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Abstract 

Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the presence of 

aplasia cutis congenita (ACC) of the scalp vertex and terminal limb reduction defects. Cardiovascular 

anomalies are also frequently observed. Mutations in five genes have been identified as a cause for 

AOS prior to this report. Mutations in EOGT and DOCK6 cause autosomal recessive AOS, whereas 

mutations in ARHGAP31, RBPJ and NOTCH1 lead to autosomal dominant AOS. As RBPJ, NOTCH1 and 

EOGT are involved in NOTCH signaling, we hypothesized that mutations in other genes involved in 

this pathway may also be implicated in AOS pathogenesis. Using a candidate gene based approach, 

we prioritized DLL4, a critical NOTCH ligand, due to its essential role in vascular development in the 

context of cardiovascular features in AOS individuals. Targeted resequencing of the DLL4 gene using a 

custom enrichment panel in 89 independent families resulted in the identification of 7 mutations. A 

defect in DLL4 was also detected in two pedigrees with whole exome/genome sequencing. In total, 

nine heterozygous mutations in DLL4 were identified, including two nonsense and seven missense 

variants, the latter encompassing four mutations that replace or create cysteine residues, which are 

likely critical for maintaining structural integrity of the protein. Affected individuals with DLL4 

mutations present with variable clinical expression with no emerging genotype-phenotype 

correlations. Our findings demonstrate that DLL4 mutations are an additional cause of autosomal 

dominant AOS or isolated ACC and provide further evidence for a key role of NOTCH signaling in the 

etiology of this disorder.  
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Adams-Oliver syndrome (AOS [MIM100300]) is a rare developmental disorder with an estimated 

incidence of 1 in 225,000 live births.1 It is typically characterized by the presence of both aplasia cutis 

congenita (ACC) of the scalp vertex and terminal limb defects, such as brachydactyly, oligodactyly, 

syndactyly, hypoplastic nails or transverse amputations.2 In addition, vascular and cardiac anomalies, 

comprising pulmonary hypertension, ventricular septum defects, tetralogy of Fallot and anomalies of 

the great arteries and their valves are frequently observed.2 In the past few years, mutations in five 

genes have been described as a cause of AOS. Mutations in EOGT (MIM 615297) and DOCK6 (MIM 

614219) cause the autosomal recessive form of AOS, while mutations in ARHGAP31 (MIM 100300), 

RBPJ (MIM 614814) and NOTCH1 (MIM 616028) lead to the autosomal dominant form of AOS.3-8 

NOTCH1, EOGT, and RBPJ are all members of the NOTCH signaling pathway. This pathway is 

conserved throughout metazoan species and involved in many different tissue specific cellular 

processes, including cell-fate determination and neural and hematopoietic stem cell differentiation.9; 

10 The NOTCH receptors and ligands are composed of several domains, including epidermal growth 

factor (EGF)-like domains. EOGT is an EGF domain-specific O-linked N-acetylglucosamine (GlcNAc) 

transferase known to glycosylate NOTCH1 and is therefore highly likely to influence NOTCH signaling 

through post-translational modification of the extracellular EGF-like repeats.4; 10; 11 RBPJ is a sequence 

specific transcription factor that regulates the transcriptional activity of downstream target genes by 

binding to the intracellular domain of NOTCH, leading to the recruitment of additional proteins.12 

Besides AOS, mutations in NOTCH1 are also known to cause bicuspid aortic valve and thoracic aortic 

aneurysm.13 NOTCH signaling is activated by two families of ligands, namely Jagged (JAG1 or -2) and 

Delta (DLL1, -3 or -4). Of these, DLL4 has an essential role in vascular development and angiogenesis, 

which places it as a prime candidate for AOS, due to the presence of cardiovascular features in AOS 

individuals.14; 15  

 

The study was approved by the appropriate institutional review board (IRB) and appropriate 

informed consents were obtained from human subjects. We performed targeted resequencing of 
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DLL4 on 89 individuals using HaloPlex Targeted Enrichment (Agilent Technologies) followed by 

sequencing on MiSeq (Illumina) using 2 x 150 bp paired end reads. An in-house developed Galaxy-

based pipeline was used to process the raw data.16 Variant calling was performed using the GATK 

Unified Genotyper17 and variants were annotated and filtered using the in-house developed 

database, VariantDB.18 Unique variants (ESP6500 and 1000 Genomes project) were selected, 

prioritizing nonsense, nonsynonymous, splice site, and indel variants in both a dominant and a 

recessive model.  

