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Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response

to infection. Sepsis can be caused by a broad range of pathogens; however, bacterial

infections represent the majority of sepsis cases. Up to 42% of sepsis presentations

are culture negative, suggesting a non-bacterial cause. Despite this, diagnosis of viral

sepsis remains very rare. Almost any virus can cause sepsis in vulnerable patients (e.g.,

neonates, infants, and other immunosuppressed groups). The prevalence of viral sepsis

is not known, nor is there enough information to make an accurate estimate. The initial

standard of care for all cases of sepsis, even those that are subsequently proven to be

culture negative, is the immediate use of broad-spectrum antibiotics. In the absence of

definite diagnostic criteria for viral sepsis, or at least to exclude bacterial sepsis, this

inevitably leads to unnecessary antimicrobial use, with associated consequences for

antimicrobial resistance, effects on the host microbiome and excess healthcare costs. It

is important to understand non-bacterial causes of sepsis so that inappropriate treatment

can be minimised, and appropriate treatments can be developed to improve outcomes.

In this review, we summarise what is known about viral sepsis, its most common causes,

and how the immune responses to severe viral infections can contribute to sepsis. We

also discuss strategies to improve our understanding of viral sepsis, and ways we can

integrate this new information into effective treatment.

Keywords: viral sepsis, epidemiology, immune pathogenesis, herpes simplex virus, human enterovirus, human

parechovirus, influenza virus, dengue virus

DEFINITION AND EPIDEMIOLOGY OF VIRAL SEPSIS

Definition of Viral Sepsis
Sepsis is a complex syndrome of physiological and pathological abnormalities resulting from
infection (1). The pathophysiology of sepsis is not fully understood, making it difficult to give
an unambiguous and comprehensive definition of sepsis. The Third International Consensus
Definitions Task Force (1) advocated a new definition of sepsis and septic shock in 2015. Sepsis
should be defined as “life-threatening organ dysfunction caused by a dysregulated host response
to infection,” whereas septic shock is defined as “a subset of sepsis in which particularly profound
circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality
than with sepsis alone.” This version of the definition is designated as “Sepsis-3,” while the previous
versions are “Sepsis-1” and “Sepsis-2,” proposed in 1991 (2) and 2001 (3), respectively.
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The main differences between Sepsis-3 and previous versions
are that Sepsis-3 eliminated the terms sepsis syndrome and
severe sepsis, and introduced a new definition of sepsis, which
is more comparable to the older definition of severe sepsis. In
addition, the systemic inflammatory response syndrome (SIRS)
criteria, which were the essential elements of Sepsis-1 and Sepsis-
2, are no longer used to define sepsis, but they still play a role
in the recognition of infection and warrant early intervention
for possible sepsis (1, 4). Sepsis-3 provides a more specific and
universal definition for sepsis, which would improve clinical
management and facilitate epidemiological surveys. It also has
better predictive ability for in-hospital mortality (1).

However, Sepsis-3 is not designed for paediatric populations,
which carry a high burden of sepsis (5). The current, widely-
used consensus definition of paediatric sepsis, proposed in 2005,
was still built on the SIRS criteria (6). It has been shown to lack
specificity and perform poorly in identifying children at high
risk of mortality from infection (7–9). In addition, its feasibility
and applicability when applying to a non-intensive care setting
or low- and middle-income countries remain questionable (9).
Some evidence has suggested it may be useful to apply the
Sepsis-3 definition to paediatric populations (8, 10–12). However,
many children with severe viral respiratory tract infections (e.g.,
bronchiolitis) fulfil the criteria for viral sepsis, but generally
clinicians would not regard them as “septic,” highlighting the
difficulty in providing a robust definition of viral sepsis (13).
Therefore, there is an urgent need to convene a consensus task
force and design a paediatric definition (9, 14).

Although bacterial or fungal infections are commonly
attributed as the cause of sepsis, sepsis is infrequently
attributed to viral infections. In some cases, viral sepsis is
regarded as virus-induced direct tissue or cell damage (e.g.,
influenza virus-induced pulmonary epithelial damage) instead
of systemic dysregulation caused by virus. However, the above-
mentioned consensus definitions of sepsis, either for adult
(1) or paediatric (6) populations are not pathogen-specific,
so the same definitions should also apply to viral infection.
Therefore, in this review article, viral sepsis is defined as
life-threatening organ dysfunction due to a dysregulated
host response to viral infection in both adult and paediatric
populations. Viral infection can be diagnosed by associated
clinical presentations plus positive results of culture, antigen
detection, molecular detection (e.g., polymerase chain reaction,
PCR), serology, histopathology or immunohistochemistry
(15). Viral sepsis should always be considered in septic
patients lacking evidence of bacterial, parasitic or fungal
infection, and laboratory tests for viruses should be arranged
accordingly. In the following sections, we will review the
current evidence available about the epidemiology, aetiology,
immune pathogenesis, and potential treatments of viral
sepsis.

Burden of Viral Sepsis
Most of the available large-scale epidemiological studies on sepsis
were based on the Sepsis-2 criteria. Severe sepsis defined by
Sepsis-2 (3) is similar to the definition of sepsis according to the
Sepsis-3 criteria (1). Therefore, where available, we will use the

data on severe sepsis from studies based on Sepsis-2 to represent
the epidemiological data on sepsis, defined by Sepsis-3.

In general, the incidence and severity of sepsis are climbing
over time, whereas sepsis-associated mortality is declining (16–
19). A recent systematic review and meta-analysis (17) reported
that the global incidence and mortality of hospital-treated
sepsis in adult populations were 270 per 100,000 person-years
and 26%, respectively, in the last decade. Extrapolating these
figures translated to global estimates of 19.4 million sepsis
cases and 5.3 million deaths annually. Another global study (5)
found that the incidence and mortality of sepsis in paediatric
populations (between 4 weeks and 20 years of age) were 22 per
100,000 person-years and 9–20%, respectively; the incidence and
mortality of neonatal sepsis (Sepsis-2 definition) were 2,202 per
100,000 live births and 11–19%, respectively. Extrapolation of
the data resulted in global estimates of 3 million sepsis episodes
in neonates and 1.2 million episodes in paediatric populations
annually. Infection-related mortality outside the neonatal period
has been falling, but these sepsis episode rates emphasise the
importance of focus on tackling sepsis in the first 4 weeks of life.

Both studies (5, 17) indicated several limitations about
the epidemiological surveys on sepsis. Firstly, there was no
population-level data available from low-income countries,
which represent 87% of the world’s population (17) and bear a
huge burden of infectious diseases and sepsis (20). Therefore,
these figures were likely to be underestimates. Secondly, the
lack of a universal and specific sepsis definition and severity
criteria leads to substantial heterogeneity in case definitions
among studies. Lastly, studies may use different denominators to
calculate the incidence andmortality (e.g., person-years, specified
populations, live births). These hurdles make meta-analysis more
challenging and susceptible to bias.

On top of these limitations, most epidemiological studies on
sepsis either excluded cases of viral origin or did not specify
the proportion of viral sepsis. Organisms that contribute to
sepsis can be identified in 59–69% of septic patients (i.e.,
documented sepsis), with bacteria usually accounting for more
than 70% of the documented sepsis cases (21–23). Viruses only
contribute ∼1% of the documented sepsis cases in some studies
(22, 23). However, this figure likely understates the prevalence
of viral sepsis for several reasons. A recent Southeast Asian
prospective study (24), using a predefined set of laboratory tests
(including PCR tests for multiple viruses), demonstrated that
viruses accounted for 76 and 33% of the documented sepsis cases
(Sepsis-2 definition) in paediatric (excluding neonates) and adult
populations, respectively. The most common viruses identified
were dengue viruses (27%), followed by rhinovirus (23%),
influenza viruses (14%), and respiratory syncytial virus (12%).
Although the study was only conducted in tropical middle-
income countries and not using the Sepsis-3 definition, it still
provides direct evidence that viral sepsis may be underdiagnosed
if diagnostic tests for viruses are not performed.

However, the identified viruses could be the single causative
agent of sepsis (e.g., dengue), a contributor to secondary
bacterial sepsis (e.g., influenza and staphylococcal sepsis) (25),
coinfection of unknown significance (e.g., rhinovirus), prolonged
or persistent shedding of a previous infection (e.g., adenovirus)
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(26), an “innocent” latent infection (e.g., Epstein-Barr virus)
or a false positive result. This also needs to be taken in the
clinical context. For example, a profoundly immunosuppressed
child with respiratory symptoms and a high rhinovirus viral load
in blood would suggest rhinovirus as the cause of the sepsis.
However, a previously well child with purulent meningitis and
rhinovirus in a nasal swab would not. This uncertainty is another
major obstacle to studying the epidemiology of viral sepsis,
particularly in cases where bacterial infection is also documented
or the identified virus does not usually cause fulminant disease.
What role the identified virus plays in a septic patient is still an
area of debate.

