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Optimal B-Spline Mapping of Flow Imaging
Data for Imposing Patient-Specific Velocity
Profiles in Computational Hemodynamics

Alberto Gomez , Marija Marčan, Christopher J. Arthurs , Robert Wright,
Pouya Youssefi, Marjan Jahangiri, and C. Alberto Figueroa

Abstract—Objective: We propose a novel method to
map patient-specific blood velocity profiles (obtained
from imaging data such as two-dimensional flow MRI or
three-dimensional color Doppler ultrasound) to geometric
vascular models suitable to perform computational fluid
dynamics simulations of haemodynamics. We describe the
implementation and utilization of the method within an
open-source computational hemodynamics simulation
software (CRIMSON). Methods: The proposed method es-
tablishes pointwise correspondences between the contour
of a fixed geometric model and time-varying contours con-
taining the velocity image data, from which a continuous,
smooth, and cyclic deformation field is calculated. Our
methodology is validated using synthetic data and demon-
strated using two different in vivo aortic velocity datasets:
a healthy subject with a normal tricuspid valve and a
patient with a bicuspid aortic valve. Results: We compare
our method with the state-of-the-art Schwarz–Christoffel
method in terms of preservation of velocities and execution
time. Our method is as accurate as the Schwarz–Christoffel
method, while being over eight times faster. Conclusions:
Our mapping method can accurately preserve either the
flow rate or the velocity field through the surface and can
cope with inconsistencies in motion and contour shape.
Significance: The proposed method and its integration
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into the CRIMSON software enable a streamlined approach
toward incorporating more patient-specific data in blood
flow simulations.

Index Terms—CFD, patient-specific modelling, flow pro-
file, magnetic resonance imaging, Doppler ultrasound.

I. INTRODUCTION

PATIENT-SPECIFIC computational fluid dynamics (CFD)
enable a high-resolution, non-invasive description of space

and time-resolved blood flow [1]. CFD models can be con-
structed from relatively few measurements of blood veloc-
ity, anatomy and pressure [2]. Typically, the patient’s vascular
anatomy is obtained by segmenting 3D computed tomography
(CT) or magnetic resonance (MR) image data. Performing ac-
curate anatomical segmentations has always been recognised as
a key piece in the puzzle of patient-specific modelling. Signif-
icant efforts have been made to produce robust segmentation
algorithms to capture the complexity of vascular structures [3],
[4]. However, not nearly enough attention has been devoted to
the task of incorporating patient-specific velocity data into the
simulation pipeline. With few exceptions, the standard approach
has been to obtain a volumetric flow waveform from the veloc-
ity data, and then to impose an idealised velocity profile (e.g.,
plug, parabolic, Womersley) [5] at the corresponding geomet-
ric model face. It is however well-known that the impact of
idealised inflow velocity profiles in CFD simulations is large
[6]–[8], particularly in the ascending thoracic aorta, where the
flow is highly dynamic and displays complex patterns [9]–[12].
The complexity increases in pathological conditions such as
aortic valve disease and artificial and bio-prosthetic valves [13].
Of particular interest is Bicuspid Aortic Valve (BAV), the com-
monest congenital cardiac defect, with a prevalence of 1–2%.
Its morbidity and mortality amount to more than that of all other
congenital cardiac conditions combined [14]. It is commonly
associated with aneurysms of the thoracic aorta [15], and the
hemodynamic link between BAV morphology and aneurysm
formation is the current topic of intense research.

In this paper we propose a new method to calculate patient-
specific, time-resolved velocity profiles from image data (2D
flow MRI and 3D colour Doppler) that optimally fit a fixed ge-
ometric model obtained from a single anatomical image (CT or
MRI). We use a novel scheme which allows mapping a flat face
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of the geometric model to a segmented velocity image, which
allows to incorporate the velocities from the image into the
model. The main novelties of this paper are twofold: (1) formu-
lation of an optimal B-spline mapping where the user can choose
between maintaining flow rate or velocity distribution, and (2)
implementation of the method into the CRIMSON (Cardiovas-
culaR Integrated Modelling and SimulatiON) platform [16], an
open-source blood flow simulation software which enables ac-
cessibility of the proposed method to the wider community.

This paper is organised as follows: related work on blood
velocity measurements for patient-specific hemodynamic mod-
elling is discussed in Section II. Section III describes the tech-
nical details of the method: obtaining a velocity profile from
velocity data and mapping a fixed geometric model to the ve-
locity profile (Section III-A), cyclic interpolation of the profiles
over the cardiac cycle (Section III-B), controlling the trade-
off between velocity and flow (Section III-C), and method
implementation in CRIMSON [16] (Appendix B). Section IV
describes the synthetic and in-vivo data. Section V describes
the results. Lastly, Sections VI, VII and VIII provide a critical
discussion of the results, method limitations, and conclusions.

II. RELATED WORK

The most widespread technique for measuring blood veloc-
ity in the clinic is Doppler ultrasound [17], [18]. Pulsed Wave
Doppler (PWD) ultrasound allows measuring the component
of blood velocity parallel to the sound direction over time at a
given location. Doppler measurements must therefore be angle-
compensated [19]. To use PWD to prescribe boundary condi-
tions in CFD, one must assume an idealised velocity profile
which is adjusted to match the mean or maximum velocity. If
available, 3D Colour Doppler Imaging (CDI) can be used to ob-
tain velocity over the entire cross-section of a vessel [20], [21],
allowing for specification of patient-specific velocity profiles.
Velocity measurements over the vessel cross section can also
be obtained with 2D flow MRI [22]. Hardman et al. [6] com-
pared CFD results obtained using an idealised profile (defined
by centre-line velocity data from flow MRI), with i) a profile
defined by single through-plane velocity components, and ii) a
profile defined by a three-component velocity data. Their study
suggests that while use of three-component velocity does not
have a major influence in the CFD results (except for capturing
finer details in the flow helicity), using the through-plane com-
ponent of the velocity significantly affects the simulation results
compared to those obtained using an idealised profile. Chandra
et al. [23] also concluded that the use of 3-component veloc-
ity data has little impact on the simulation results compared to
1-component data. Similar findings appeared in [8], for healthy
subjects. It should be noted, though, that a more recent study
[12] on patients with abnormal aortic valve suggested that ne-
glecting in-plane velocities at the inlet yield underestimated av-
erage and maximum velocities in the ascending aorta. Youssefi
et al. [13] used through-plane patient-specific velocity profiles
to assess differences in flow asymmetry and wall shear stress in
patients with an array of valvular pathologies, finding significant

differences compared to healthy volunteers for whom the aortic
inflow velocity can be reasonably approximated by a parabolic
profile.