Separately, whole genome sequencing (WGS) was performed on family 2 and whole exome 

sequencing (WES) was performed on family 6. Genomic DNA was extracted from saliva from the two 

affected siblings of family 2, and subjected to the Agilent SureSelect Target Enrichment (v4; 51 Mb) 

capture process. Following library preparation, sequencing was performed on the Illumina 

HiSeq2000, generating 100 bp paired end reads. Over 97.5% of target regions were covered by >10X 

reads. Reads were mapped against reference genome UCSC hg19 with BWA. Single nucleotide 

variants and indels were detected by SAMTOOLS. WES on family 6 was performed as previously 

described.7 All variants were confirmed by bidirectional Sanger sequencing and segregation analysis 

was performed on available family members.  

In total, we screened 91 families and identified nine heterozygous variants in DLL4 (RefSeq transcript 

NM_019074.3, with GRCh37 as a reference build), including nonsense, cysteine replacing or creating 

and other missense substitutions (Figure 1, Table S1). These results designate mutations in this gene 

as an additional cause of an autosomal dominant form of AOS.  

 

In two families, we detected nonsense mutations in exon 9 of DLL4, specifically c.1660C>T 

(p.Gln554*; ClinVar accession number SCV000240088) in family 1 and c.1672C>T (p.Arg558*; ClinVar 

SCV000240089) in family 2. Both stopgain mutations are predicted to lead to nonsense mediated 

decay (NMD) of the mutant mRNA transcript (Figure 1B).19 The severity of the clinical features in the 

affected family members of both families varied widely and included ACC, syndactyly and 
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brachydactyly (Figure 2, Table 1). In the proband of family 1 (1-III-3), cardiovascular features were 

also present, namely tricuspid insufficiency and ventricular septum defect (Table 1). Molecular 

screening of available family members of family 1 showed segregation of the mutation in the 

affected sister (1-III-1) and mother (1-II-2), and absence of the mutation from the unaffected father 

(1-II-1) and maternal grandmother (1-I-2). Interestingly, the mutation was not detected in the 

maternal grandfather (1-I-1), who presented with unilateral brachydactyly of the toes (III and IV). We 

failed to demonstrate the possibility of somatic mosaicism in his blood by a mutation allele specific 

PCR. Nevertheless, somatic mosaicism not affecting the hematopoietic tissue remains a plausible 

explanation. In family 2, the affected sister (2-II-1) also carried the mutation. Mutation analysis of the 

parents showed that c.1672C>T was inherited from their father (2-I-1) who did not show obvious 

signs of AOS. DNA of the paternal grandparents was not available to investigate whether the 

mutation in the father occurred de novo.  

In addition to the two stopgain mutations, we identified seven different heterozygous missense 

mutations: three cysteine replacing mutations, one cysteine creating mutation and three other 

missense mutations. All identified missense mutations were predicted to be damaging by 

MutationTaster, PolyPhen-2 and SIFT and none of the mutations were present in the following public 

databases: ESP6500, Kaviar,20 1000 Genomes Project and ExAC database.  

In families 3, 4 and 5, cysteine replacing mutations (c.1365C>G, p.Cys455Trp [ClinVar 

SCV000240090]; c.1169G>A, p.Cys390Tyr [ClinVar SCV000240091]; c.1168T>C, p.Cys390Arg [ClinVar 

SCV000240092], respectively) in exons 8 and 9 of DLL4 were identified. All of these mutations affect 

critical and highly conserved (up to D. melanogaster) cysteines of the consensus sequence of either 

the 5th or 7th EGF-like domain (Figure 1C). Similar to the nonsense mutations, the severity of the 

clinical features of all available affected family members varied greatly, but all showed scalp 

involvement, including ACC or a bald scalp area (Table 1, Figure 2). The c.1365C>G (p.Cys455Trp) 

mutation, identified in the proband of family 3 (3-II-1), was confirmed in the affected mother (3-I-2) 

and in a sister (3-II-2), but no clinical information of the latter was available. In both family 4 
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(c.1169G>A, p.Cys390Tyr) and family 5 (c.1168T>C, p.Cys390Arg), we found a mutation replacing the 

cysteine residue at position 390 but leading to different amino acid substitutions. The proband of 

family 4 (4-II-1) showed isolated ACC and no family members were available for screening. The 

proband of family 5 (5-IV-3) is part of a large family with multiple affected individuals. The father (5-