Similarly, another prospective study demonstrated that a third
of adult patients requiring intensive care for severe pneumonia
had viral infections, detected by a predefined array of diagnostic
tests (including PCR tests for multiple viruses) (27). Pneumonia
is the most common clinical syndrome in patients with sepsis
(21, 22, 28). Moreover, another prospective study found that
patients with culture-negative sepsis had significantly lower levels
of procalcitonin than those with documented sepsis (21). It has
been shown that elevated procalcitonin levels are more likely to
be seen in bacterial infections than viral infections and may be
used to differentiate infections caused by bacteria and viruses
(29, 30). Therefore, these studies suggest that viruses may cause
more sepsis cases. The exact incidence of viral sepsis remains to
be elucidated.

The World Health Organization and the World Health
Assembly have listed sepsis as one of the global health priorities
for the following years (31). They also recognized the importance
of understanding the epidemiological burden of sepsis. In order
to obtain a comprehensive picture of the burden of sepsis, there
is an urgent need to understand the epidemiology of viral sepsis.

AETIOLOGY OF VIRAL SEPSIS

Almost any virus can cause viral sepsis in susceptible populations
(24). Herpes simplex virus (HSV) and enteroviruses are the
most common viral causes of neonatal sepsis (32), while
enteroviruses and human parechoviruses (HPeVs) are the most
common causes of viral sepsis in young children (33). In
addition, influenza viruses are not only a major cause of severe
infections and deaths among children younger than 5 years
of age, older adults, pregnant women and immunosuppressed
individuals (34), but can also lead to substantial morbidity and
mortality in older children and adults in other age groups (35).
Furthermore, dengue viruses are a leading cause of sepsis in some
tropical countries (24). We will review the characteristics and
epidemiology of these prominent causes of viral sepsis in the
following section.

Herpes Simplex Viruses
HSV is one of the leading causes of neonatal sepsis (32).
In neonates, HSV can cause three types of disease: skin, eye
and mouth disease, encephalitis, and disseminated disease (36).
Disseminated HSV disease is the most severe form of HSV
infection, with a case fatality rate of as high as 29% (29). Patients
with lethargy, severe hepatic dysfunction or delayed treatment

have higher mortality (29). HSV can also cause fulminant
hepatitis in non-neonatal populations, typically without obvious
cholestasis (37). Both disseminated HSV disease and fulminant
HSV hepatitis have a clinical presentation of viral sepsis,
involving hepatic dysfunction, respiratory failure, disseminated
intravascular coagulopathy, and haemodynamic instability (36,
38). In the absence of skin lesions, disseminated HSV disease and
HSV hepatitis are difficult to differentiate clinically from sepsis
caused by other pathogens (36, 38).

Studies have reported various incidence rates of neonatal HSV
infection, ranging from 8 to 60 per 100,000 live births, with
disseminated HSV disease accounting for 25% of cases (39).
Some viral factors are associated with viral sepsis. Firstly, a large
inoculum of HSV may increase the risk of viral sepsis (38).
Secondly, it has been shown that maternal genital HSV type 1
(HSV-1) infection has a higher probability of transmission to
neonates during labour than HSV type 2 (HSV-2) infection (40).
However, HSV-2 accounts for a higher proportion of neonatal
central nervous system (CNS) and disseminated HSV diseases
although HSV-1 causes about 60% of cases of neonatal HSV
infection (41). This also explains why HSV-2 is associated with
highermorbidity andmortality (39). Furthermore, neonates born
to mothers with newly-acquired genital HSV infection near term
are at greater risk for neonatal HSV infection than those born to
mothers with reactivated genital HSV infection (42).

Human Enteroviruses
Enterovirus is a genus of viruses of the family Picornaviridae,
which have been shown to cause sepsis in immunodeficient
and paediatric populations (43). Enteroviruses are the causative
agents of a broad range of clinical conditions including
aseptic meningitis and myocarditis, although many cases
are asymptomatic or benign (44). There are about 10–15
million symptomatic enteroviral infections in the United States
per year (43) with a disproportionately high number of
infections occurring in neonates (11.4–11.6% compared with the
average yearly birth cohort percentage of 1.5%) (45, 46). The
enteroviruses that have the highest association with sepsis are
coxsackievirus and echovirus (47); these viruses primarily cause
sepsis in neonates (47). In contrast, enterovirus A71 can lead
to viral sepsis in children beyond the neonatal period (48, 49),
predominantly in children younger than 2 years of age (50).

Risk factors for neonatal enteroviral infection include
exposure to maternal secretions or blood during delivery,
maternal infection just before or at delivery, and a lack of
previous maternal infection by the infecting serotype, resulting
in lowmaternal antibody levels against that serotype of virus. The
majority of severe neonatal enteroviral infections occur between
days 3 and 5 of life, suggesting that the acquisition is generally in
the perinatal period and is preceded by maternal infection (51).

Human Parechoviruses
HPeVs are also frequently associated with sepsis in paediatric
and immunodeficient populations. HPeVs have previously been
defined as a subset of the genus Enterovirus but were eventually
re-classified as their own genus of viruses after sequencing
revealed them to be unrelated to enterovirus. Antibodies against
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HPeVs are present in the cerebrospinal fluid (CSF) of up to
99% of the population (52), with HPeV type 3 (HPeV3) (the
most common cause of HPeV sepsis) being present in 10% of
the population studied in the Netherlands and 13% in Finland
(52). HPeVs are the second most common cause of viral sepsis in
young children after enteroviral infections (33). HPeV infections
are often asymptomatic or present with very mild symptoms,
although severe infections can have symptoms ranging from
sepsis and sepsis-like illnesses to viral meningitis and encephalitis
(33).White matter abnormalities onmagnetic resonance imaging
have been found in cases of HPeV encephalitis, which may play
a role in the development of sequelae (53–55). The development
of white matter abnormalities and sequelae seems to show little
association with short term outcomes (54). Clinical presentations
of HPeV infections are similar to those of enteroviral infections,
are clinically indistinguishable and require serology or PCR to
discriminate between them. HPeV3 is the HPeVmost commonly
associated with severe disease, with other HPeVs known to cause
severe disease only rarely (56, 57).

Licensed specific antiviral therapy is not available for HPeV or
enterovirus infections, despite their relatively high incidence in
neonatal encephalitis and systemic infections (58). This presents
a promising target for future research, and a tangible way to
reduce the incidence of neonatal viral sepsis and associated infant
mortality globally.

The addition of a PCR test for HPeVs to the re-analysis of 761
banked CSF samples from children presenting with sepsis found
a 31% increase in detection of a viral cause of sepsis in these cases
(33), with HPeV being found in 0.4–8.2% of neonates presenting
with sepsis, depending on the year, with an overall detection rate
of 4.6%. It is thus likely that viral sepsis caused by HPeVs is
frequently underdiagnosed.

Influenza Viruses
Influenza A and B viruses cause seasonal epidemics and
out-of-season outbreaks worldwide (34). Influenza sepsis can
present as severe pneumonia, acute respiratory distress syndrome
(ARDS), myocarditis or encephalopathy. The estimated annual
incidence proportions of influenza virus infection are 5–10%
in adults and 20–30% in children (34). A modelling study
demonstrated that seasonal influenza epidemics account for
an estimated 290,000–650,000 respiratory deaths annually, with
10,000–110,000 occurring among children younger than 5 years
of age (59). The true mortality attributable to influenza viruses
must be higher because the figures do not include deaths from
other causes, such as circulatory deaths (59), which also make
up a large proportion of influenza virus-associated deaths (60).
Approximately 60% of mortality from seasonal influenza occurs
in people older than 65 years of age (59), while 80% of the non-
survivors in the 2009 influenza H1N1 pandemic were people
younger than 65 years of age (61). The age shift may be explained
by some level of immunity to H1N1 strains in people born
before 1957, when H1N1 strains widely circulated and had not
been replaced by the H2N2 pandemic strain (35). In addition,
a study (62) found high titres of low-avidity, non-protective
immunoglobulin G against the viral H1 antigen in severely
ill middle-aged adult patients. Pulmonary immune complex

deposition and complement activation were also observed. This
provides evidence that immune complex-mediated disease may
be part of the pathogenesis of severe pneumonia in middle-aged
patients, which also contributes to the age shift.

