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Abstract 

Purpose: 

Sudden infant death syndrome (SIDS) is the commonest cause of sudden death of an 

infant however the genetic basis remains poorly understood. We aimed to identify non-

cardiac genes underpinning SIDS and determine their prevalence compared to ethnically 

matched controls. 

Methods: 

Using exome sequencing we assessed the yield of ultra-rare non-synonymous variants 

(MAF ≤ 0.00005, dominant model; MAF ≤ 0.01, recessive model) in 278 European SIDS 

cases (62% male; average age = 2.7±2 months) versus 973 European controls across 61 

non-cardiac SIDS-susceptibility genes.  The variants were classified according to ACMG 

criteria. Case-control, gene-collapsing analysis was performed in 8 candidate biological 

pathways previously implicated in SIDS pathogenesis. 

Results:  

Overall 43/278 SIDS cases harbored an ultra-rare SNV compared to 114/973 controls 

(15.5% vs 11.7%, p=0.10). Only 2/61 non-cardiac genes were significantly over-

represented in cases compared to controls (ECE1, 3/278[1%] vs 1/973[0.1%] p=0.036; 

SLC6A4[2/278 [0.7%] vs 1/973[0.1%] p=0.049])]. There was no difference in yield of 

pathogenic or likely pathogenic variants between cases and controls (1/278 [0.36%] vs 

4/973 [0.41%]; p=1.0). Gene-collapsing analysis did not identify any specific biological 

pathways to be significantly associated with SIDS. 

Conclusion: 

A monogenic basis for SIDS amongst the previously implicated non-cardiac genes and 

their encoded biological pathways is negligible.   
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Introduction 

Sudden infant death syndrome (SIDS) is defined as “the sudden death of an infant under 1 

year of age which remains unexplained after thorough investigation including detailed 

clinical and pathological review”.1,2 The peak incidence occurs between 2-4 months of age 

and has been often associated with environmental risk factors such as prone sleep 

position and maternal smoking.3 Despite successful targeted risk reduction campaigns 

such as the “back-to-sleep” campaigns in the 1990s, SIDS remains a leading cause of 

sudden infant death, occurring at a rate of 27/100,000 live births in the UK and the USA 

respectively.3-5  

Research in SIDS has proposed that unexplained infant deaths result from 

“abnormalities at birth that make them vulnerable to potential life-threatening challenges in 

infancy”6.  The “triple-risk hypothesis” proposed the convergence of three over-lapping 

factors: 1) a “vulnerable” infant, 2) a critical development period, and 3) an exogenous 

stressor.7 Accordingly, SIDS does not typically occur in normal infants, but rather, in 

vulnerable infants with an underlying abnormality.3 

Rather than a single etiology underlying the majority of infant vulnerability, SIDS 

may be due to multiple distinct genetic disorders with a common final endpoint of sudden 

death occurring during sleep.8  Several studies have implicated both common and rare 

genetic variants within genes involved in several biological pathways including 

neurological conditions, neuronal signaling, inborn errors of metabolism, respiratory 

control, musculoskeletal conditions, immune response, and genetic heart disease (GHD) 

as a basis for underlying infant vulnerability. 2,9-14  

Using exome sequencing and a targeted analysis of 90 GHD-susceptibility genes in 

over 400 SIDS cases, we determined recently a 5% prevalence of GHD-associated 

“pathogenic” or “likely pathogenic” variants as a potential monogenic basis for SIDS.15  

There was only an excess burden of rare variants in the major channelopathy genes when 
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nearly 300 Caucasian cases were compared to approximately 1000 Caucasian controls.  

Here, we conducted a SIDS-susceptibility variant analysis in the same cohort 

examining the previously published, non-cardiac SIDS-susceptibility genes followed by a 

gene-collapsing rare variant burden analysis involving multiple non-cardiac, biological 

pathways implicated previously in SIDS pathogenesis.   

Materials and Methods 
 
Study Population 

As previously described, the SIDS cohort (N=427) consisted of 95 coroners’ cases from 

the United Kingdom (UK; London, Sheffield, Edinburgh and Bristol) and 332 

coroner/medical examiner/forensic pathologist-referred cases collected from six ethnically 

and geographically diverse United States (US) populations.15 Enrolment criteria included 

1) sudden unexplained death of an infant < 1 year of age, 2) reported European descent, 

and 3) a comprehensive negative medico-legal autopsy including a negative toxicology 

screen and death scene investigation. Infants with asphyxia or specific disease causing 

death were excluded.  Ethnicity was self-reported by the referring coroner/medical 

examiner.  This study complies with the Declaration of Helsinki; locally appointed ethics 

committees including Mayo Clinic’s Institutional Review Board have approved the research 

protocol.  