A key problem to incorporate patient-specific velocity profiles
in CFD simulations is the spatial mapping between the (gener-
ally fixed) geometric model inlet or outlet face and the time-
varying velocity data. The geometric data and the velocity
images may be acquired at different times and even using dif-
ferent techniques (e.g., CT-derived anatomy and MRI velocity
data). The vessel motion (bulk and pulsatile changes in cross
section) recorded in the velocity data is generally not incor-
porated into the CFD model, which often assumes the vessels
to be rigid [5], [6], [8], [23]–[26]. Only when anatomical and
velocity data come from the same source, and the CFD model
accounts for a moving wall (e.g. a fluid-structure interaction
simulation [1]), the mapping between velocity and geometric
model might not be needed. Typical modelling approaches have
assumed that the spatial mapping between geometric model and
velocity data is not necessary because the deformations of the
vessel of interest are small [5], [24], [27], e.g. at the carotid
arteries.

Leuprecht et al. [28] proposed a surface fitting of the ve-
locity measurements limited to the inlet cross section of the
geometric model. This method requires fine-tuning of the fitting
parameters to avoid non-zero velocity values at the contour. A
simpler approach was proposed by Hardman et al. [6], who used
a mapping limited to a rigid alignment of the centroids of the ge-
ometric model inlet contour (obtained from CT) and the velocity
data (obtained from flow MRI). This approach was insufficient
because in addition to a bulk motion during the cardiac cycle,
some vessels experience significant changes in cross-sectional
area. The ascending thoracic aorta is a prime example of this
behaviour.

Previous work, [23], [25] computed the deformation between
the inlet face of the geometric model and the velocity images
(flow MR) using the Schwarz-Christoffel (SC) method. This
method maps the surface of a closed polygon to a unit circle
[29]. Thus, building a map between the geometric model and
the velocity data requires two SC mappings: one from the geo-
metric model to the unit circle, and a second from the unit circle
to the velocity data. The SC method may have convergence
problems for large number of nodes [29] which could prevent
the adequate mapping of some contours. Moreover, it requires a
point-wise correspondence between the geometric model con-
tour and the segmented contour in the velocity data. To the best
of our knowledge, SC-based published work assumes that both
contours are centred and rotationally aligned, however this is
only true if anatomical and velocity data were acquired with the
same imaging modality, during the same procedure, and with-
out patient motion in between acquisitions. This is in general
not true.

Another limitation of previous work is that mapping was
carried out frame-by-frame. Therefore, the temporal smoothness
and cyclic behaviour of the mappings is neglected, potentially
affecting the numerical stability of flow simulations. Because
the (fixed) surface area of the geometric model generally differs
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Fig. 1. Method overview. Through-plane velocity is extracted from 3D
colour Doppler or 2D flow MRI data (left). For each temporal phase i
in the velocity data, a velocity contour ci

v ⊂ πv defining the boundary
of the vessel is obtained (left). A separate model contour cm ⊂ πm is
defined in the face of the geometric model, built from the anatomy image
data (CT or MRI; right). In this work, cm is not time-dependent, but this
need not be the case in general. In order to co-register ci

v and cm , the
user must define landmarks in both velocity and anatomy images. The
velocity profiles between each of the n cardiac phases are temporally
interpolated to produce the required resolution for the CFD analysis.

from that of the time-varying contours of the velocity data, a
correction is required in the mapping to ensure preservation of
flow rate. Previous work [23], [25], [28] maintained flow rate by
scaling the velocities with the ratio between the surface areas of
the velocity contours and the geometric model contour.

Another major difficulty in incorporating patient-specific in-
flow data into CFD simulation workflows is that there is cur-
rently no publicly available software capable of performing
mappings between anatomical and velocity data. Previous stud-
ies [5], [6], [23]–[25], [27], [28] used ad-hoc implementations,
limiting accessibility from the community.

In this paper, we developed a novel velocity mapping method
capable of handling large deformations and motions and imple-
mented it in CRIMSON [16], a publicly available hemodynamic
simulation package.

III. METHODS

The proposed method is summarised in Fig. 1 and detailed
in Sections III-A–III-C. Implementation details in CRIMSON
are described in Appendix A. Briefly, blood velocity data (2D
flow MRI or 3D colour Doppler) is acquired at the location of
interest. For each cardiac phase in the velocity image sequence
(typically, a few dozen), the lumen is segmented and the dense
deformation between the lumen contour in the velocity data and
the corresponding contour in the geometric model is calculated.
The trade-off between maintaining flow rate or velocity in the
mapping process must be specified by the user. Finally, a smooth
cyclic temporal interpolation is obtained to produce velocity

data for the CFD model: typically, thousands of time points in
one cardiac cycle.

A. Mapping Geometric Model to Velocity Images

The method presented here only considers the through-plane
component of the velocity, however it could be easily general-
ized to a three-component velocity scenario. Let c ⊂ R3 be a
closed, non-self-intersecting planar curve contained in a plane
Πc . Denote the set of all such curves by

χ :=
{
c | c ⊂ Πc ⊂ R3 , for some Πc

∼= R2} .