The pathogenesis of influenza virus infection depends on
viral virulence and host responses (63). Host responses will
be discussed in the next section. The crucial site for influenza
virus infection that leads to severe pneumonia is the alveolar
epithelium (64). Haemagglutinins (HAs) of different strains of
influenza viruses have varied tropism for the airway epithelium.
For example, seasonal influenza viruses bind preferentially to
the epithelium in the upper airway and bronchi and, to a lesser
extent, to the alveolar epithelium (65, 66). By contrast, HA of the
2009 pandemic influenza A (H1N1) virus attaches to both type 1
and type 2 pneumocytes, while HA of the avian influenza H5N1
virus primarily binds to type 2 pneumocytes (64). The second
determinant of viral virulence is the viral polymerase complex,
which is associated with different levels of viral replication
and cytokine production in the infected epithelial cells (65).
Therefore, the differing tropism, along with the varied degrees of
viral replication and cytokine production, induces various extents
of cell death and in part explains the differences in pathogenicity
between different strains (63, 67).

Dengue Viruses
Dengue is a common viral infection in tropical countries and has
the capacity to cause viral sepsis. Dengue viruses are currently
considered the most important and widespread virus spread by
mosquitos (68). Over 50% of the world’s population live in areas
where dengue infection occurs (68). Estimates of yearly dengue
infections range from 50 million up to 400 million (68). Dengue
viruses are members of the family Flaviviridae, with four distinct
serotypes; serotypes 1, 2, 3, and 4 (69). Infection with any of these
serotypes gives full protection against that serotype; however,
after infection with one serotype, infection with any of the others
can result in an enhanced and more severe form of the disease
(70). All serotypes of dengue viruses have been implicated in
severe dengue (68).

One study in Thailand found that∼14% of patients diagnosed
with sepsis (Sepsis-2 definition) tested positive for dengue viruses
upon re-analysis of banked serum samples by PCR (71). Of the
patients who were diagnosed with dengue by PCR from banked
serum samples five had died, of which four had been diagnosed
with sepsis but not dengue infection. It was suggested that it may
prove beneficial to increase testing for dengue viruses in patients
presenting with sepsis to ensure the patient receives appropriate
treatment (71).

Table 1 summarises the clinical syndromes, epidemiology and
risk factors of sepsis caused by these viruses and adenovirus.
While being the most commonly detected viruses causing
sepsis, they are far from the only ones. Other viruses, such
as chikungunya virus (84), hantavirus (85), coronaviruses (86),
Ebola virus (87), and Lassa virus (88), among many others, are
also major contributors to viral sepsis across the globe. Due to
the limited data on many of these viruses, the immune responses
against them and their pathogenesis are poorly understood. In
addition, these viruses do not occur at a high enough incidence in
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TABLE 1 | Summary of the clinical syndromes, epidemiology and risk factors of sepsis caused by different viruses.

Clinical syndromes Epidemiology Risk factors for sepsis References

HSV Disseminated disease

Hepatitis

Neonatal disseminated disease

Incidence: 2–15 per 100,000 live births

Mortality: up to 29%

Newly-acquired maternal genital infection

near term

HSV-2 infection (compared with HSV-1

infection)

(29, 38, 39)

Enterovirus Sepsis-like illness

Myocarditis

Encephalomyelitis

Pulmonary oedema or

haemorrhage

Incidence: 37% of young infants (<90 days of

age) with sepsisa and without signs of localised

infection

Mortality of neonatal enteroviral sepsis:

up to 42%

Lack of maternal antibodies

Maternal infection just before or at delivery

Neonatal infection with echovirus 6, 9, 11, 19

or coxsackievirus B2–B5

Enterovirus A71 infection in young children

(29, 48, 72, 73)

HPeV Sepsis-like illness

Meningoencephalitis

Incidence: 15% of young infants (<90 days of

age) with sepsisa and without signs of localised

infection

HPeV3 infection (compared with infection

with other types of HPeV)

(33, 73)

Influenza virus ARDS

Myocarditis

Encephalopathy

Incidence: 1 million cases of severe respiratory

infections in children <5 years of age worldwide

annually

Mortality: 290,000–650,000 respiratory deaths

worldwide annually (all age groups)

People of extreme age (<5 or >65 years)

Immunosuppression

Pregnancy

Influenza A (H3N2) virus infection (compared

with influenza A (H1N1) or B virus infections)

(34, 59, 74, 75)

Dengue virus Severe dengueb

Dengue shockb
Incidence: 58–96 million symptomatic dengue

infections with 250,000–500,000 progressing to

severe disease worldwide annually; 8% of sepsis

casesc in Southeast Asian

Mortality: 9,000–24,000 deaths worldwide

annually

Previous dengue infection (with a different

serotype)

(20, 24, 70, 76–79)

Adenovirus Disseminated disease

Meningoencephalitis

Severe pneumonia

Disseminated disease in children

Incidence: 2.5% of adenovirus infection

Mortality: 55%

Immunosuppression (particularly allogeneic

HSCT)

Young children

Infection with adenovirus serotypes 3 and 7

(80–83)

aSepsis was defined according to age-specific criteria, Rochester criteria and Yale observation scale.
b2009 WHO revised dengue case classification.
cSepsis was defined by the Sepsis-2 definition.

HSV, herpes simplex virus; HPeV, human parechovirus; ARDS, acute respiratory distress syndrome; HSCT, haematopoietic stem cell transplants.

populations in high-income countries to gain significant research
funding. This may change in future as more effective treatments
are discovered for more frequently occurring infections and less
common diseases become more attractive to research.

SUSCEPTIBLE POPULATIONS

Neonates and young children (89), pregnant women (90),
older adults (89), and immunosuppressed individuals (91) are
especially susceptible to severe infections and sepsis. Here,
we will review current evidence regarding the immunological
characteristics of these susceptible populations that predispose
them to severe infections, especially viral sepsis.

Neonates and Young Children
The immature and naïve immune system of neonates predisposes
them to infection with intracellular pathogens and sepsis (92,
93). One of the most remarkable features of the neonatal
innate immune system is the bias in favour of type 2 helper
T (TH2)-cell responses, which results in reduced secretion of
pro-inflammatory cytokines, such as interleukin (IL)-12, tumour

necrosis factor (TNF), interferon (IFN)-γ, and IL-1β, which
together with immature innate immunity allows pathogens to
replicate and spread more easily (93, 94). In contrast, neonatal
monocytes and antigen-presenting cells display preserved or
even enhanced Toll-like receptor (TLR)-mediated production
of some cytokines (e.g., IL-6, IL-10, and IL-23) (93). In
addition, studies have shown that neonates can experience highly
exaggerated inflammatory responses through some pathways,
such as the TLR2 pathway, in response to specific antigens
(95, 96). These exaggerated responses may play a role in the
development of sepsis in response to viral infections.

There are also other features of the neonatal immune system
that increase susceptibility to severe viral infection. Firstly,
neonatal monocytes have decreased expression of the major
histocompatibility complex (MHC) class II, which leads to
impaired antigen presentation (93). Secondly, neonatal dendritic
cells have a reduced production of TNF and type I IFNs,
impaired upregulation of CD80 and CD86 co-stimulatory
molecules, and reduced stimulation of T cell proliferation, all
of which can contribute to a decreased ability to clear viruses
(93). In addition, neonates have low levels of complement
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components (93); complement is responsible for antibody-
independent opsonization and lysis of pathogens and plays
a role in the activation and enhancement of the adaptive
immunity against infections (97). Furthermore, there are both
quantitative and qualitative defects in neonatal neutrophils (93).
For example, lower levels of neutrophils in stress situations, such
as sepsis, are seen in neonates. The qualitative deficiencies in
neonatal neutrophils include impairment of adhesion, migration,
chemotaxis and amplification. These defects lead to a reduced
ability to clear viruses and other pathogens. Lastly, the naïve,
immature adaptive immunity of neonates, together with the
lack of pre-existing immunological memory, increases their
susceptibility to various pathogens and severity of infection (94).

It is worth noting that susceptibility to sepsis persists beyond
the neonatal period (i.e., 4 weeks of age). Young children also
bear a substantial burden of sepsis, with the peak incidence of 516
per 100,000 population in the infant group (Sepsis-2 definition)
(5). Likewise, hospitalisation rates for viral infections, such as
influenza (98) and respiratory syncytial virus infection (99), are
highest in children younger than 2 years of age. In addition,
children with underlying diseases (e.g., bronchopulmonary
dysplasia, congenital heart diseases, neurological disorders) are
at greater risk of developing severe viral infections and sepsis
(98, 100, 101).