III-3) and two great aunts (5-II-14, 5-II-17)  carried the c.1168T>C mutation (Figure 1A). They were all 

only mildly affected, but did have severely affected offspring (Table 1, Figure 2), further illustrating 

the highly variable clinical expression for DLL4 associated AOS.  

In the proband of family 6 (6-II-1) we detected a heterozygous cysteine creating mutation: c.556C>T 

(p.Arg186Cys; ClinVar SCV000240093). The affected family members both exhibited isolated ACC 

(Table 1, Figure 2). The arginine at this position is conserved between DLL4 and DLL3 and is 

conserved across mammalian species (Figure 1C). The affected father (6-I-1) carried the mutation, 

while the unaffected mother (6-I-2) did not.  

In families 7, 8 and 9, we found missense variants (c.799C>A, p.Pro267Thr [ClinVar SCV000240094]; 

c.361G>C, p.Ala121Pro [ClinVar SCV000240095]; c.583T>C, p.Phe195Leu [ClinVar SCV000240096], 

respectively) affecting specific residues in functional domains of DLL4 which are conserved up to D. 

melanogaster and in the four most closely related ligands of the NOTCH receptors, namely JAG1, 

JAG2, DLL1 and DLL4 (Figure 1C). Both families 7 and 8 presented with scalp defects, limb defects and 

cardiovascular features (Table 1, Figure 2). The parents of proband 7 were reported as unaffected, 

but the mother (7-I-2), who was a mutation carrier, has a positive family history for cardiac events 

with a brother with bicuspid aortic valve with narrowed aorta ascendens and a maternal half-brother 

who died at birth of an unspecified heart defect. Unfortunately, DNA of the maternal grandparents 

or other family members was not available. In the proband of family 8 (8-II-1) the c.361G>C 

(p.Ala121Pro) mutation was shown to be de novo, as both unaffected parents did not carry the 

mutation (Figure 1A). The index of family 9 has been described before and shows only aplasia cutis 

congenita.21 In this individual we identified a heterozygous c.583T>C (p.Phe195Leu) variant. No 

further information of familial occurrence was available. 
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The DLL4 variants are distributed across the complete protein, affecting all known structural domains 

(MNNL [N-terminal domain of NOTCH ligands], DSL [Delta/Serrate/Lag-2] and EGF-like domains), 

without any obvious mutational hotspots. Recently, the structural basis of the interaction between 

NOTCH1 and DLL4 has been elaborated. 10 The binding of NOTCH1 to DLL4 is coordinated by the 

interaction between the NOTCH1 EGF-like 11 and the DLL4 DSL domain. DLL4-NOTCH1 binding is 

further modulated by the interaction between NOTCH1 EGF-like 12 and the MNNL domain of DLL4. 

Glycosylation of NOTCH1 is essential and specific for the binding of DLL4.10 

Three-dimensional modeling predictions of our DLL4 mutations reveals interesting changes in protein 

conformation and amino acid functionality (Figure S1). In total, three cysteine replacing mutations 

have been found, two at position 390 (p.Cys390Arg and p.Cys390Tyr), located in EGF-like domain 5 

and one at position 455 (p.Cys455Trp), located in the 7th EGF-like domain. All three cysteines are 

involved in the formation of a disulfide bond in their respective EGF-domain, which will be lost due to 

the introduction of these mutations. Furthermore, both arginine and tyrosine residues at position 

390 are too bulky to fit in this domain and are therefore likely to disrupt the structure. Hence, 

structural changes are predicted to occur, which will most likely lead to a loss of function of DLL4.  

Both phenylalanine at position 195 and arginine at position 186 are located in the DSL domain of 

DLL4 (Figure 1B),  a conserved central domain directly involved in ligand binding to the 11th EGF-like 

domain of the NOTCH1 receptor.10 It has been shown that the phenylalanine at position 195 is a key 

interface residue important for binding and when mutated to an alanine residue it results in a 

substantial decrease in NOTCH1 interaction.10 The p.Arg186Cys mutation is located in the surface 

loop of the DSL domain. The introduction of a cysteine at this location is not expected to cause steric 

hindrance; however, the important interaction function of the Arginine186 residue is likely to be lost. 

