Innovision) 
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Bioimpedance 

 

PhysioFlow® (Manatec Biomedical) 

BioZ® (CardioDynamics) 

Niccomo/Cardioscreen 2000/Cardioscreen 1000 (Medis) 

AcqKnowledge® (BIOPAC systems Inc.) 

NCCOM® (Bomed Medical) 

ICG (Philips Medical Systems) 

NICOMON (Laresen and Toubro Ltd.) 

CSM3000 (Cheers Sails Medical) 

Whole body bioimpedance NICaS® (NImedical) 

Bioreactance 

 

Cheetah NICOM® (Cheetah Medical Inc.) 

AESCULONTM (Osypka Cardiotronic) 

Non-invasive pulse contour analysis 

 

Vicorder® (SMT medical GmbH&Co. KG) 

Mobil-O-Graph® (I.E.M. GmbH) 

SphygmoCor® (AtCor Medical Holdings Limited) 

ClearSight® (Edwards Lifesciences Corporation) 

CNAP® (CNSystems Medizintechnik GmbH) 

Finometer PRO® (Finapres Medical Systems B.V.) 

Portapres® (Finapres Medical Systems B.V.) 

Non-invasive pulse power analysis with 

continuous non-invasive blood pressure  

LiDCOrapid® with CNAPTM (LiDCO) 
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