Pregnant Women
Pregnant women are another population at greater risk of viral
sepsis than the general population. There have been several
reports on maternal sepsis caused by influenza, herpes simplex,
varicella-zoster, and chikungunya viruses, among others (102–
106). Recognition of the problem of influenza related mortality
in late pregnancy has led a number of countries to introduce
routine influenza vaccination in pregnancy. According to the
Global Burden of Disease Study, there were an estimated 17,900
deaths from maternal sepsis and other infections globally in
2015, accounting for 6.5% of the total deaths from maternal
disorders (20). The incidence of maternal sepsis is around 41–
49 per 100,000 pregnancies with a mortality rate of 1.8–4.5%
in the United Kingdom (105) and the United States (107). An
increasing trend in the incidence and mortality of maternal
sepsis has been seen in the recent decades (108). However,
these studies did not report the proportion of women with viral
sepsis.

The maternal immune system is complicated and delicately
modulated. It is tolerant to paternal antigens and the “allogeneic”
foetus, while efficient at identifying and defending against
invading pathogens to protect the mother and the foetus (109).
The immunological characteristics during pregnancy depend on
the stage of gestation and the area of focus. For example, a pro-
inflammatory [type 1 helper T (TH1)-biased] status with high
levels of IL-6, IL-8, and TNF-α is seen in pregnant women during
the first trimester of pregnancy, which is critical for embryo
implantation, placentation and initial foetal growth. Following
this, pregnant women develop a more anti-inflammatory (TH2-
biased) status with increased levels of prostaglandin E2, IL-4, and
IL-10 while the foetus grows rapidly. Before labour, the immune
system shifts back to a pro-inflammatory (TH1-biased) status,

which helps parturition (110). Additionally, the epithelial cells
of the reproductive tract are down-regulated with low levels of
IL-1β, IL-8, and IL-6 in cervical fluid (109). Pregnant women
also encounter reduced levels of immunoglobulin G (111) and
a decreased number of helper T lymphocytes (111) throughout
pregnancy.

The maternal immune system is not yet understood
completely. However, we do know that it is constantly changing,
and not just universally suppressed. The unique immune
profiles result in different responses to pathogens, which may
make pregnant women more susceptible to some pathogens
depending on the stage of pregnancy (110). In addition,
the immune response originating from the placenta also
influences the maternal immune response to microorganisms.
For example, an insult such as a subclinical viral infection of the
placenta can affect the maternal immune system and increase
the maternal susceptibility to various pathogens, including
viruses (112).

Older Adults
Older adults (>60 years old) are a population at a significantly
greater risk of sepsis from all causes than the general population
(113). Older adults were found to have an incidence of sepsis
of 26.2 cases per 1,000, which is considerably higher than
the 3.0 cases per 1,000 observed in the general population
(114). There are many reasons for this increased susceptibility,
including a higher likelihood of co-morbidities, prolonged
hospitalisation times, generally weaker immune responses, and
immunosenescence (115). Viral sepsis in older adults presents
one of the most serious upcoming global health problems, as the
global population of older adults is set to overtake the “young”
population by 2050. It is therefore important to understand the
unique conditions within older adults to better facilitate the
development of suitable treatments. Many of the factors involved
in the increased susceptibility of older adult populations to sepsis
also increase the susceptibility to viral infection, and thus viral
sepsis.

Comorbidities for sepsis and severe viral infection such
as diabetes mellitus (116), renal failure (117, 118) chronic
obstructive pulmonary disease (117, 119), heart conditions (120),
and obesity (120, 121) are much more prevalent in older adult
populations. There are many other comorbidities in older adults
that can increase the risk of viral sepsis. These often are associated
with immunosuppression [e.g., renal failure (122)].

Immunosenescence is the gradual deterioration of the
immune system brought on by advancing age, which increases
susceptibility to both viral infections, and the development
of viral sepsis. It is characterised by a decrease in the
function of phagocytes (123–125), antigen presentation (124) and
lymphocytes (126, 127), as well as decreased cellular replication
(128, 129) and ability to respond to cytokine stimulus (130).
Older adults also experience persistent T cell exhaustion in part
due to constant low-level inflammation, thought to be caused by
accumulation of self-debris brought on by a decrease in the ability
to clear them (131). This process, often called “inflammaging”
is characterised by elevated baseline levels of the cytokines IL-
6, IL-1, and TNF-α (130, 132). Another factor contributing to

Frontiers in Immunology | www.frontiersin.org 6 September 2018 | Volume 9 | Article 2147

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lin et al. Viral Sepsis

T cell exhaustion in older adults is the prolonged length of
inflammatory states after infections (133) which can result in
decreased T cell replication and inhibition of co-stimulation by
antigen presenting cells. This results in a decreased ability to
effectively respond to infection, allowing viral infections to easily
evade eradication by the immune system and develop into serious
systemic infections.

Immunosuppressed Individuals
The number of immunosuppressed hosts has grown considerably
over the last decades due to the widespread use of cytoablative
chemotherapy, monoclonal antibodies and immunomodulatory
agents for neoplastic and autoimmune diseases, the epidemic of
human immunodeficiency virus (HIV) and increasing numbers
of haematopoietic stem cell transplants (HSCT) and solid
organ transplants (SOT). The clinical picture of sepsis in
immunosuppressed hosts is usually diminished or non-specific,
making it difficult to diagnose or distinguish from other
non-infectious causes, such as transplant rejection (91, 134).
Thus, infection and sepsis continue to be the major cause of
morbidity and mortality in immunosuppressed hosts (91, 135).
A multicentre, prospective study (135) in the United States
showed that 42% of HSCT recipients had viral infections at
some point post-transplant (median follow-up, 413 days), and
infection accounted for 21% of deaths. However, the authors did
not specify the mortality rate caused by viral infections.

Individuals with neutropenia or taking corticosteroids mainly
have impaired innate immunity, while transplant recipients
primarily have defects in adaptive immunity (91, 136). Similar
to immunocompetent hosts, many viruses are able to cause
sepsis in immunosuppressed hosts, but some are of particular
concern. For example, HSCT and SOT recipients are at
high risk of infection with cytomegalovirus (CMV), other
herpesviruses and respiratory viruses (e.g., adenovirus, influenza
virus, parainfluenza virus and respiratory syncytial virus) (136).
In transplant recipients, the timing of viral infections varies
according to the types of transplant, antimicrobial prophylaxis
received, and other host and donor factors, but they are most
likely to occur 1 month after transplantation when defects in
cell-mediated immunity dominate or graft-versus-host disease
occurs (134, 137). By contrast, the risk of infection with CMV,
other herpesviruses, and respiratory viruses may be lower in
neutropenic hosts, patients with HIV infection and individuals
taking corticosteroids than in transplant recipients (136).

Primary immunodeficiency is another special category of
diseases comprising at least 200 genetic disorders of variable
severity (138) and affecting more than six million people
worldwide (139). This population is at substantial risk of
disseminated viral infection and sepsis. Young children with
inborn errors in signalling pathways upstream of the production
of type I IFNs are at higher risk of developing life-threatening
viral infection (140). For example, signal transducer and activator
of transcription 1 (STAT1) or nuclear factor (NF)-κB essential
modulator (NEMO) deficiency leads to lethal HSV disease
and various other severe viral infections (140–142). Deficiency
in interferon regulatory factor 7 also leads to more severe
viral infections due to decreased downstream IFN signalling

(143). Other disorders that have been demonstrated to have
an effect in viral infections are the IFITM3 SNP rs12252,
which affects CD8+ T cell numbers (144), and variations in
receptor components such as the IFIH1 receptor, which decreases
downstream signalling to IFNs (145). In addition, patients with
severe combined immunodeficiency have major defects in B and
T lymphocyte development, facing a substantial risk of infection
caused by a wide variety of pathogens (e.g., fulminant adenovirus
and HSV infections) (146, 147).

THE IMMUNOLOGY OF VIRAL SEPSIS

Normal Immune Responses to Viral
Infection
Pattern recognition receptors (PRRs) are responsible for the
initial detection of viruses (148). They can recognize pathogen-
associated molecular patterns (PAMPs) (e.g., viral RNA and
DNA) and damage-associated molecular patterns (DAMPs) (e.g.,
host DNA and proteins) (148). There are several families of PRRs,
such as TLRs, cytosolic RNA sensors [e.g., retinoic acid–inducible
gene (RIG)-I and melanoma differentiation–associated gene 5
(MDA5)] and cytosolic DNA sensors (e.g., absent in melanoma
2, IFN-γ-inducible protein 16, and cyclic GMP-AMP synthase)
(149). When encountering pathogens, PRRs play a critical role in
the activation of innate immune responses and the recruitment
of leucocytes (148, 149).