Control Population 

A total of 973 control exomes (509 females, 464 males) from the ICR1000 UK exome 

series and the 1958 Birth Cohort study were included for analysis.16 As previously 

reported, exome sequencing was performed using the Illumina TruSeq and Illumina 

instruments.16 
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Exome Sequencing  
 
As previously described, genomic DNA isolated from each SIDS case underwent exome 

sequencing at the KCL-GSTT Biomedical Research Centre Genomics Platform, London, 

UK or Mayo Clinic’s Medical Genome Facility, Rochester, Minnesota. To avoid potential 

confounding due to population stratification resulting from genetic admixture, a principal 

component analysis (PCA) was performed as previously described.15 Furthermore, quality 

control metrics excluded 7 cases due to insufficient exome coverage and one individual 

from a half-sibling pair. A case-control dataset was established for 278 SIDS cases 

(confirmed as Caucasian by PCA) and 973 European controls. Detailed methodology can 

be found in the Online Supplement. 

Case-Control Non-Cardiac SIDS Susceptibility-Gene Specific Variant Analysis 

A list of 55 SIDS-susceptibility genes involving multiple, non-cardiac biological pathways 

implicated previously in SIDS pathogenesis was derived from Salomonis’ Integrated 

Mechanism Review article, “Systems-level perspective of Sudden Infant Death Syndrome” 

published in 2014.8  This literature review based list included genes with sufficient 

evidence for involvement of SIDS based on the reported conclusions of manuscript 

authors.8  Based on our own literature search of articles from 2014 to 2018, 6 additional 

SIDS-susceptibility genes were included for a total list of 61 non-cardiac, candidate genes 

(see Online Supplement eTable 1).17-21  

Following exome sequencing, single nucleotide variants (SNVs) and 

insertion/deletions (INDELs) were filtered to identify variants which followed either a 

dominant or recessive inheritance pattern using Ingenuity Variant Software (Qiagen, 

Redwood City, CA).  All variants within the 61 non-cardiac SIDS-susceptibility genes were 

first filtered for a call quality score ≥ 20 and a read depth ≥ 10.  Only non-synonymous 

(NSV, i.e. amino acid altering: missense, nonsense, splice-error, frame-shift 

insertion/deletion [INDEL], or in-frame INDEL) were considered potentially pathogenic.  
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For the dominant model, only ultra-rare variants (minor allele frequency [MAF] ≤ 0.00005 

(1: 20,000 alleles) in Genome Aggregation Database (gnomAD; 

http://gnomad.broadinstitute.org) were considered.  Variants with a MAF > 0.00005 in any 

ethnic group of gnomAD were excluded, unless observed only once in that ethnic group.  

For the recessive inheritance model, only rare (MAF ≤ 0.01 in gnomAD) variants present 

as either homozygotes or compound heterozygotes (two unique pathogenic variants in the 

same gene) were included.  Importantly, for compound heterozygotes, it was assumed that 

the variants were present in trans; however, parental DNA was unavailable to confirm this.  

Variants with a homozygous frequency > 0.0001 in gnomAD were excluded from analysis.  

A comparison of yield of NSVs for both the dominant and recessive model was performed 

for all 61 non-cardiac SIDS-susceptibility genes.  

The American College of Medical Genetics and Genomics (ACMG) and Association 

for Molecular Pathology (AMP) standards and guidelines for the interpretation of sequence 

variants was used to further assist in the interpretation and annotation of our genetic 

findings.22 Automatic variant classification was performed using InterVar; a freely available 

web-based bioinformatics software tool for clinical interpretation of genetic variants by the 

ACMG/AMP 2015 guideline.23 

SIDS Candidate Biological Pathway Gene-Collapsing Analysis 

We identified previously a list of 90 genetic heart disease (GHD)-associated genes.15  

Using PubMed as our search engine, with the key phrase of ‘sudden infant death’ and 

‘gene’, ‘polymorphism’ or ‘mutation’ and OMIM, with the key words of ‘sudden infant 

death’, ‘epilepsy’, ‘inborn errors of metabolism’, an additional list of 241 “non-cardiac” 

genes was identified for a gene-collapsing rare variant burden analysis.  Only population-

based SIDS cohorts, case reports and literature reviews between 1990 and 2016 were 

used. Studies based on definitions of SIDS contrary to current practices were excluded.  

