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Abstract 
 
Apicomplexa are a large group of eukaryotic, single-celled parasites, with complex life 
cycles that occur within a wide range of different microenvironments. They include 
important human pathogens such as Plasmodium, the causal agent of malaria, and 
Toxoplasma, which causes toxoplasmosis most often in immunocompromised individuals. 
Despite environmental differences in their life cycles, these parasites retain the ability to 
obtain nutrients, remove waste products and control ion balances. They achieve this 
flexibility by relying on proteins that can deliver and remove solutes. This reliance on 
transport proteins for essential functions makes these pathways excellent potential targets 
for drug development programmes. Transport proteins are frequently key mediators of 
drug resistance by their ability to remove drugs from their sites of action. Study of transport 
processes mediated by integral membrane proteins and in particular identification of their 
physiological functions and localization, and differentiation from host orthologues has 
already established new validated drug targets. Our understanding of how apicomplexan 
parasites have adapted to changing environmental challenges has also increased through 
study of their transporters. This brief introduction to membrane transporters of 
apicomplexans highlights recent discoveries focusing on Plasmodium, and emphasizing 
future directions. 
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Introduction 
Apicomplexans 
Apicomplexa are a large and diverse group of eukaryotic, unicellular organisms, consisting 
almost entirely of obligate endoparasites (i.e. those that live within hosts). The phylum 
includes protozoan parasites of the genera Plasmodium, Toxoplasma, Babesia, and 
Cryptosporidium. These phyla contain species that cause serious illness in humans and 
livestock with consequent global impacts. Their defining feature is an apical complex that 
is involved in cellular invasion [1,2]. During invasion apicomplexan parasites also form a 
parasitophorous vacuole membrane (PVM) that surrounds the intracellular parasite [3]. 
Many also contain a novel organelle called the apicoplast, which is homologous to the 
chloroplast of plants, and harbours critical metabolic pathways that are typical of plastid 
function such as type II fatty acid biosynthesis, isoprenoid biosynthesis, and haem 
biosynthesis [4,5]. Apicomplexan parasites undergo highly specialised life cycles, which 
consist of both asexual and sexual reproductive stages. Often there is transmission 
between an invertebrate vector (e.g. mosquitoes or ticks) and a vertebrate host, invasion 
of more than one host cell type can occur (e.g. hepatocytes and erythrocytes in the case 
of Plasmodium) and spore formation (e.g. in the case of Crytosporidium and Toxoplasma).  
   
Membrane transport  
For apicomplexan parasites to prosper within a range of different intracellular and 
extracellular microenvironments, they need systems to provide i) a constant supply of 
nutrients, ii) waste removal of potentially toxic metabolites (or drugs in the case of 
resistance) and iii) control of their ion balances . These systems are formed by a network 
of solute transport proteins (e.g. for Plasmodium [6,7]). Transport proteins (or transporters) 
are integral membrane proteins that facilitate that movement of polar solutes across the 
lipid bilayers that form biological membranes. Transporters are classified depending on 
whether they are pore-like (channels) or if they require solute binding and subsequent 
conformational change (carriers) to enable transport (Fig.1). Carriers are further classified 
depending on their energy requirements into primary active secondary active and 
facilitative carriers (Fig. 1). 
 
Parasite transporters can be characterised in situ, although this can be difficult because of 
the complex multi-membrane nature of intracellular parasites and the variety of 
transporters that function in a single membrane. Therefore, heterologous expression 
systems are often used (Box 1). Transport can be measured using several different 
techniques including radio tracers, biosensors and electrophysiological approaches [6]. 
Transporters can be characterised in the same way as enzymes (albeit measuring 
transport rates rather than rates of chemical reactions) and can conform to Michaelis-
Menten kinetics. However, it is important that interpretation of transport data is not 
confounded by metabolism of the solutes being studied, as this can lead to rate limiting 
steps in metabolism being measured instead of kinetics of transport [8]. 
 