First of all, the innate responses stimulate the production
of pro-inflammatory cytokines and have an immediate antiviral
effect on preventing virus spread and replication, which is mainly
exerted by type I IFNs (150, 151). Furthermore, PRRs can
trigger the development of virus-specific adaptive immunity (e.g.,
cytotoxic T lymphocytes, antibodies) to clear viruses and virus-
infected cells (152). Lastly, PRRs can induce the secretion of
anti-inflammatory cytokines such as IL-10 and IL-13, which help
to resolve the pro-inflammatory state and promote tissue repair
(149, 153, 154). The normal immune responses to viral infection
are summarised in Figure 1A.

Hyper-Inflammatory Phase of Viral Sepsis
Although pro-inflammatory cytokines are essential to mediate
innate immunity, they (particularly IL-6) can cause host damage
(149). The release of DAMPs from the damaged tissues and cells
can further stimulate PRR signalling and lead to a chain reaction
culminating in viral sepsis if the infection is not cleared (155).

Herpes Simplex Viruses
TLR2 and TLR9 comprise the major PRR signalling pathways
activated in response to HSV infection (96, 156). Many of the
clinical features of viral sepsis caused by HSV can be attributed to
exuberant responses induced through TLR signalling (95). It has
been demonstrated that levels of IL-6 are negatively associated
with the survival of HSV encephalitis (157). Neonatal cord-blood
cells mount higher levels of pro-inflammatory cytokines (IL-6
and IL-8) when challenged with HSV than adult blood cells (95).
Therefore, HSV causes a higher ratio of IL-6 to TNF in neonates,
which contributes to severe inflammation and the development
of sepsis (93).
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FIGURE 1 | Immune responses in viral sepsis. (A) Normal competent response to viral infection resulting in clearance of infection (1) When the immune system is

exposed to a virus, the virus infects or is phagocytosed by macrophages, dendritic cells or other phagocytes. Phagocytes break down, process and present antigens

from the virus and produce type 1 cytokines. (2) Type 1 cytokines cause T cells to differentiate into TH1 cells and CD8T cells. (3) TH1 cells and CD8 T cells cause

apoptosis of infected cells and activate processes such as the production of reactive oxygen species in phagocytes, which destroy the viruses. Antibody production is

elevated, resulting in opsonisation, greater phagocytosis and destruction of viruses. (4) Virus is cleared and memory T cells are produced, which can rapidly respond

to future infections. (B) Aberrant immune response resulting in viral sepsis and failure to clear virus. (1) When the immune system is exposed to a virus, the virus

infects or is phagocytosed by macrophages, dendritic cells, or other phagocytes. Phagocytes break down, process and present antigens from the virus. Non-type 1

cytokines are produced. (2) Non-type 1 cytokines result in inappropriate type 2 or type 17 immune responses, which cause inflammation but cannot clear the virus.

(3) T cells become exhausted and can no longer competently clear pathogens. (CTLA-4, cytotoxic T-lymphocyte–associated antigen 4; IFN, interferon; IL, interleukin;

iNOS, inducible nitric oxide synthase; PD-1, programmed death 1; TNF, tumour necrosis factor).

Dysregulated secretion of pro-inflammatory cytokines in
response to HSV infection also induces the production of high
mobility group box 1 protein (HMGB1) from injured cells (158).
HMGB1 is a nuclear protein and regulates DNA transcription.
HMGB1 can mount a pro-inflammatory cytokine response to
pathological levels and lead to the release of cytochrome c
(158). It has been demonstrated that the peak of HMGB-
1 comes before the peak of cytochrome c in a clinical case
of neonatal disseminated HSV disease (158). Cytochrome c
subsequently activates caspase-3 and caspase-7, resulting in
extensive apoptosis (149). Apoptosis is responsible for the
development of multiorgan dysfunction in septic patients (159).

Human Enteroviruses
Human enterovirus infections are characterised by a type I
IFN response, induced by PRRs that respond to RNA viruses.
Enterovirus detection has been found to primarily involve the
TLR and RIG-I-like receptor (RLR) signalling pathways. In
particular TLRs 3 (160), 7 (161), 8 (162), and 9 (163) have been

implicated in the innate response to enteroviruses. The RLR
most commonly associated with enterovirus infection is MDA5.
MDA5 is involved in detecting intracellular RNA viruses (164)
and has been found to play a small role in the development
of the innate immune response to enterovirus infection (165).
Although other PRR signalling cascades are likely to have a role
in sensing enteroviruses, this role has not yet been characterised.
Human enteroviruses employ a diverse range of strategies to
evade the immune response and replicate. These strategies are
critical to the ability to cause viral sepsis, as they allow the virus
to replicate sufficiently to cause significant inflammation. Some
broad strategies of immune evasion used by enteroviruses are
interference with innate immune signalling by either interfering
with or avoiding initial PRR recognition [poliovirus can subvert
MDA5 signalling and induce apoptosis of innate immune
effector cells (166)] or interfering with the downstream cytokine
signalling pathways. There is evidence that enterovirus A71 can
interfere with the IFN signalling pathway at several points (167).
These immune evasion mechanisms have been shown to have
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a direct impact on survival in mouse models, with blockage
of type I IFN pathways in enterovirus A71 infections resulting
in increased mortality and viral load (168). Severe infections
with coxsackievirus have been associated with host expression
of the decay-accelerating factor (DAF) and coxsackievirus and
adenovirus receptor (CAR), which have been shown in mouse
models to facilitate coxsackievirus infection of neural stem cells
(169, 170). DAF and CAR are cell surface receptor proteins
involved in the complement pathway (171) and cell adhesion
(172), respectively. The role of DAF in disease is not known
(170, 173). CAR functions as a receptor which can be used by
coxsackieviruses to enter the cell (170). The immune response
to enteroviral infections is varied and strain specific; however, a
general strong pro-inflammatory response involving IL-1α, IL-
1β and TNF-α, alongside an increase in the expression of innate
immune receptors for double stranded RNA is observed in most
cases (174). These responses alongside virally induced lytic cell
death can result in extensive necrosis, further compounding the
inflammatory response and potentially leading to conditions of
sepsis (174). Interestingly, some strains of enterovirus, such as
echovirus-9, seem to cause a particularly high degree of necrosis
in pancreatic β islet cells, resulting in a strong correlation between
enteroviral infections and diabetes (174).

Human Parechoviruses
HPeV3 infection has been shown to initiate distinct innate
immune responses in CNS infections to those of enteroviral
infections despite their similar clinical presentations (175).
Enteroviral responses are generally stronger; levels of almost
all cytokines are higher in enteroviral responses than in HPeV
infections. HPeV infections also do not demonstrate the strong
type I IFN responses generally induced by RNA viruses. In
addition, HPeV infections demonstrate a lower level of IL-
6 expression than both enterovirus infections and controls,
suggesting somemethod of viral immune evasion (175), resulting
in these muted immune responses. The markedly lower innate
immune cytokine responses induced by HPeV3 infection are
interesting, as HPeV3 has a similar clinical presentation to that
of many enteroviral infections, raising questions about disease
pathogenesis and viral classification. It has also been shown that
HPeV is detected by TLRs 7 and 8 (176) which activate the
type I IFN pathway (177). There is evidence that HPeVs (in
particular HPeV type 1) employ methods to dampen type I IFN
signalling (178) in a cell type dependent manner. Treatment of
these cells with type I IFN, however, was not found to inhibit
viral infection of these cells. It could be interesting to explore
the relevance of this evasion mechanism in the context of a
systemic infection. The immune response to HPeV infection is
not as well-characterised as that of enteroviral infection; however,
certain constants, such as the suppression of type I IFNs as an
immune evasion mechanism, indicate that type I IFN pathways
are important in the resolution of these infections. There are
few data analysing cytokine populations of these infections in
the context of sepsis, so while it is possible to characterise the
immune responses involved in these infections, it is not known if
these hold true in viral sepsis.

Several reasons have been proposed for why HPeV3 is more
likely to cause severe infections than other HPeVs. It has been
observed that HPeV3 lacks a sequence motif present in other
HPeVs that is thought to play a role in viral use of integrins as
host cell receptors, suggesting that the virus may be exploiting a
different receptor to enter cells. This may allow it to more easily
access host cells and thus replicate to a higher degree than other
HPeVs (179). It has also been noted that HPeV3 is not efficiently
neutralised by antibodies naturally generated against it, while
HPeV type 1 was efficiently neutralised, which may explain why
HPeV3 infections tend to be more severe. Maternal antibodies
would be insufficient to neutralise the virus in a neonate, resulting
in more severe, prolonged infections (180).