For each cardiac phase i = 1, . . . , n, a velocity contour ci
v ∈

χ delineating the vessel wall in the velocity image data must be
produced, together with an associated binary mask Ci

v : Πc ≡
Πv → {0, 1}, where Πv is the plane containing the velocity
image data, such that Ci

v takes the value 1 inside ci
v and 0

outside it. Similarly, a corresponding contour on the anatomy
image, cm ∈ χ must be obtained on Πm , the plane containing
the face of the geometric model which will be mapped to the
velocity data. In this work, cm is fixed in time, but this need not
be the case in general. In practice, cm is either a polygonal if
the geometric model is given by a surface triangulation (e.g., .stl
file) or an analytical curve in the case of a CAD model. There
are a wide variety of tools available for image segmentation
[4]. In this paper, we used CRIMSON’s [16] semi-automatic
segmentation toolbox.

The contours ci
v and cm will generally be in different coor-

dinate systems and have slightly different shapes. In this paper,
we perform a rigid alignment followed by a non-rigid map-
ping between Πv and Πm , restricted to points inside ci

v and cm ,
respectively.

1) Rigid Alignment of ci
v and cm : The rigid mapping is ex-

pressed as a matrix transformation. Here, we work in a subset of
real projective space H :=

{
(x, y, z, w) ∈ P 3 |w = 1

} ∼= R3 ;
H is P 3 without the point at infinity, and provides a system of
homogeneous coordinates. In what follows, let j ∈ {v,m}. For
each contour on the velocity and anatomy images, consider the
associated plane Πj . Let Bj be the orthonormal bases with third
component given by the unit normal to the associated plane, cho-
sen to be pointing in the same direction relative to the anatomy
in both Bv and Bm , neglecting the w-component so that these
have only x, y and z entries. Define the change of basis matrices

Mj =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

...
...

... 0

B1
j B2

j B3
j 0

...
...

... 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the Bk
j ∈ Bj , k ∈ {1, 2, 3}, are column vectors. M−1

j Πj

is then contained in a plane with z ≡ z(j), Πz (j ) . Applying
these transformations thus maps cm and cv into parallel planes
such that the contours can then be mapped into the same plane
and simultaneously aligned with one another by applying a
translation which is computed as follows: Consider a set of
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Fig. 2. Rotational contour alignment using a reference landmark. In
what follows, the difference in shape and size between the cm and
ci
v shown in the figures in this section is exaggerated for ease of

visualisation.

points Pj := {pj | pj ∈ cj}, given in homogeneous coordinates.
Note that due to the previous transformation, M−1

j Pj ‖ Πxy .
Pj may consist of vertices of a polygonal curve, or uniformly
distributed points on an analytic curve. The centroids of the
M−1

j Pj are given by

Oj := 1
|Pj |

∑
Pj

M−1
j pj .

then,

Tj =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 Oj,x

0 1 0 Oj,y

0 0 1 Oj,z

0 0 0 Oj,w

⎤

⎥
⎥
⎥
⎥
⎦

(1)

defines translation by Oj ; note that Oj,w ≡ 1. Thus,

P 2D
j := T−1

j M−1
j Pj ∈ Πxy

gives the set of points on each contour mapped into Πxy with
centroids collocated at the origin.

The contour points P 2D
m must now be rotated about their

centroids to complete the rigid alignment with P 2D
v . The user

identifies a single anatomical landmark in both the Πj ; call
the landmark’s location in each plane Lj . Let θj be the an-
gle between the x-axis and T−1

j M−1
j Lj in Πxy (with the anti-

clockwise direction taken to be positive), then define a rotation
matrix

Rj =

⎡

⎢
⎢
⎢
⎢
⎣

cos(θj ) − sin(θj ) 0 0

sin(θj ) cos(θj ) 0 0

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

.

The final aligned contour points are now given by

Paligned
m := RvR

−1
m T−1

m M−1
m Pm

and

Paligned
v := T−1

v M−1
v Pv .

which describe the aligned contours caligned
v and caligned

m . The
effect of this final transformation, RvR−1

m , is shown in Fig. 2,
where the velocity contour points, T−1

m M−1
m Pm are rotated to

achieve rigid alignment with the model contour points (right).

Fig. 3. Non rigid alignment between the velocity image derived con-
tour and the model contour at the inlet. Left: point-wise correspondence
between points defining equal angular increments in the two contours
(only every fifth point is labelled). Right: the corresponding points specify
the contour deformation vectors that will define the mapping.

Note that previous work assumes that this alignment is given but
this is generally not the case. The next step is to apply a smooth
deformation field to match the contours shape.

The matrix R can then be applied to the points in the model
contour shown in Fig. 2 (left) to yield the rigidly aligned
model contour shown in Fig. 2 (right). Note that previous work
assumes that this alignment is given but this is generally not the
case. The next step is to apply a smooth deformation field to
match the contours shape.

2) Non-Rigid Mapping of the Model Contour to the Imag-
ing Contour: Related literature discussed in Section II utilizes
the Schwarz-Christoffel (SC) mapping for non rigid mapping of
the rigidly aligned contours. In this paper we propose using a
uniform B-spline vector field that deforms and interpolates the
interior of the flat inlet face of the geometric model to the veloc-
ity image data, which enables sampling of the velocity imaging
data at the locations required by the geometric model. Uniform
B-spline vector fields are continuous, smooth piece-wise func-
tions defined on a uniform grid of control points, widely used
in computational imaging and signal processing for providing
computational efficiency [30] and control over the smoothness
of the deformation.