We performed case-control, gene-collapsing analyses of ultra-rare (MAF < 
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0.00005), NSV’s with a Combined Annotation Dependent Depletion (CADD) score ≥ 20 in 

candidate biological pathways previously implicated in SIDS pathogenesis.  A CADD score 

≥ 20 is equivalent to a 0.99 probability that the variant has a functional impact.24 The unit 

of analysis was a collection of genes from each pathway (See Online Supplement eTable 

2): GHD (90 genes), epilepsy (72 genes), inborn errors of metabolism (69 genes), other 

neurological (33 genes), respiratory system (37 genes), autonomic nervous system (13 

genes), immune system (12 genes), and nicotine response (3 genes).  

Statistics 

Categorical variables were expressed as absolute numbers and percentage, and 

compared with Fisher’s exact or Chi-square tests.  Probability values were based on two-

sided tests considered significant at P < 0.05. For this exploratory analysis, a Bonferonni 

correction of p < 0.0008 (0.05 divided by 61) was not applied.  Analysis was conducted 

with SPSS version 18.0 software (SPSS Chicago III).  

Results 

Demographics 

The case cohort consisted of 278 European SIDS cases (173 males, 105 females; 

average age = 2.7 ± 1.98 months), described previously by our group.15 The 

epidemiologically high risk age group of 2–4 months (55.4%) and male gender (62.2%) 

accounted for the majority of the cases. Sleep characteristics were known in 60% of the 

cohort, of whom 66/172 (38%) were co-sleeping at the time of the SIDS death (Table 1).   

SIDS-Susceptibility Gene-Specific Analysis of the Non-Cardiac Genes Previously 

Implicated in SIDS 

Considering a dominant inheritance model, a total of 44 unique (42 novel), ultra-rare, 

NSVs (20 missense, 2 in-frame deletions, 1 frame-shift deletion, and 1 stop-loss) were 

identified in 43/278 (15.5%) SIDS cases overall (Figure 1).  Further, 2/278 (0.72%) SIDS 

cases hosted > 1, ultra-rare NSV.  In comparison, a total of 115 unique (104 novel), ultra-
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rare, NSVs (109 missense, 1 in-frame deletions, 2 frame-shift deletions, 1 start-loss, and 1 

stop-loss) were identified in 114/973 (11.7%, p =0.10) European controls (Figure 1).  

Further, 6/973 (0.62%) European controls hosted > 1, ultra-rare NSV. 

The gene-specific yields for the SIDS cohort and the European controls are shown 

in Table 2.   For 59 of the 61 genes, there was no over-representation of ultra-rare NSVs 

in SIDS cases versus controls at even the low stringent p < 0.05 threshold (Table 2).  Two 

genes hosted more ultra-rare NSVs in SIDS cases than controls at this threshold: ECE1 

(endothelin converting enzyme, [3/278 (1.1%) cases vs 1/973 (0.1%) controls; p=0.036]) 

and SLC6A4 (solute carrier family 6 member 4, also known as the serotonin transporter 1 

[2/278 (0.7%) cases vs 0/973 (0%) controls; p=0.049]) (Table 2).   

Following variant classification using the strict ACMG guidelines, 1 of the 44 (2.2%) 

SIDS case variants and 3 of the 115 (3.5%) European control variants, achieved either a 

“pathogenic” or “likely pathogenic” designation.  All other variants were classified as 

variants of uncertain significance (VUS).  There was no difference in overall yield of 

“pathogenic” or “likely pathogenic” variants between the European SIDS and control 

cohorts (1/278 [0.36%] vs 3/973[0.31%]; p=1.0 see Online Supplement eTable 3 and 4).  