Influenza Viruses
Recognition of influenza virus is primarily through TLR3 (181),
TLR4 (182), TLR7 (183), and RIG-I (184), which signal through
NF-κB to induce subsequent immune responses (185). The
polymorphisms of these receptors in different individuals in part
determine their susceptibility to, and the severity of, influenza
virus infection (186). The disruption of the alveolar epithelial-
endothelial barrier, leading to pulmonary oedema and further
respiratory insufficiency, is essential to the development of
severe pneumonia and ARDS caused by influenza virus (64).
Influenza virus first infects alveolar epithelial cells rather than
alveolar endothelial cells, which are usually the primary target
for bacteria-induced ARDS (64, 187). Influenza virus can cause
apoptosis of the epithelial cells by the upregulation of the Fas gene
via activating protein kinase R (188). In addition, the infected
epithelial cells produce a broad range of pro-inflammatory
cytokines, such as TNF-α, IL-1β, IL-6, IL-8, CCL5 (RANTES),
and CXCL10 (IP-10) (64). These cytokines can damage the
epithelial-endothelial barrier through mechanisms that are not
yet fully understood (64). Studies have demonstrated that IL-1β
and TNF-α can cause decreased activity of amiloride-sensitive
epithelial sodium channels, one of the key ion channels that clear
alveolar fluid (189). TNF-α has also been shown to be able to
disrupt the tight junctions between epithelial cells (190).

Some of the cytokines that are produced by epithelial cells
can cause the recruitment and extravasation of monocytes
and neutrophils by direct chemotaxis or upregulating adhesion
molecules (e.g., P-selectin, E-selectin) on the endothelial cells
(64). Newly-recruited neutrophils and macrophages, derived
frommonocytes, can produce a wide variety of pro-inflammatory
cytokines, reactive oxygen species and nitric oxide (by inducible
nitric oxide synthase), all of which further damage the barrier
(64). These cytokines can also recruit more neutrophils and
monocytes into the alveolar lumen (64). It has also been shown
there is a positive correlation between the concentration of
neutrophils in bronchoalveolar lavage fluid and the severity
of ARDS (191). In addition, macrophages produce IFN-β
in a protein kinase R- and NF-κB-dependent fashion and
express TNF-related apoptosis-inducing ligand (TRAIL) by the
stimulation of IFN-β (192). The interaction between TRAIL and
death receptor 5 on epithelial cells is another mechanism for the
apoptosis of epithelial cells (64).
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Dengue Viruses
The innate immune response to dengue infection is primarily
characterised by an IL-8 and type I IFN response activated by
TLR3 after the virus is degraded by endosomal acidification
(193). Dengue virus also activates the TLR7, TLR8, RIG-I and
MDA5 signalling pathways, which signal through type I IFNs
(194–196). There is also evidence that dengue virus may signal
through TLRs 2 and 4, and that this may contribute to the
pathogenesis and extreme inflammation of severe dengue (197).
Type I IFN induction is important for a successful immune
response to dengue virus (198). Many of the documented
immune evasion mechanisms employed by dengue virus involve
the inhibition of type I IFN signalling by some method. Dengue
virus has been demonstrated to inhibit IFN production by a
RIG-I dependentmechanism (199). Inhibition of IFN production
contributes to the ability of dengue virus to replicate and spread,
and thus to cause severe systemic infections and viral sepsis.
Dengue virus can also cause an antibody enhanced form of
disease when a patient is exposed to a different serotype of dengue
virus than the one with which they were initially infected (70).
Enhanced dengue disease involves the same immune responses
as the non-enhanced form of disease, with a key difference being
the presence of cross-reactive antibodies, which do not neutralise
the pathogen but instead allow the virus to replicate within Fc
receptor containing cells, resulting in a more severe infection
(200).

Immune Suppressive Phase of Viral Sepsis
Figure 1B summarises the aberrant immune responses in
viral sepsis. It has become apparent in recent years that the
immunosuppression that results from sepsis may contribute
more to mortality than the initial hyper-inflammatory response.
A more immunosuppressive genotype in patients with sepsis
is correlated with increased mortality (201, 202). It has also
recently been reported that the majority of deaths in adults [68%]
that occur during sepsis from all causes happen on the third
day or later (203). 20.4% of these deaths could be attributed
to nosocomial infections. Independent predictors of third day
or later death were corticosteroid treatment, no identification
of the pathogen (203), and age. These risk factors differ in
paediatric populations, with most deaths occurring within 48 h
of presentation (204, 205). Most deaths in children occurred
due to refractory shock (204). This suggests that in adults most
sepsis related deaths are not due to an initial overpowering
immune response, rather due to an inability to control infections
that result in excessive pathogen proliferation and inflammation,
whilst children are less able to survive an initial fulminant
infection.

The initial inflammatory immune response that characterises
viral sepsis is usually followed by a period of immune
suppression. This phenomenon is characterised by decreased
function in both innate and adaptive immunity, with common
features including increased expression of negative co-
stimulatory molecules and decreased expression of positive
co-stimulatory molecules, T cell exhaustion, apoptosis of effector
cells, increased regulatory T cell expression and higher numbers
of myeloid derived suppressor cells (206, 207). This can result

in increased infections from secondary pathogens, but also
the reactivation of dormant infections, and natural microbiota
becoming pathogenic (206). In particular, the reactivation of
herpesviruses such as CMV andHSV have been found to occur in
33 and 21% of immunocompetent patients with severe infections
requiring hospitalisation, respectively (208, 209). Due to the
inability of the immune system to adequately control or eradicate
these infections they can often result in severe disease (210),
tissue damage, and even death. Mortality in sepsis is often caused
by serious secondary infection after the initial inflammation has
already passed. Immune suppression is a common feature of
persistent and serious viral infections (211).

Some viral infections can directly result in immune
suppression. Some strains of enterovirus are known to
infect leucocytes (212). In particular some strains, such as
coxsackievirus B3 and enterovirus 70, that have been implicated
as causes of sepsis have shown this capacity (212). Infection
of leucocytes in severe viral infections has been shown to
result in an immunosuppressed state, as the death of infected
leucocytes can result in a diminished ability to prime CD4
and CD8 cells and a reduced ability to control pathogens by
phagocytosis. This greatly increases the susceptibility of the
host to secondary infections (210). When compounded with
other immune suppressive effects of severe infections, such as
lymphocyte exhaustion, the ability to handle new infections
can become drastically reduced (211). This phenomenon could
explain the higher mortality observed in infections of relatively
immunosuppressed patients, as well as the high level of mortality
observed in sepsis after the initial inflammatory response has
passed.

Serious infections that cause prolonged inflammation very
often result in immune exhaustion. It was found in in vivo
experiments that prolonged infections by a large variety of viruses
can result in decreased differentiation of immature lymphocytes
into CD8T cells (213). Prolonged viral infections resulted in
decreased expression of IL-7Rα, which in turn resulted in
decreased numbers of circulating memory CD8 cells. It had
also been observed that chronic infection with lymphocytic
choriomeningitis virus (LCMV) resulted in poor CD8T cell
responses to cytokine stimulation and poor development of a
memory CD8 response (214). A similar effect had been observed
in a large number of mouse studies, suggesting that chronic
viral infections could impair many aspects of CD8 effector T cell
function (215–218).

Chronic viral infections have been found to have differential
abilities to induce an immune suppressive state depending
on the strain of virus. In a mouse model, high levels of T
cell exhaustion have been induced by infections with LCMV,
hepatitis B virus, hepatitis C virus, and HIV (217–221). Less
pronounced immune exhaustion was produced in mouse CD8
cells by infection with Epstein-Barr virus (EBV), measles virus,
and CMV (222–225). Why different chronic infections produce
differing degrees of immune suppression is not well-understood,
but could be due to novel immune evasion mechanisms, as in
the case of HIV (220), the rate and degree of replication of a
virus, its preferred replicative niche or its degree of interaction
with PRRs. One well-characterised example of virally induced
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immunosuppression can be found inmeasles virus (225).Measles
virus has several ways in which it can interact with the immune
system and suppress responses. One of these is by interaction
with the CD150 receptor to increase the apoptosis of immune
effector cells while also decreasing expression of IFN-γ (226).
Infection with measles virus has also been shown to decrease the
proliferation of lymphocytes for several weeks after the initial
infection (227). One study found that measles virus infection
may have immunosuppressive effects on the host immune system
that can persist for 2–3 years (228). Although the mechanism by
which this may occur was not characterised, it was hypothesised
that measles virus employs a method of depleting memory B and
T cells, resulting in a heightened susceptibility to infection by
other pathogens (229). This process is multifactorial and not fully
understood. One proposed mechanism is the inhibition of T cell
replication by the measles virus proteins H and F1-F2 (230). It
is possible that other viruses may utilise other immune evasion
mechanisms that may result in immunosuppression.