In addition, this mutation creates a cysteine, which could dramatically alter the conformation of the 

protein by forming a novel disulfide bond. Both these DSL domain mutations will likely reduce the 

binding affinity of DLL4 to NOTCH1. 
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The Alanine121 residue is located in a beta-strand on the inside of the MNNL domain. Together with 

the DSL domain, the MNNL domain is involved in the binding of the ligand to EGF-like domain 12 of 

the NOTCH-receptor and regulates ligand pleiotropy.10 The replacement of Alanine 121 by proline is 

predicted to disrupt the local structure and function. Lastly, the Proline267 residue is located in EGF-

like domain 2 and makes contact with EGF-like domain 1 in a surface loop. This interaction might be 

altered by the substitution to threonine.  

 

The discovery of DLL4 mutations in our AOS individuals in addition to prior identification of mutations 

in EOGT, RBPJ and NOTCH1, confirms the key role of the NOTCH signaling pathway in the 

pathogenesis of AOS. Activation of NOTCH signaling through binding of a NOTCH-ligand (JAG1, JAG2, 

DLL1, DLL3, DLL4) to one of the NOTCH receptors (1 to 4), results in two proteolytic cleavage 

reactions performed by a member of the ADAM (A Disintegrin and metalloproteinase domain-

containing protein) family and by the ү-secretase complex. The second cleavage releases the 

intracellular domain of NOTCH (NICD), which is translocated to the nucleus, where it binds to the 

coactivator Mastermind Ligand (MAML) and the DNA binding protein RBPJ to induce transcription of 

NOTCH target genes.22 

DLL4 is a ligand of the NOTCH receptors and is essential for vascular development.12 During 

embryonic development, protein localization of DLL4 is restricted to the large arteries, while in adult 

stages protein levels are found in the smaller arteries and microvessels. Haploinsufficiency of Dll4 in 

mice results in embryonic lethality due to profound defects in vascular and arterial development.15 In 

contrast to mice models, human haploinsufficiency of DLL4 does not result in lethality as we have 

identified two heterozygous nonsense mutations, which most likely lead to NMD.19 The lethality in 

mice could be related to the inbred genetic background of the mice23 and potential functional 

differences in redundancy between humans and mice. The identification of both DLL4 nonsense 

mutations and several missense mutations in key functional domains of DLL4 that are predicted to 

disrupt DLL4 integrity, suggests that loss-of-function is the pathogenetic mechanism. While DLL4 is 
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described to be essential for vascular development12, not all individuals with DLL4 mutations 

presented with cardiovascular features (Table 1), although complete cardiovascular exams have not 

been performed in all cases.  

We did not observe a clear genotype-phenotype correlation between DLL4 mutation and AOS 

subtype. Furthermore, we observed marked intrafamilial variability in the phenotypic expression. For 

example, in family 5 the p.Cys390Arg substitution leads to a severe phenotype in the offspring, while 

the parents show isolated ACC. This suggests that other factors are involved in the clinical expression 

of this disease, which could be environmental factors, but also other genetic and epigenetic 

influences involved in the NOTCH signaling pathway or other AOS related pathways. In addition to 

the variable clinical expression, we also observed incomplete penetrance in families 2 and 7, and 

additional unidentified asymptomatic mutation carriers may exist in other families. Highly variable 

expressivity and incomplete penetrance, as well as the association with cardiovascular abnormalities 

are similar to what has been observed in NOTCH1-related AOS.7; 8 In contrast, cerebral and ocular 

abnormalities which have been found to be particularly associated with autosomal recessive DOCK6 

related AOS appear to be uncommon in those autosomal dominant forms. 24 

 