A heterozygous “pathogenic” p.V153fs*41-SLC22A5 variant was identified in a 4-

month-old female SIDS case. The p.V153fs*41-SLC22A5 variant has been observed 

previously in patients with primary carnitine deficiency, an autosomal recessive disorder of 

the carnitine cycle resulting in defective fatty acid oxidation.25 However, because a second 

SLC22A5 variant was not identified in this SIDS case, it is unlikely this infant had 

undiagnosed primary carnitine deficiency.  Two controls also hosted ultra-rare “likely 

pathogenic” heterozygous variants (p.Y447C-SLC22A5, and p.G827R-GRIN1). 

Interestingly, the p.G827R-GRIN1 variant has also been identified previously as a de novo 

heterozygous variant in three unrelated individuals with severe intellectual disability, 

movement disorder and seizures.26,27  
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Considering a recessive inheritance model, homozygous or compound 

heterozygous variants were observed in 2/278 (0.72%) SIDS cases compared to 3/973 

(0.31%) controls (p=0.31).  A homozygous p.R78Q-SULT1A1 variant was identified in a 2-

month-old male SIDS case and a hemizygous p.V37I-MAOA variant was identified in a 

3.8-month-old male SIDS case. In European controls, there was a homozygous p.R297Q-

MAOA variant in one control and a homozygous p.V231I-CHRM2 variant in a second 

control; a third control hosted compound heterozygous HADHA variants (p.K249N and 

p.E510Q; see Online Supplement Table 5 and 6). All of the variants were classified as a 

VUS except for the p.E510Q-HADHA variant which was classified as “pathogenic”. The 

p.E510-HADHA variant has been reported previously in both homozygous and compound 

heterozygous cases in a large number of individuals and families with long-chain 3-

hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency and demonstrated to result in 

significant loss of enzyme activity with this variant.28 

There were no significant differences in the yield of dominant/recessive NSVs 

among all 61 SIDS-susceptibility genes when comparing sex, sleep position (supine vs 

prone), or co-sleeping (yes vs no) (Table 3).  

SIDS Biological Pathway Gene-Collapsing Analysis 

A rare variant, gene-collapsing burden analysis performed on gene sets involving 8 

different biological pathways (genetic heart disease, epilepsy, inborn errors of metabolism, 

respiratory control, other neurological conditions, autonomic nervous system, immune 

system, and nicotine metabolizing) previously implicated in SIDS pathogenesis also failed 

to yield any significant associations (Table 4).  

Discussion 

Since the proposal of the “triple-risk hypothesis” over twenty years ago, investigators have 

been searching for monogenetic explanations as a substrate for infant vulnerability to 

SIDS. Some of the suspected sources of an infant’s “underlying vulnerability” include 
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genetic determinants leading to dysfunction of the central and autonomic nervous system, 

inborn errors of metabolism, and cardiac channelopathies (Supplemental Reference list). 

While there have been no clear diagnostic markers identified, several common 

polymorphism have been identified to be significantly over-represented in distinct SIDS 

ethnic populations.8    

Recently, we completed exome sequencing-based molecular autopsy with a genetic 

heart disease (GHD) gene-specific analysis for 278 unrelated European ancestry SIDS 

cases in order to determine the contribution of monogenic heart disease to SIDS 

pathology.  Less than 12% of the European SIDS cases hosted an ultra-rare (MAF < 

0.005%) “potentially informative” variant in one of the 90 GHD-susceptibility genes 

analyzed. However, according to the American College of Medical Genetics (ACMG) 

guidelines only 4.3% of the cases possessed immediately clinically actionable GHD-

associated variants (i.e. “pathogenic” or “likely pathogenic”).   

Our current study now examines the potential contribution of “non-cardiac” genes in 

the pathogenesis of SIDS using a similar approach to examine 61 published non-cardiac 

genes previously implicated in SIDS 8,17-21. The majority had been identified as potential 

“SIDS-susceptibility” genes following both common and rare variant association studies, 

typically involving promoter region variants. However, only approximately 55% had been 

associated previously with either a dominant or recessive rare monogenic disease. 

Although 28 (46%) have never been associated with any monogenic disorder (dominant or 

recessive) and 18 (29.5%) have only been associated with recessive disease, we chose to 

interrogate all 61 genes under both dominant and recessive inheritance models to 

examine the potential role of each gene for its involvement in the monogenic basis for 

SIDS.     