In order to establish correspondences between the two rigidly
aligned contours, we first specify an initial point-wise corre-
spondence between the two. The SC method needs that the
contour is in the form of a polygon and requires a non-trivial
computation of the pre-vertices [29]. In our case, we pro-
ceed as follows. We first compute the analytical aligned con-
tours caligned

j by fitting a smooth closed spline on the ver-

tices Paligned
j . Then we define Qaligned

j = {qj (2πi/K)|qj

(2πi/K) ∈ caligned
j , i = 1, . . . , K}, evenly distributed be-

tween 0 and 2π on caligned
j as shown in Fig. 3 (left). This permits

us to establish corresponding points, and also to handle differ-
ent number of vertices on the original contours. Conveniently,
this approach also allows us to use non-polygonal shapes, e.g.
analytical contours, if available. The corresponding points de-
termine K vectors

V := {v := qv (2πi/K) − qm (2πi/K) | qj (2πi/K)

∈ Qaligned
j , j ∈ {v,m} , i = 1, . . . , K

}
, (2)
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as shown in Fig. 3 (right) for K = 50.
The non-rigid mapping f : Πm → Πv between the aligned

contours is computed by minimizing the fitting error e(f):

e(f) =
K∑

k=1

‖f(Qaligned
m ) − v‖2 (3)

for f = [fx fy ] being a dense, smooth vector field. We propose
to solve this minimization problem by representing the mapping
f in a B-spline basis:

fx(qaligned
m ) =

∑

i,j

cx
i,j β(qaligned

m,x /a − i)β(qaligned
m,y /b − j)

fy (qaligned
m ) =

∑

i,j

cy
i,j β(qaligned

m,x /a − i)β(qaligned
m,y /b − j)

(4)

where β is the cubic B-spline piecewise basis function, [a b]
is the separation between control points in the B-spline control
grid, and {cx, cy}i,j are the B-spline weights for the x and y
components of the resulting field at each control point [30].
Equation (4) can be evaluated at the corresponding points and
expressed as a matrix product:

v = Bc (5)

where v is a matrix where each row is a correspondence vec-
tor from Fig. 3, B is a matrix with the B-spline bicubic ten-
sor product evaluated at each corresponding point, for each
B-spline control point; and c is a matrix where each row is a
tuple [cx cy ] ∈ R2 for each B-spline control point. Details on
B-spline fitting in general and on how to construct the above
matrices particularly for vector problems can be found in [30],
[31]. The goal is to find the coefficients c that verify (5). There
is, in general, no exact solution for this problem; instead, we
search for the N B-spline coefficients c that minimize the cost
function J : (R2)N → R derived from (3):

J(c) = (1 − μ)‖v − Bc‖2 + μG(c) (6)

where μG(c) is a regularisation term, whose contribution is
controlled by the value of the scalar μ. This term is particularly
important in this case because the input data is sparsely dis-
tributed within the B-spline domain (i.e., input data points are
concentrated along the contour of the inlet), and as a result reg-
ularisation will guarantee a smooth behaviour elsewhere. This
also allows us to use a coarser B-spline grid to have a better
fit of the correspondence vectors. In the experiments presented
later, we empirically chose μ = 0.1 and a B-spline grid spac-
ing of half the diameter of the smallest contour. An example of
the mapping resulting from this dense deformation is shown in
Fig. 4, compared to the SC mapping on the same geometry.

3) Full Mapping: Model Inlet to Velocity Profile: Given a
point set Pm on the model face where the velocity field is to be
imposed, the velocity value can be obtained by mapping Pm to
its corresponding positions in the velocity image, Pv , and inter-
polating the velocity value. Concatenating the transformations
described in previous sections yields:

Pv = MvTv f
(
RvR−1

m T−1
m M−1

m Pm

)
(7)

Fig. 4. Mapping from model inlet to velocity profile, using the proposed
method (top) and the Schwarz-Christoffel method (bottom). The differ-
ence in shape between the two contours has been exaggerated for better
visualisation of the smooth transition between contours offered by the
proposed method.

The velocity values at the locations required on the model
face sampled from the velocity imaging data can therefore be
computed as

v(Pv ) = Lv (Pv ) (8)

where Lv (x) is the conventional linear interpolation operator
on the velocity image at location x. The proposed mapping
has been formulated independently of the dimensionality of the
velocity; if 3 components of the velocity are available from
the imaging data (e.g., from 4D Flow MRI), the method holds
and Lv (x) is a tri-linear interpolator.

B. Cyclic and Smooth Interpolation of the Resulting
Temporal Velocity Profiles

This mapping process described above is carried out for each
cardiac phase in the imaging data, as is done in related literature
using the SC method. In general, the CFD pipeline requires that
prescribed boundary conditions have high temporal resolution,
which normally far exceeds that available from the imaging
data. For example, typical image acquisition rates would be up
to 30 phases per cycle in 2D Flow MRI and 20 phases per cycle
in 3D CDI, while the modelling would require a temporal reso-
lution beyond 1000 phases per cycle. In this paper, we propose
to interpolate the mapped velocity profiles at the required mod-
elling temporal resolution using interpolating cyclic B-splines,
which interpolate the mapped velocity profiles (one for each
input velocity phase) over time to the desired temporal resolu-
tion. In our current formulation, this process is separate from
the frame-wise mapping and therefore could be applied to other
frame-wise mapping methods, such as the SC method. Provided
a cycle interval t ∈ [t0 , t1), the through-plane velocity value
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v(t,x) at the location x of the rigid model inlet is redefined
from (4) as:

v(x, y, t) =
∑

i,j

ci,j,kβ(x/a − i)β(y/b − j)

β(([t − t0 ] (mod t1))/Δt − k) (9)

which analogously to (5) can be expressed in matrix form as

v(x, t) = B(x, t)ct (10)

The coefficients ct can be found by minimising Jt :

Jt(ct) = ‖v(x, t) − B(x, t)ct‖2 (11)

In this case regularisation is not normally needed since samples
(i.e., velocity profile images) are uniformly distributed over time
and the space between B-spline control points Δt can be chosen
so that there are several (typically two or more) time samples
between every two control points. Note that (11) is defined here
as a 2D+t smoothing and interpolation problem, in which case
spatial smoothing is also achieved. Alternatively, the temporal
smoothing and interpolation problem can be formulated in 1D
(time) for each point in the model inlet, without any spatial
smoothing.

C. Controlling the Trade-Off Between Velocity and Flow

In general, the model and the velocity image contours at
the inlet have slightly different shape and surface area. This is
due to: 1) differences in imaging modality and acquisition time
between anatomical imaging data for building the geometric
model and imaging data to measure velocity; 2) segmentation
errors; and 3) the way motion and changes in cross section of
the vessel are taken into account in the model and in the velocity
data. For these reasons, although the velocity distribution and
the average velocity are maintained throughout the mapping
process, the surface area is not. As a result, in general there will
be a difference in the flow rate between the boundary condition
prescribed to the CFD and the velocity data.