In conclusion, through screening a cohort of 91 families affected with Adams-Oliver syndrome or 

aplasia cutis congenita, we have identified nine heterozygous variants in DLL4, including nonsense, 

cysteine replacing or creating and other missense mutations, demonstrating that mutations in this 

gene are an important cause of autosomal dominant AOS or isolated ACC. Affected individuals show 

variable clinical expression with at present no clear genotype-phenotype correlations. With the 

addition of DLL4, four genes involved in NOTCH signaling have now been implicated in AOS, 

confirming that disruption of this pathway plays a major role in the pathogenesis of AOS. 
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Supplemental data include one figure and one table.   
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Table 1 Clinical features 

Individual 

Internal 

reference 
Mutation 

status 

Clinical features 

Scalp defects Limb defects Cardiovascular features Other remarks 

1-I-1 SK039 - / 
Left brachydactyly of 3rd and 4th toe 

(confirmed by X-ray) 
/ / 

1-II-2 SK039 + / Short distal phalanges (not confirmed by X-ray) / / 

1-III-1 SK039 + ACC / Normal echocardiogram  / 

1-III-3 SK039 + ACC Brachydactyly, syndactyly of 2nd and 3rd toe on right foot 
Tricuspid insufficiency, 

ventricular septum defect 
/ 

2-II-1 F45 + ACC with underlying skull defect Brachydactyly left foot; missing toes right foot Normal echocardiogram / 

2-II-3 F45 + ACC with underlying skull defect Brachysyndactyly right foot; severe brachysyndactyly left foot Normal echocardiogram Small kidneys; mild hypertension 

3-I-2 SK038 + ACC / / / 

3-II-1 SK038 + ACC / / / 

4-II-1 SK049 + ACC / / / 

5-II-4 SK087 No DNA ACC 
Syndactyly of 2nd and 3rd toe, hypoplastic toe nails, 

brachydactyly of toes 
/ / 

5-II-14 SK087 + Bald area on scalp / / Cutis marmorata 

5-II-17 SK087 + Bald area on scalp Brachydactyly of fingers and toes, syndactyly of 2nd and 3rd toe / / 

5-III-3 SK087 + Bald area on scalp / / / 

5-III-21 SK087 No DNA Bald area on scalp / / / 

5-III-23 SK087 No DNA ACC with underlying skull defect / / / 

5-IV-3 SK087 + ACC / Normal echocardiogram 

Cutis marmorata, epilepsy, learning difficulties, borderline 

intellectual function (TIQ 76) at young age, normal IQ at later age, 

mild periventricular leukomalacia 

5-IV-12 SK087 No DNA ACC / 

Normal echocardiogram, 

portal hypertension, 

esophageal varices 

Splenomegaly, congenital liver fibrosis 

6-I-1 UK16 + ACC / No cardiac problems / 

6-II-1 UK16 + ACC / Normal echocardiogram / 

7-I-2 SK082 + / / / Unaffected 

7-II-1 SK082 + ACC, delayed ossification Hypoplastic toe nails No cardiac problems Cutis marmorata, normal chest X-ray at age two months 

8-II-1 SK081 + ACC 

Short distal phalangus of middle finger of the right hand, 

symphalangism of the index finger, symbrachydactyly of both 

feet (front and middle foot missing on right foot) 

Truncus arteriosus, 

ventricular septum defect 
Growth hormone deficiency 

9-II-1 SK013 + ACC / / / 

The following abbreviations are used: ACC, Aplasia Cutis Congenita; /, unknown 
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Figure 1. Mutation analysis  

(A) Pedigrees of the families with their respective mutation and nucleotide sequence.  

(B) Structure of DLL4 with the structural domains and the identified mutations.  

(C) Conservation of specific residues amongst species and NOTCH ligands. 

 

Figure 2. Clinical features 

(A) Individual 2-II-1 with brachydactyly of left foot and missing toes right foot.  

(B) Individual 5-II-17 with a bald area on the scalp.  

(C) Individual 5-II-17 with brachydactyly of toes.  

(D) Individual 5-II-17 with brachydactyly of fingers.  

(E) Individual 5-IV-12 with aplasia cutis congenita.  

(F) Individual 6-II-1 with aplasia cutis congenita.  

(G) Individual 8-II-1 with short distal phalangus of middle finger and symphalangism of the index 

finger of the right hand.  

(H) Individual 8-II-1 with aplasia cutis congenita.  

(I) Individual 8-II-1 with symbrachydactyly of both feet (front and middle foot missing on right foot). 
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Figure 1. 
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Figure 2. 

 