Soberingly, there was no significantly increased burden of ultra-rare variants in all 

61 genes in SIDS cases compared to ethnically matched controls (15.5% vs 11.7%, 
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p=0.10) in a dominant inheritance model or rare homozygous/compound heterozygous 

variants in cases over controls using a recessive inheritance model (0.72% vs 0.3%, 

p=0.31). In addition, there was a negligible yield of immediately clinically actionable 

disease-associated variants (i.e. “pathogenic” or “likely pathogenic”) in SIDS cases 

(0.36%) and controls (0.31%) with no significant difference detected. Furthermore, there 

was no difference in yield of variants between cases and controls for 59 of the 61 genes 

when analyzed independently.    

Only two genes (ECE1 and SLC6A4) achieved the p < 0.05 threshold; however 

ultra-rare SNVs in both genes may also be irrelevant as well since it would be predicted 

that perhaps 3 of the 61 genes would achieve this cut-off by chance alone. The ECE1 

encoded-endothelin-converting enzyme 1(ECE1) has been associated previously with 

autonomic dysfunction and has been proposed to play a potential role in SIDS-

susceptibility.  In 1999, a heterozygous loss-of-function ECE1 variant (p.C742R), absent in 

100 controls, was identified in a single patient with Hirschsprung disease, structural 

cardiac defects, craniofacial abnormalities, other dysmorphic features, and autonomic 

dysfunction.29  In 2004, Weese-Mayer and colleagues reported the identification of a single 

ECE1 missense variant (p.T354A) in one of 46 black SIDS cases that was absent amongst 

46 ethnic matched controls.30   However, both of these variants have now been observed 

within the gnomAD database at a MAF that would suggest that they may be too common 

(p.C742R present in 48/62,405 (0.08%) European individuals; p.T354A present in 

106/12,015 (0.89%) African individuals) to be responsible for the disease phenotypes 

observed originally.   

 Solute Carrier Family 6 Member 4 (SLC6A4) gene encodes for the serotonin 

transporter 1 (5-HTT).  SLC6A4 missense variants have not previously been directly linked 

with SIDS, however there have been other associations between SIDS and SLC6A4. A 

number of studies have explored the association of SIDS with two common functional 
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insertion/deletion polymorphisms thought to influence SLC6A4 gene expression; one in the 

promoter region (5-HTT promoter polymorphism or 5-HTTLPR) and one in the second 

intron.  Initial results showed an increased frequency in the long (L) allele of the SLC6A4 

promoter region in SIDS victims and infants with apparent life-threatening events as well 

as an association with the intron 2 polymorphism and SIDS. However, several studies 

involving larger SIDS cohorts failed to replicate these early findings.12,31,32 In our SIDS 

cohort we identified two ultra-rare missense variants, V524M-SLC6A4 and A228D-SLC6A4 

in two separate female 2-month old SIDS victims, both of which were classified as VUS by 

ACMG criteria. This is an interesting finding in our study, though the result is only 

borderline for “statistical” significance (p=-.049). Therefore, further functional data would 

be required before attributing any potential contribution of SLC6A4 genetic variation in the 

pathogenesis of SIDS. 

Given the prior inconsistent and weak associations between both ECE1 and 

SLC6A4 variants in SIDS, it would be way too premature to conclude that ultra-rare non-

synonymous ECE1 and SLC6A4 variants are contributing factors to infant vulnerability for 

SIDS.  In fact, based on our analysis, we suggest that many of the previously established 

SIDS-susceptibility genes should be reconsidered and potentially reclassified to “Limited 

Evidence” or “Refuted Evidence” disease-gene designations. Replication of these results 

in other large SIDS cohorts and functional data are necessary before concluding that 1-2% 

of SIDS cases may stem from non-synonymous ECE1 and SLC6A4 variants. 

 Following our recent SIDS case-control gene-collapsing ultra-rare variant burden 

analysis involving the 4 major cardiac channelopathy genes (KCNQ1, KCNH2, SCN5A, 

and RYR2), we extended our case-control gene-collapsing burden analysis to include 331 

genes thought to be important in 8 different candidate biological pathways previously 

implicated in SIDS.   While the gene-collapsing analysis did not identify any specific 

biological pathways to be significantly associated with SIDS, the association between 
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“other neurological genes” was borderline for statistical significance (p=0.05), suggesting 

this may be an important pathway for SIDS pathology.  In fact, for one of the “other 

neurological genes”, SCN4A, we recently demonstrated a significant (p= 0.0057) over-

representation of functionally disruptive variants in European SIDS versus ethnic-matched 

controls. 33  The SCN4A encoded skeletal muscle voltage-gated sodium channel (Nav1.4) 

is important in controlling skeletal respiratory muscle contraction.  Interestingly, we did not 

find an association between specific epilepsy genes on gene-collapsing burden analysis 