Unfortunately, it is not possible to maintain both the flow
rate and the velocity distribution if there is a change in area.
In this paper we introduce a user-selected scalar trade-off fac-
tor, λ which determines whether the velocity distribution is
maintained (λ = 0), the flow rate is maintained (λ = 1) or any
intermediate scenario (0 < λ < 1). This is achieved at the inter-
polation step described in the previous section. The final velocity
vf is a function of the interpolated velocity v and the model and
velocity image surface areas, Amodel and Aimage respectively:

vf = v

(
(1 − λ) + λ

Amodel

Aimage

)
(12)

If the velocity v is has 3 components (e.g. it was provided
by 4D Flow MRI), all components are affected by the same
scaling (otherwise, unrealistic flow trajectories would appear).
This scaling might not be necessary when several phases are
used for defining a time-varying geometric model inlet from
image data, in the context of large deformation fluid-structure
interaction simulations.

Fig. 5. Test synthetic profile types, representing a variety of shapes
that model simplified normal and abnormal aortic inlet velocity profiles.

D. Software Availability for the Community

The described method has been implemented and made freely
available for download as part of the CRIMSON environment,
as described in detail in Appendix A. The CRIMSON imple-
mentation additionally provides the option to perform spatial
smoothing of the velocity profile before it is imposed as a bound-
ary condition on a vascular model. This is achieved by using a
mass-preserving Gaussian kernel (see Appendix B); the mass-
preserving aspect is key, as it is important to avoid artificially
changing the cardiac output implied by the imposed profiles.

IV. MATERIALS AND EXPERIMENTS

A. Experiments on Synthetic Data

We carried out experiments on synthetic data to assess the
ability of the proposed method to map velocities between
two different surfaces, and to compare it with the Schwarz-
Christoffel (SC) mapping, which is used in related published
work described in Section II. We used a MATLAB non-
parallel implementation of our mapping method and the SC
mapping MATLAB toolbox by Driscoll [37]. We produced
N = 1000 pairs of inflow contours, using closed spline curves
with 8 control points with random radii uniformly distributed
in [1.05, 2.15] range, representative of those found in the hu-
man aorta [38]. To create closed polygons, the spline curves
were sampled at 30 equally spaced locations. Rigid alignment
(rotation and translation) was not considered for these experi-
ments because related literature does not account for that. The
area enclosed by contours corresponding to velocity imaging
was uniformly sampled in a regular grid with a resolution of
0.1 × 0.1 mm, and for each pair of contours three profile types
(shown in Fig. 5) were mapped: 1) Distance to edge profile
(computed using a morphological distance operator on the reg-
ular grid), 2) Slit-like profile (anisotropic Gaussian masked by
the first profile), and 3) Curved profile (curved Gaussian masked
by the first profile). Velocity profiles were normalized to the
range [0, 100] cm/s.

Quantitative evaluation was carried out on three measure-
ments: 1) the difference in velocity distribution between the
original velocity image and the mapped velocity; 2) The point-
wise difference in mapped velocity between the SC method
and the proposed method; and 3) the execution time for each
mapping process. To compute the difference in velocity dis-
tributions between the original profile A and the mapped pro-
file B, we computed the velocity histograms hA and hB and
used the quadratic-chi (QC) histogram distance proposed in
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[39] to measure similarity between histograms in image analy-
sis; see (13), shown at bottom of this page, where m = 0.5 and
Ai,j = 1 − |hA , i ,hB , j |

maxi , j |hA , i ,hB , j | is a square matrix that measures
the distances between all bins.

B. Experiments on In-Vivo Data

To demonstrate the practical applicability of the method, we
will consider velocity and anatomical data corresponding to the
ascending aorta of adult subjects: one healthy volunteer with
normal tricuspid aortic valve and a second patient with patho-
logical bicuspid aortic valve (BAV) and a diagnosis of severe
aortic stenosis. The velocity data are prescribed on a plane at the
sinotubular junction, and the aortic geometry is reconstructed
from a single magnetic resonance angiography image and thus is
assumed rigid throughout the cardiac cycle. Anatomical images
to build the model were acquired using Magnetic Resonance
Imaging (MRI) and velocity measurements were carried out us-
ing colour Doppler ultrasound on the volunteer and 2D flow
MRI on the patient.

Anatomical MRI was carried out on both the volunteer and
the patient using standard of care Cardiac MR to image the en-
tire thoracic aorta, including the head and neck vessels using a
Philips Achieva 3T scanner with a breath-held 3D fast gradient
echo sequence. The patient underwent gadolinium-enhanced
MR Angiography (0.3 ml/kg; gadodiamide, Omniscan, GE
Healthcare). Slice thickness was 2.0 mm, with 56–60 sagit-
tal slices per volume. A 344 × 344 acquisition matrix was used
with FoV of 35 cm × 35 cm (reconstructed to 0.49 × 0.49 ×
1.00 mm). Other parameters included a repetition time (TR) of
3.9 ms, echo time (TE) of 1.4 ms, and a flip angle of 27◦.

Doppler ultrasound images were acquired using a Philips
iE33 system with a X3-1 transthoracic transducer, over 7 beats
and maximising the Doppler range to avoid aliasing. Images
were acquired from an apical window ensuring that the entire
cross section of the aortic valve (AV) was within the FoV.

Time-resolved, velocity encoded 2D anatomic and through-
plane Phase Contrast (PC)-MRI (2D flow MRI) was performed
on a plane orthogonal to the ascending aorta at the sino-tubular
junction. Imaging parameters included TR, TE, and flip angle
of 4.2 ms, 2.4 ms, and 15◦, respectively. The FoV was 35 ×
30 cm with an acquisition matrix of 152 × 120, and a slice
thickness of 10 mm, resulting in a voxel size of 2.3 × 2.4 ×
10 mm (resampled at 1.37 × 1.36 × 10 mm). Data acquisition
was carried out with a breath-hold and gated to the cardiac
cycle. Velocity sensitivity was adjusted to avoid aliasing. Cine
sequences at the level of the AV (5–8 slices) were performed for
assessment of valve morphology.