Viral reactivation is a common feature of all forms of
sepsis. As excessive inflammation gives way to immune
exhaustion some latent infections can take advantage of this
more forgiving environment, escape immunological control and
replicate. Herpesviruses are most commonly associated with this
phenomenon, owing to their ability to become latent for many
years (231). Epidemiological studies have found CMV, EBV and
HSV to be latent in around 50.4% (232), 66.5% (233), and 53.9%
(234) of the non-paediatric population of the United States,
respectively, with detection of viral RNA (indicating active
replication) in cases of sepsis occurring in 24.2, 53.2, and 14.1%
of cases, respectively (235).

Some reactivated viral infections are particularly associated
with increased mortality during sepsis. While viral reactivation is
associated with higher mortality during sepsis, the contribution
of individual viruses to mortality is still controversial. CMV
reactivation has been associated with the doubling of mortality
rates, which is comparable to the increase in mortality rate
associated with latent HIV infection during sepsis (236). This
model has been questioned however, and it is possible that
the increased mortality attributed to CMV reactivation could
be due to the reactivation of multiple viruses simultaneously.
One study found no single virus to be significantly associated
with higher mortality upon reactivation in sepsis, but found
the reactivation of multiple viruses at once to significantly
associate with worsened outcome (237). Further research on the
contributions of the reactivation of individual virus strains to
mortality is required.

It has also been hypothesised that viral reactivation may
contribute to a feedback loop within sepsis, wherein the
reactivated viruses contribute even further to T cell exhaustion
and immunosuppression, resulting in even greater susceptibility
to viremia, compounded immune suppression (235) and elevated
inflammation. This feedback loop would explain why a high
degree of viral reactivation (of all viruses) correlates with
increased mortality. It is still unclear whether elevated viral
loads of herpesviruses following reactivation indeed impairs
lymphocyte function or whether it is just a side effect of other
kinds of immune suppression already taking place (238). It

has been demonstrated that CMV infection can have an effect
on the differentiation of immature lymphocytes into effector
CD8T cells; however, the overall effects this may have on the
patient are not well-characterised (239, 240). The state of CD8
differentiation brought about by CMV infection is similar to the
differentiation state of CD8T cells in older adults. This suggests
that CMV infection may contribute to immunosuppression,
but more research is required to confirm if this effect has a
significant effect on mortality during severe infections (240).
Immunosuppressive effects have also been observed in EBV
infection. EBV infection was found to be associated with reduced
antibody responses to vaccines in Gambian infants (241). The
mechanism of this is still not yet known. Interestingly CMV
infection was not found to be associated with these lowered
responses (241). In addition, there is evidence that these
reactivated viral infections contribute to inflammation alongside
any immunosuppressive effects, resulting in a heightened state of
inflammation but without the capacity to resolve it. In particular,
HSV and CMV have been associated with inflammatory
responses upon reactivation (242, 243). Whether or not this
phenomenon contributes significantly to mortality during sepsis
is still controversial (235).

Understanding the role viral reactivation plays in the
immunosuppressive phase and in the pathology of sepsis may
provide avenues to treatment in the future. Possible approaches
would be the application of antiviral medications specific to
viruses that commonly experience reactivation, or drugs that
could prevent immune exhaustion or ameliorate its effects (like
inhibitors of negative co-stimulatory molecules discussed below).
An improved understanding of the effects of viral reactivation
is vital to expanding our understanding of sepsis and will
contribute to better categorisation of illness and application of
more appropriate treatments.

IS VIRAL SEPSIS DIFFERENT FROM
BACTERIAL SEPSIS?

The diagnosis of viral sepsis can be useful to inform treatment
in cases where antiviral medications are available and suitable;
however, immunological data are scarce on viral sepsis. It
cannot be said with any certainty if viral sepsis is meaningfully
different from bacterial sepsis. Viral sepsis is only understood
insofar as immune responses involved in severe viral infections
are understood. The causes and character of sepsis can be
highly heterogeneous (206). While knowledge of the causative
pathogen provides with treatment options against that pathogen
and against associated immune responses, sepsis and subtypes
thereof are not characterised well enough for immune response-
based therapies to proliferate and enter the mainstream. An
important next step in the understanding of sepsis will be the
characterisation and grouping of sepsis cases according to some
criteria that may inform treatment, and the discovery of cheap
and effective biomarkers which would allow these criteria to be
defined.

Studies have been conducted which have aimed to develop
methods to discriminate between viral and bacterial infections
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(244–246). Some of these have analysed transcriptomics to
identify gene signatures that can differentiate between viral and
bacterial infections (244–246). Some genes identified in these
studies include genes downstream of the IFN signalling pathways
such as IFN-stimulated gene 15 (245) and IFN-α-inducible
protein 27 (244) as well as cytokines such as IL-16 (245). The roles
these genes play in viral infection is not yet known; however, that
information is not required for their use as biomarkers, and as
such they may have clinical utility regardless. The results of these
studies may inform future research to identify biomarkers which
can be used in a clinical setting to quickly differentiate between
bacterial and viral infections. Applications of these methods to
cases of sepsis may help us develop an understanding of how
sepsis differs for differing aetiologies. Transcriptomic studies in
sepsis have been performed before as discussed above (201, 202),
but more focused studies aiming to understand the pathogen’s
role in the character of the disease will be essential to future
sepsis research and providing an answer to the mysteries of viral
sepsis. It may prove difficult to recruit sufficient sample sizes for
a highly powered transcriptomics study in viral sepsis due to its
underdiagnosis.

TREATMENTS FOR VIRAL INFECTIONS
AND SEPSIS

Up to 42% of all cases of sepsis are culture negative, suggesting
a possible non-bacterial cause of infection (21), if appropriate
tests have been performed. Despite this, however, the preferred
treatment of sepsis in all cases is the early administration
of broad-spectrum antibiotics. The survival rate of patients
presenting with septic shock decreases by an average of 7.6% for
every hour that antimicrobials are not applied (247), with time
to application of antimicrobial therapy being the single greatest
indicator of outcome in the multivariate analysis performed in
one study (247). However, the administration of antibiotics will
not be effective in the case of viral sepsis and can be associated
with adverse effects. Understanding a potential viral cause of
the disease increases the possible treatment options, opening the
possibility of using broad-spectrum antiviral medications, but
also to treatments built on an understanding of both sepsis, and
how the immune response to pathogens may contribute to it.

Prospective treatments for specific viruses implicated in
sepsis are being developed. Pleconaril is an antiviral against
enteroviral infection which inhibits viral attachment to the hosts
cell receptors and prevents uncoating of the viral nucleic acids.
There are data suggesting that the drug would be effective
and safe in neonatal virally induced sepsis (248). The drug
recently completed a small phase 2 clinical trial (248); however,
it is no longer under development and is not available, even
for compassionate use. The benefits of more effective antiviral
medicines are clear. They could help both in cases of severe
viral infections and sepsis while also providing treatment for
more benign infections. It could prove useful to use such drugs
alongside antibiotics in sepsis cases, to allow for the possibility
of a viral cause, although this would also open the possibility
of the development of viral resistance. There are many specific

antiviral drugs that have been developed and gone through
trials; however, none have yet been tested specifically for sepsis.
Examples that may be beneficial in presentations of sepsis
in certain situations include acyclovir, which has been proven
effective in HSV infections (249), amantadine, rimantadine,
oseltamivir, and zanamivir for influenza (250, 251), and more
broad-spectrum antiviral drugs like ribavirin and favipiravir
(250).

Antiviral medicines may also have a role in the treatment of
viral reactivation, which may improve outcomes even in non-
virally induced sepsis. Ganciclovir has been demonstrated to
measurably decrease CMV reactivation in mice (248); however,
human trials did not show any significant decrease in CMV-
induced inflammatory cytokine levels (252). There have been
numerous other drugs developed against CMV (253) which could
be effective in preventing viral reactivation.

With the advent of research into personalised medicine, the
idea of treating the host immune response in sepsis has become
popular. By understanding the host response to pathogens and
modifying it we may prevent serious infections that can result
in sepsis or sepsis-like-illness. One common strategy of treating
the host response is the use of immunomodulatory molecules
to prevent harmful excessive inflammation in infections.
Immunomodulation in sepsis aims to decrease the harmful
effects of excessive inflammation by altering or counteracting
the effects of inflammatory mediator molecules (254), such as
TNF-α (255) or by using broad anti-inflammatory molecules,
such as corticosteroids (256). Most trials for immunomodulatory
drugs, however, have failed (257). This approach, has fallen out
of favour in recent years as it either proves ineffective [e.g.,
dengue (258, 259)] or in some cases has the opposite of the
desired effect and dampen the immune system in such a way
as to allow the pathogen freedom to replicate and proliferate
into an uncontrolled infection that causes greater harm [e.g.,
corticosteroids in influenza (260, 261)]. However, adjunctive
corticosteroid therapy may be beneficial and can be considered
in patients with varicella zoster virus encephalitis (262, 263) or
HSV encephalitis (264).