(18% in cases vs 18.3% in controls, p=0.58) despite other groups recently demonstrating 

an association with epilepsy variants and SIDS, particularly SCN1A in those infants with 

hippocampal abnormalities.34 

Conclusions 

Investigation of all previously implicated non-cardiac, SIDS-susceptibility genes in a large 

European SIDS case-control analysis has failed to show any significant associations of 

ultra-rare or novel variation consistent with autosomal dominant and recessive inheritance 

patterns. Furthermore, there are few pathogenic or likely pathogenic variants. This 

demonstrates clearly that there is very little monogenic disease involving these specific 

genes underlying SIDS, at least within their translated open reading frames and canonical 

splice sites.   

Whether or not an unbiased analysis of the open reading frames/canonical splice 

sites of all 20,000+ genes will reveal any novel monogenic substrates for infant 

vulnerability remains to be determined.  It also remains to be seen whether more common 

genetic variation may associate with infant vulnerability to sudden death thereby 

supporting a complex polygenic inheritance model for infant vulnerability. In the interim, 

these previously implicated non-cardiac SIDS-susceptibility genes should be demoted to 

“Limited Evidence” genes at least in terms of a penetrant, monogenic basis for SIDS.  
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Tables 

Table 1. Summary of the Sudden Infant Death Syndrome Cohort Demographics  

Demographics European Ancestry 

(n=278) 
Sex Male 173 (62.2%) 

  Female 105 (37.8%) 

Age  Average (months) 2.7 ± 1.98 
Range (months) 0.1 -12 

Age Group  
< 2 months 81 (29.1%) 

2 – 4 months 154 (55.4%) 
> 4 months 43 (14.7%) 

Sleep 
Position  

Supine 85 (30.6%) 
Prone 52 (18.7%) 

Side 29 (10.4%) 
Seated 2 (0.72%) 

Unknown 110 (39.6%) 

Co-Sleeping  
Yes 66 (23.7%) 
No 106 (38.1%) 

Unknown 106 (38.1%) 
Values are n (%) or mean ± SD 
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Table 2. Gene Specific Yield of Ultra-Rare Non-Synonymous Variants in Cases and 

Controls 

Gene Cases 
(n=278) 

Percent 
Cases 

Controls 
(n=973) 