Quantitative and qualitative experiments were carried out
to assess the quality of the mapping, focusing on the aspects
of the mapped velocity that may be of higher relevance for
CFD simulations. Quantitatively, and similarly to our experi-

TABLE I
QC [39] DISTANCE1 IN VELOCITY DISTRIBUTION AFTER MAPPING

FOR THREE SYNTHETIC PROFILE TYPES

Fig. 6. Quantitative analysis of profile mapping using synthetic data.
(a) Execution time, per case, using the proposed method (left) compared
to the SC method (right). (b) Point-wise difference in mapped velocity
values between the proposed method and the SC method, using the
three profile types from Fig. 5 (adapted to randomly generated contours).
The error values in cm/s can also be read as % since the maximum
velocity value was set to 100 cm/s.

ments on synthetic data, we measured the difference in velocity
distribution after mapping. We also measured differences in
flow rate and peak velocity for values of the trade-off factor
λ ∈ {0, 0.25, 0.5, 0.75, 1}. Qualitatively, we show the resulting
velocity profile through the mapping process on a few selected
phases of the systolic part of the cardiac cycle for both subjects.

V. RESULTS

A. Results on Synthetic Data

Table I shows the QC distance [39] between the original
velocity distribution (histogram) over the contour defined in the
velocity image and the distribution of the mapped velocities.
Average distance using our method and the S-C method error
are similar, and a t-test showed no statistical difference between
them (α = 0.01).

Fig. 6(a) shows the execution time (in s) for the mapping com-
putation, using the proposed method (left) and the SC method
(right). The proposed method was found to be over 8 times faster
in average (p < 0.01).

Fig. 6(b) shows the point-wise difference between the two
methods (in cm/s), for each profile type. The boxes show the
median and the 25 and 75 quantiles of the absolute difference.
The whiskers show the most extreme values not considered
outliers, and outliers are shown with asterisks. The values for

QCA
m (hA , hB ) =

√
∑

ij

(
hA,i − hB,i

(
∑

c(hA,c + hB,c)Ac,i)
m

)(
hA,j − hB,j

(
∑

c(hA,c + hB,c)Ac,j )
m

)
Ai,j (13)
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Fig. 7. Mapped synthetic profiles for the case with highest dissimilarity
between the SC method and the proposed method. The first row shows
the original velocity from the synthetic imaging data, for three profile
types. The second and third row show the velocities mapped to the
model inlet (contoured in red). A notable difference is the angled profile
in the slit-like profile (central column) which is observed in the SC method
but not in the proposed method.

TABLE II
QC [39] DISTANCE1 IN VELOCITY DISTRIBUTION AFTER MAPPING

FOR A PATIENT AND A HEALTHY VOLUNTEER

the three profiles were found to not be statistically different
(p < 0.01).

To have an intuitive understanding on the meaning of the
differences between the SC mapping and the proposed method,
Fig. 7 shows the profiles displayed the highest dissimilarity
between the two methods.

B. Results on In-Vivo Data

In this section we show the results of the proposed method
applied to two different datasets corresponding to a healthy
volunteer and a cardiac patient. A more thorough description of
the CFD results obtained using the proposed method on a larger
number of patients can be found in [7], [13], [40].

Table II shows the distance between the velocity distributions
before and after mapping, measured through the QC distance
[39] between velocity histograms as described in Section IV.
The columns show the results on patient data (velocity de-
rived from MRI) and on data from a healthy volunteer (velocity
derived from 3D CDI) obtained with the proposed method and
the SC method.

Fig. 8. Velocity profile mapping addressing orientation and shape
changes between the model and the velocity data. (a) Profiles obtained
from CDI images from a healthy volunteer. (b) Profiles obtained from
Flow MRI images from a cardiac patient.

Fig. 8 shows the mapped velocity profile at t = 5% cycle du-
ration (left column), t = 10% cycle duration (middle column)
and t = 15% cycle duration (right column), for the healthy vol-
unteer (Fig. 8(a)) and the patient with BAV and aortic stenosis
(Fig. 8(b)). For each subfigure, the top row shows the input
profile from the velocity imaging and the bottom row shows
the velocity profile mapped to the model inlet. The profiles are
coloured by velocity (note that scales are different for the volun-
teer and the patient since the stenotic valve forced a high velocity
through the aortic inflow). Note that the profile from the healthy
subject is centred within the inlet geometry and has a relatively
wide plateau, while the BAV patient has a narrower, eccentric
profile due to the diseased valve. Also note that while the shape
of the mapped velocity profile is the same over time, the cross
section in the imaging data varies. The profile rotation between
the imaging data ant the model reflects the different orientation
of the model and the velocity image, which was computed from
the reference landmark.

Fig. 9 (top) shows the relative errors in stroke volume (SV)
for the volunteer and the patient. The middle and bottom panels
of Fig. 9 show relative errors over the cardiac cycle (median and
25%–75% quantiles) in flow rate (FR), for the volunteer and the
patient. Since the scaled velocity vf (12) is linear with
the interpolated velocity, it could be expected that the error
in flow rate will decrease linearly when increasing λ. However
it can be seen that for λ > 0.8 the error curves do not decrease
linearly any more. This is due to interpolation errors which are
averaged out when calculated global quantities integrated over
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Fig. 9. Quantitative analysis of the effect of the trade-off factor λ. (Top)
Relative absolute error in stroke volume (SV) for λ ∈ [0.1]. (Middle) Rela-
tive absolute error in flow rate (FR), for the volunteer, showing the median
and quantiles (25% and 75%) of the error distribution over the cardiac
cycle. (Bottom) Relative error in FR for the patient.

Fig. 10. Blood velocity distribution (in m/s) of the mapped profile over
time from (a) imaging data, compared to the imaging data for different
trade-off value λ, from (b) matching the velocity distribution (λ = 0) to (c)
matching the flow rate (λ = 1).

the entire cycle. This can be seen in the plot at the top, where
the error in SV decreases linearly with λ.