In recent years, an immunostimulatory approach to
immunotherapy against sepsis has become much more popular
(265). This approach aims to promote rapid pathogen clearance,
decreasing the chance for it to proliferate and cause a more
severe infection (265). One proposed method of doing this is
selective application of immunostimulatory cytokines such as
IL-7 and granulocyte-macrophage colony-stimulating factor
(GM-CSF) which some studies have shown to contribute to more
effective viral clearance (266, 267). A recent study demonstrated
that the majority of deaths which occur due to sepsis occur on
the third day or later (203), after immunosuppression has taken
hold, suggests an immunostimulatory approach may prove to be
beneficial.

In order for the treatment of the immune response to work
as a meaningful way to decrease overall mortality we must better
understand how the immune response to infections contributes
to the development of sepsis. To this end, the development of
biomarkers that could determine the likelihood of an infection
becoming harmful due to a lack of ability to clear an infection,
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or indeed whether the initial immune response will be excessive
and harmful, would make these relatively brute force treatments
much more effective by timing and targeting their application.
An understanding of the excessive inflammatory response to
pathogens will allow us to better categorise sepsis states, and
group them according to treatability. Some strides forward
have been made in this field. A 2016 study (201) identified
two distinct host response signatures to sepsis by unsupervised
hierarchical clustering, one of which significantly associated
with higher 14-day mortality. While this study only analysed
bacterial sepsis, the methodology would be extremely useful
in expanding our understanding of viral sepsis. The identified
signature was characterised by relative immunosuppression
as well as increased tolerance to endotoxins, T lymphocyte
exhaustion and metabolic dysfunction. It was hypothesised that
these individuals experienced more severe disease due to an
inability to control infections, resulting in increased pathogen
replication. These individuals would also be more susceptible to
secondary infection. This study, however, only examined sepsis in
adult patients with community acquired pneumonia, which is not
necessarily informative of paediatric populations with immature
immune systems, other immunocompromised groups or viral
infections. A similar study focusing primarily on viral sepsis
would be invaluable to the understanding of viral sepsis and
would open numerous new avenues for prospective treatments.
To be effective in a clinical setting this approach will require
the development of rapid transcriptomic analysis methods to be
clinically useful in a case of a patient acutely presenting with
sepsis. Another study aiming to identify a predictive genomic
signature had similar results (202), grouping cases of sepsis using
a hierarchical clustering method into two distinct subgroups, one
of which correlated with a higher rate of mortality, and was
characterised by a more immunosuppressed phenotype. Genes
involved in the function of lymphocytes were suppressed, despite
the relatively high lymphocyte counts in patients in this group.
This study had similar limitations to the other study mentioned
above.

This knowledge could potentially be used to inform treatment
and the development of immunotherapeutics. It was suggested
that patients presenting with this immunosuppressed gene
expression signature may benefit from drugs that modulate
aspects of the immune response, for example treatment with
various cytokines (such as IFN-γ, IL-7, or IL-15) or blockade of
receptors that can induce cell death in T lymphocytes (201), such
as programmed death 1 (PD-1).

The PD-1 ligand is a promising target for the treatment of
viral sepsis. PD-1 has been implicated in the development of the
immunosuppressive phase of sepsis by inducing the apoptosis
of effector T cells. Continued elevation of PD-1 expression in
septic patients has been found to correlate highly with patient
mortality (238). PD-1 has been implicated in the pathogenesis of
highly pathogenic influenza infections. In more severe Influenza
infections PD-1 was expressed at a higher level, while blocking
it led to increased CD8+ numbers and reduced viral titres in
vivo (268). Blocking of PD-1 may allow for vastly improved
clearance of serious viral infections, preventing the patient from
becoming septic. PD-1 blockade treatment may also be useful

in the immunosuppressive phase of sepsis by maintaining the
competence of the immune system to clear secondary infections
and thus decreasing overall mortality (269–271).

One common feature of sepsis that has emerged as
a promising target for treatments is the dysregulation of
endothelial barriers (272). The endothelial barrier is a continuous
layer coating the vascular system which separates the fluid from
the tissue compartments. The barrier is important in maintaining
bodily homeostasis, regulating the passage of gases, liquids,
proteins, cells and micro-organisms, among other things from
the blood into the tissues. This dysregulation has been found
to be central to the pathology of sepsis (273). In states of
septic shock the tight junctions between cells become disrupted
due to platelets and neutrophils adhering to the endothelial
wall, the release of inflammatory and toxic mediators by these
cells, and an increased expression of binding molecules like
selectins and integrins, which allow leucocytes to bind to the
endothelial layer, and then migrate through it (274). The process
of dysregulation also compounds any damage to the endothelial
barrier by increasing the level of inflammatory mediators at its
surface. This leads to fluid leaking into interstitial tissues, and
the recruitment of macrophages and other inflammatory cells to
tissues they cannot normally access resulting in tissue damage
(272). While these responses generally allow immune effector
cells to reach sites of localised infection or damage, during the
dysregulation and move away from homeostasis that occurs in
sepsis, they can allow for considerable damage to be done to
tissues.

This phenomenon has been found to also occur in serious viral
infections, and also plays a major role in the pathology of viral
sepsis in these cases (275). Viruses such as hantavirus, dengue
viruses, and HSV have presentations that suggest a role for the
endothelial barrier in the pathogenesis of serious disease (276).
There is a lack of data on the relevance of endothelial leaking in
most other viral infections; however, there is evidence that it is
involved in the pathogenesis of avian influenza A (H5N1) virus,
which produces a cytokine storm effect (277), and is known to
increase vascular permeability and immune cell infiltration into
the tissues.

Therefore, endothelial barrier dysfunction presents an
attractive target for the treatment of severe viral infections and
sepsis. There are several drugs which are known to help preserve
endothelial integrity which may be of use in treating severe
viral infections or sepsis. These include common medications
such as statins and angiotensin receptor blockers (278), which
have proven benefits in both sepsis, influenza and other critical
illnesses. They are thought to work by maintaining or restoring
endothelial barrier integrity (278) and could be promising
treatments of viral infections known to disrupt endothelial
integrity. These drugs have had some success in treating severe
viral infections such as Ebola and influenza (279–281) suggesting
their use in viral sepsis is a promising area for future research.
One trial aimed to control the severity of sepsis using the
drug “atorvastatin.” The trial, while aborted due to subpar
recruitment, demonstrated interesting results. It was calculated
that assuming the drug would bring about a 15% reduction in
cases of progression to sepsis, 414 patients would be required
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to achieve statistical significance. While only a quarter of this
number were recruited, an 83% decrease in progression to sepsis
(from all causes) was observed, far exceeding expectations (282).
However, due to the insufficient sample size, the result was
insignificant (282). With the addition of more data these results
would suggest that statins may be a particularly promising route
for further research particularly in cases of viruses known to
interfere with endothelial barrier function.

CONCLUSIONS

Viral sepsis is a continually underdiagnosed and heterogeneous
form of sepsis that can be caused by a wide variety of
viruses. The most common of these pathogens are HSV,
enteroviruses, HPeVs, influenza, and dengue viruses. Some
populations are at a much higher risk of viral sepsis than others
for many reasons. The populations at the highest risk are young
children, pregnant women, older adults, and immunosuppressed
individuals. This heightened risk and severity is due to relative
immunosuppression present in these populations. The viruses
that most often cause viral sepsis tend to have the capacity to
evade killing by the immune system while still inducing powerful
inflammatory responses, often characterised by high levels of
TNF-α and IL-6 expression alongside low IFN-γ expression
that can damage the host. The prolonged inflammation that
can be brought on by these infections can then result in an
immunosuppressed state, further reducing the body’s capacity
to clear infections, and drastically increasing the risk of death
from the original viral infection, a newly acquired infection
or a reactivated infection. Understanding the viral cause of
sepsis and the immune responses to common viral infections
could lead to improved treatment of sepsis by use of specific
antiviral medications. In the future it may be possible to
apply immunotherapies built around the understanding of the
specifics of viral infections to either aid in viral clearance or

reduce harm from viral infections. Sepsis from differing causes
seems to differ little in its clinical presentation; however, use
of modern transcriptomic methods is demonstrating that there
are meaningful differences in immune responses that may be
used to distinguish between viral and bacterial sepsis, which
may aid in the development of future immunomodulatory
drugs.
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