Percent 
Controls 

p-value 

ECE1 3 1.1 1 0.1 0.036 
SLC6A4 2 0.7 0 0.0 0.049 
CHRNB4 2 0.7 2 0.2 0.216 
NOS1AP 2 0.7 2 0.2 0.216 
SLC9A3 2 0.7 2 0.2 0.216 
FEV 1 0.4 0 0.0 0.220 
HSPD1 1 0.4 0 0.0 0.220 
HTR1A 1 0.4 0 0.0 0.220 
IL1B 1 0.4 0 0.0 0.220 
MBL2 1 0.4 0 0.0 0.220 
TLX3 1 0.4 0 0.0 0.220 
RET 2 0.7 3 0.3 0.309 
SLC22A5 2 0.7 3 0.3 0.309 
HTR3A 0 0.0 6 0.6 0.348 
ACADS 1 0.4 1 0.1 0.395 
NTRK2 1 0.4 1 0.1 0.395 
SST 1 0.4 1 0.1 0.395 
AQP4 1 0.4 2 0.2 0.530 
CLCNKB 1 0.4 2 0.2 0.530 
GCK 1 0.4 2 0.2 0.530 
IL6R 1 0.4 2 0.2 0.530 
IL13 0 0.0 4 0.4 0.581 
MAP2 5 1.8 14 1.4 0.589 
CHAT 0 0.0 5 0.5 0.592 
GRIN1 0 0.0 5 0.5 0.592 
CHRNB2 2 0.7 4 0.4 0.620 
OPRM1 2 0.7 4 0.4 0.620 
ACADM 0 0.0 1 0.1 1.000 
ADCYAP1 0 0.0 1 0.1 1.000 
BDNF 0 0.0 1 0.1 1.000 
C4A 0 0.0 0 0.0 1.000 
C4B 0 0.0 0 0.0 1.000 
CASP3 0 0.0 0 0.0 1.000 
CHRM2 0 0.0 1 0.1 1.000 
CHRNA4 0 0.0 3 0.3 1.000 
CHRNA7 0 0.0 1 0.1 1.000 
CPT1A 1 0.4 4 0.4 1.000 
CPT2 2 0.7 6 0.6 1.000 
EN1 0 0.0 0 0.0 1.000 
FMO3 0 0.0 1 0.1 1.000 
G6PC 1 0.4 3 0.3 1.000 
GABRA1 0 0.0 1 0.1 1.000 
GNB3 1 0.4 3 0.3 1.000 
HADHA 2 0.7 9 0.9 1.000 
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HADHB 0 0.0 0 0.0 1.000 
IL10 0 0.0 0 0.0 1.000 
IL1A 0 0.0 0 0.0 1.000 
IL1RN 0 0.0 1 0.1 1.000 
IL6 0 0.0 0 0.0 1.000 
IL8 (CXCL8) 0 0.0 3 0.3 1.000 
LMX1B 0 0.0 0 0.0 1.000 
MAOA 0 0.0 3 0.3 1.000 
PHOX2A 0 0.0 0 0.0 1.000 
PHOX2B 0 0.0 0 0.0 1.000 
SULT1A1 1 0.4 3 0.3 1.000 
TAC1 0 0.0 0 0.0 1.000 
TH 0 0.0 3 0.3 1.000 
TNF 0 0.0 0 0.0 1.000 
TPH2 0 0.0 2 0.2 1.000 
TSPYL1 0 0.0 2 0.2 1.000 
VEGFA 0 0.0 0 0.0 1.000 
Genes are listed in order by p-value.  A p-value < 0.05 was considered potentially 

significant. 
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Table 3. The Effect of Various Demographics on the Yield of Ultra-Rare Gene 

Variants in SIDS Cases 

Demographic Overall (n=278) P value 

Sex 
Male 28/173 (16.2%) 

1.0 
Female 17/105 (16.2%) 

Age 
2-4 months 22/154 (14.3%) 

0.33 
Other 23/124 (18.5%) 

Sleep 
Position 

Prone 5/52 (9.6%) 

0.40 
Supine 14/85 (16.5%) 

Side 4/29 (13.4%) 
Seated 0/2 (0.0%) 

Unknown 22/110 (20.0%) 

Co-Sleeping 

Yes 10/66 (15.2%) 

0.24 No 13/106 (12.3%) 

Unknown 22/106 (20.8%) 
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Table 4. Gene-Collapsing Rare Variant Analysis Involving All Previously Implicated 

SIDS-Associated Biological Pathways 

Biological/Disease 
Pathway 

Number 
of Genes p-Value Odds 

Ratio (OR) 

Number of 
Variant 
Positive 
Cases 

(n=278) 

Number of 
Variant 
Positive 
Controls 
(n=973) 

Genetic Heart 
Disease 

90 0.65775 0.95207 89 (32%) 322 (33%) 

Epilepsy  72 0.57748 0.97947 50 (18%) 178 (18.3%) 
Inborn Errors of 
Metabolism  

69 0.97726 0.67451 30 (10.8%) 148 (15.2%) 

Respiratory Control 37 0.45849 1.0665 17 (6.1%) 56 (5.8%) 
Other Neurological 
Conditions 

33 0.05391 1.4808 31 (11%) 76 (7.8%) 

Autonomic Nervous 
System  

13 0.18094 1.9606 5 (1.8%) 9 (0.9%) 

Immune System 12 0.71602 0.87464 1 (0.4%) 4 (0.4%) 
Nicotine Metabolizing 3 0.62886 1 2 (0.7%) 7 (0.7%) 
Pathways listed by number of genes.
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Figure Legends 

Figure 1. Yield of Ultra-Rare Non-Synonymous Variants in Previously Published, 

Non-Cardiac SIDS-Susceptibility Genes– Bar graph depicting the percent yield of ultra-

rare (minor allele frequency < 0.00005), non-synonymous variants identified among the 61 

non-cardiac SIDS-susceptibility genes for the SIDS case and European control cohorts.  

 

 