Fig. 10 show an example of this effect for the patient data.
Fig. 10(a) shows the histogram of through-plane velocities
(along the vertical axis, in m/s) over time for the velocity imag-
ing data.

Fig. 10(b) and (c) show the trace for the mapped model ve-
locity profile over time, for λ = 0 and λ = 1 respectively. A
white dashed line has been added at each figure to indicate the
maximum systolic velocity. It can be seen that the maximum
velocity increases linearly with λ, as expected, and more gen-
erally that the entire velocity distribution is linearly affected by
the scaling.

Fig. 11 renders the mapping of the PC-MRI velocity data to
the inlet of the anatomical data of the BAV patient in the dis-
play panel of CRIMSON [16]. The visualization includes the
finite element mesh of the aortic geometry, a volume render of
the anatomy image data, and the 3D velocity profile(in white)
imposed on the inlet face of the model. The original and inter-

Fig. 11. Example of visualization of the systolic profile prescribed on
the inlet of the geometric model in CRIMSON [16].

polated flow waveforms and total cardiac output can be found
in CRIMSON under the ‘Time interpolation settings’ panel at
the bottom of the velocity mapping GUI, alongside the cyclic
time interpolation settings controlling the smoothness and sam-
pling of the B-spline interpolator. Detailed instructions on how
to perform the operations described on this paper can be found
here: http://www.crimson.software/documentation.html.

VI. DISCUSSION

In this paper we proposed a method to map the velocity profile
obtained from segmented velocity images (Flow MRI or colour
Doppler images) onto a given face of the geometric vascular
model for subject-specific CFD simulations of hemodynamics.
The mapping consists of a series of rigid and non-rigid transfor-
mations that, combined, yield a dense, continuous and smooth
deformation field that covers the inlet boundary and its surface.

The proposed method requires a segmentation of the face of
interest in the velocity imaging data over the entire cardiac cycle,
a corresponding point between the velocity and the anatomy
data, and defining a factor λ between 0 and 1 which controls
the trade-off between maintaining the velocity distribution or
the flow rate through the mapping process. Since the mapping is
continuous, the velocity profile can be mapped to any description
of the geometry (e.g., discrete or analytical).

We have compared our proposed mapping method with the
Schwarz-Christoffel (SC) mapping, which is widely used in
related literature. Using synthetic data, our method produced
similar results to the SC method, while running significantly
faster.

In addition to testing in synthetic data, we have demonstrated
the profile mapping on a healthy volunteer and a patient with
bicuspid aortic valve (BAV). Fig. 8 shows that velocity profiles
can be very different to idealised profiles. Therefore, image-
based CFD analysis constitutes a non-invasive tool to investigate
this hemodynamic relationship between valve morphology and
aneurysm formation. The ability to use patient-specific velocity
profiles has the potential to improve CFD simulations, and lend
further insight into this common disease process.

In the approach presented here, we have assumed that the ge-
ometry of the vascular model is described by a single temporal
phase. This situation is typically encountered in rigid wall or in
linearised fluid-structure interaction simulations, such as those
performed using the coupled-momentum method [2]. Given that
the velocity data must be segmented for all its temporal phases,
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this will in general lead to a difference between the effective
surface area of the face of the geometric model and the corre-
sponding areas in the velocity image data. Therefore, the user
must specify the value of a trade-off parameter λ depending
on the target application. To the best of our knowledge, most
previous work has chosen to maintain flow rate (λ = 1). How-
ever, applications where velocity-dependent metrics are to be
derived from the simulation results, such as wall shear stress,
may benefit from λ = 0, or intermediate values of λ.

The work presented here could be generalized for situations
in which multiple phases are available to describe the anatomi-
cal images. In general, the number of phases would be the same
as those of the velocity images. In this scenario, anatomical
landmarks must would have to be specified for each phase, and
rotational alignments between velocity and model contours per-
formed. In this case, the time series of contours for the face
of interest would be identical for the velocity and anatomical
images, and thus the trade-off scaling parameter would be set
to zero. This situation would therefore define boundary condi-
tions for velocity and vessel motion in large deformation fluid-
structure interaction problems [1]. Moreover, because both the
frame-wise mapping (2D) and the temporal smoothing (2D+t)
are carried out using B-splines, both steps could be merged into
a 2D × 2D+t (5D) B-spline formulation. Implications of the
merge in terms of efficiency, accuracy and need for regulariza-
tion are out of the scope of this paper.

We have implemented the proposed mapping method in a pub-
licly available hemodynamic simulation software (CRIMSON)
to enable wide penetration of the method and make it possible
for researchers and clinicians to use patient-specific velocity
boundary conditions in their hemodynamic simulations.

VII. LIMITATIONS

In this paper, we have assumed that the blood velocity is
parallel to the vessel wall on the plane defining the velocity
data. Several studies [6], [23] have shown that the effect of this
simplification is small and does not affect the outcome of the
simulations significantly. It can however affect the simulated
flow near the inlet; for applications targeting regions in the
vicinity of the valves this limitation should be addressed. In this
region also, and particularly for patients with abnormal valves,
the in-plane component of the flow may play an important role
[12] and should be considered.

VIII. CONCLUSION

We have presented a novel method to map patient-specific,
time-resolved velocity profiles from imaging data (colour
Doppler or flow MR) to a boundary face of a geometric vas-
cular model. Our method enables to maintain either the flow
rate or the velocity distribution through the mapping process
and addresses changes in orientation, shape and size between
the velocity imaging data and the anatomical model. The result-
ing profiles are smooth, temporally cyclic and time-resolved.

The proposed method allows the inclusion of patient-specific
inflow profiles into CFD workflows, which has the potential
of rendering more accurate and realistic simulations. This is
particularly the case when abnormal velocity profiles are an

important characteristic of the disease under study, as in the
case of aortic valve disease. Lastly, we have made the method
accessible to the wider community through the open-source
hemodynamic simulation software CRIMSON [16].

APPENDIX A
A FREELY AVAILABLE IMPLEMENTATION OF THE METHOD

AS PART OF CRIMSON

CRIMSON [16], the CardiovasculaR Integrated Modelling
and SimulatiON environment (www.crimson.software), is a
software package that provides a complete pipeline for image-
based vascular segmentation, modelling, large-scale blood flow
simulation and analysis. The software is designed to be both
intuitive for clinical use and easily extensible for advanced re-
search users. Based on a series of well-established open source
libraries, including MITK [32], vmtk [33], Verdandi [34] and
QSapecNG [35], among others, and with a global user-base,
CRIMSON is an ideal platform for disseminating the methods
described in the present article and achieve widespread penetra-
tion, accessibility and reproducibility.

A general view of the CRIMSON graphical user interface
(GUI) is shown in Fig. 12(a). The GUI contains three main areas:
1. Data manager with intermediate results of different operations
(vessel tree, vessel model, mesh, solver settings, etc.), 2. Display
area, and 3. Module-specific GUI, which in this case shows the
velocity profile mapping controls detailed in Fig. 12(b).

The velocity profile mapping implementation in CRIMSON
requires a blood velocity image and an anatomical image from
which the vascular model will be obtained by first segment-
ing the lumen boundary from the anatomical image and then
meshing the segmented volume. Alternatively, vascular mod-
els created with other packages can also be imported into
CRIMSON.

The profile mapping tool provides a visualisation panel (cen-
tral area in Fig. 12(a), whose top part is divided into two smaller
subpanels. The left subpanel shows a 2D slice of the anatomy
image at the inlet face onto which we wish to map the veloc-
ity profile. The right subpanel shows one time-resolved slice of
the velocity image. This subpanel enables the user to segment
the vessel wall in the velocity image at any desired phase of
the cardiac cycle using a time step slider, and to place landmarks
(see Figs. 1 and 2) in both the anatomical and velocity images.
It should be noted that in the current paradigm (for which a
single anatomical image is considered), while the vessel wall
segmentation needs to be performed for each phase of the ve-
locity image, the anatomical landmark needs to be defined only
for the first phase. The bottom part of the display area shows a
3D view of the vascular model, an anatomical landmark (green
sphere) and the spatially aligned 2D velocity image relative to
the 3D anatomical image. For easier identification of the refer-
ence points, the landmark is rendered as a green cross (2D) and a
sphere (3D) in the anatomical and velocity images, respectively.

The velocity profile mapping control panel is shown in detail
in Fig. 12(b). This panel allows the user to set all required inputs
for the velocity profile mapping: (A) the geometric model face
onto which the velocity profile will be mapped, (B) the veloc-
ity and the anatomy images along with the geometric model,
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Fig. 12. CRIMSON GUI overview. (a) 1. Data manager with all the loaded objects, 2. Display area used for data visualisation, and 3. Activity-specific
GUI controls are located on the right side. In this example the selected activity is velocity profile mapping. (b) Detailed view of the CRIMSON velocity
profile mapping GUI, which includes: A) Model face selection. B) Specification of velocity and anatomy images and geometric model. C) Vessel
lumen segmentation in the velocity images. D) Positioning of landmarks in both model and velocity images. E) Additional information related to the
velocity image in the context of PC-MRI (such as velocity encoding). F) Advanced settings.

(C) the controls for manual and semi-automatic segmentation
of vessel lumen in the velocity images, (D) an interface for the
placement of the corresponding landmarks, (E) acquisition- and
manufacturer-dependent velocity settings (in the context of PC-
MRI [36]), such as velocity encoding, cardiac frequency and ve-
locity scale, and (F) advanced settings including the possibility
to flip the orientation of the velocity image and the value of vari-
ance for the Gaussian smoothing filter. The Gaussian smoothing
filter may be applied to the masked velocity image before the
mapping described in Section III-A to make the velocity profile
smoother. Besides the Gaussian filter the smoothing also im-
plements the suppression of undesirable edge-effects typically
found on masked images (Appendix B).

APPENDIX B
MASS-PRESERVING CONVOLUTION NEAR THE EDGE OF

ARBITRARILY SHAPED IMAGE DOMAINS

Linear filtering operations on images, such as Gaussian
blurring, can be efficiently implemented through 2D convo-
lutions. Convolution is an operation where each pixel becomes
a weighted average of itself and its neighbours within a rect-
angular neighbourhood. This process is typically visualised as
“sliding” a kernel weighting matrix K over an image I and
computing a sum of products within a window. The weights in
the kernel matrix K are usually normalised so that they sum to
one, ensuring the average intensity is preserved and the image
does not become darker or lighter.

Often times, as is the case in this paper, data is confined
in an arbitrarily shaped domain within the image (e.g. inside
the contour of a vessel cross section). Since the values outside
the segmented area are zero, a standard convolution would artifi-
cially push values near the boundary towards zero. In this paper

Fig. 13. Gaussian blurring with arbitrary boundaries. Convolution of an
image I with a 3 × 3 Gaussian kernel K , where the red line depicts
the boundary of our domain mask M . By zeroing all values outside of
our domain they do not contribute to the weighted average I ∗ K . In
this case we average five values only. The weighted average (2 3

16 ) is
lower than the values that contributed to it as the weights used do not
sum to one. Convolving the binary domain mask with the kernel, M ∗ K ,
yields the total weight ( 10

16 ), which is used to normalise the final result,
(I ∗ K )/(M ∗ K ), giving a better average (3 1

2 ).
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we propose a simple renormalisation scheme which is easily
implemented via two convolutions, as exemplified in Fig. 13.

Setting all values to zero outside of our domain mask M , and
computing the convolution I ∗ K is equivalent to computing
a weighted average of values, restricted to our domain, albeit
where our weights no longer sum to one (leading to darker - i.e.
closer to zero - boundary values). We can correct this for each
pixel by normalising by the total weight of the pixels inside
the domain and under the current location of the kernel, and
ignoring the weight of those which lie outside the domain. This
total weight for each pixel may be computed by convolving
a binary domain mask M with the kernel, M ∗ K. Thus the
normalised convolution is (I ∗ K)/(M ∗ K).
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