New discoveries  
The essential Plasmodium permeome 
In the case of Plasmodium falciparum parasites, just over 140 known and putative 
transporter sequences have been identified and are collectively termed the Plasmodium 
“permeome” [9,10]. This is less than 3% of the ~5300 gene sequences in plasmodia. This 
turns out to be a relatively small percentage compared with other organisms, although it is 
worth noting that ~50% of the plasmodial genome still awaits annotation. Even so, the 
apparent lack of transporters in Plasmodium parasites suggests there is little functional 
redundancy and reinforces their potential therapeutic possibilities [11]. Though not studied 
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in as much detail in other apicomplexan parasites (see for example [12]), Toxoplasma has 
a greater number of transporters than Plasmodium (including within transporter classes), 
suggesting far more redundancy and thus fewer targeting opportunities. Interestingly, 
Cryptosporidium and Babesia parasites may have reduced numbers of transporters and/or 
transporter classes compared with Plasmodium (in this case targeting opportunities could 
be increased due to less functional redundancy and/or decreased due to druggable 
transport classes not being present). 
 
An important validation step to determine the therapeutic potential of a protein is to 
determine whether it is essential by gene disruption. While there has been a steady flow of 
studies that target single transport proteins (e.g. [13]), recent genome-wide essentiality 
studies in the mouse model of malaria, P. berghei (and T. gondii [14,15]) and a large 
targeted gene knockout study in P. berghei [16] has increased greatly our understanding 
of the importance of transporters individually and as a family. Out of the identified 
transporters in Plasmodium parasites, gene disruption has been attempted in just over 100 
(including the few previous studies in P. falciparum), with evidence that ~33% are likely to 
be essential during the asexual erythrocyte stage. A further 21% of transporter gene 
knockouts produce slow-growth phenotypes, while the remaining 46% are dispensable. In 
some cases, complete life-cycle studies have shown that many of those transporters that 
are not essential during the asexual erythrocyte stage are important at other life cycle 
stages [16]. Therefore, it is clear that transporters play critical roles during the plasmodial 
life cycle and offer opportunities for therapeutic intervention. 
 
Plasmodium falciparum P-type ATPase 4, PfATP4 
While there has long been interest in transporters that are involved in resistance (e.g. the 
P. falciparum chloroquine resistance transporter, PfCRT, see below), the discovery that a 
novel antimalarial drug class, the spiroindolones [17], most likely acts by inhibition of 
PfATP4 has heightened interest in targeting transport proteins in Plasmodium and other 
apicomplexan parasites. The P-type ATPase family of cation and lipid pumps, to which 
PfATP4 belongs, has long been postulated to contain antimalarial drug targets [18]. 
Currently in phase II trials [19], spiroindolones were discovered from a library produced 
following large phenotypic drug screens [20-22]. In vitro spiroindolone drug pressure 
experiments generated resistant parasites with mutations in PfATP4 [17]. This finding and 
subsequent functional experiments that demonstrate spiroindolones alter Na+ (and H+) 
homeostasis by inhibition of Na+/H+ pump-like activity in P. falciparum suggest that 
PfATP4 is directly targeted by spiroindolones [23]. However, the current evidence is 
unable to exclude the possibility that spiroindolones target regulators of PfATP4 and/or 
other Na+/H+ homeostasis processes. Furthermore, a range of additional chemotypes 
have been found to work via a similar mechanism and, where tested, selected for 
mutations in PfATP4 [24-27]. This has led to the possibility that PfATP4 is not the direct 
target but acts as a drug efflux resistance mechanism. A recent study was undertaken to 
address this issue [28]. Using directed evolution of a yeast line (the “ABC16 Monster”) that 
is susceptible to spiroindolones at low micromolar concentrations, it was shown that 
spiroindolones select for mutations in a P-type ATPase (ScPMA1, a H+ pump). 
Furthermore, spiroindolones were shown directly to inhibit ScPMA1 in a cell-free model 
system [28], adding weight to the suggestion that PfATP4 is targeted directly by 
spiroindolones. These studies also highlight the problem of linking functional data to a 
specific gene and alternative hypotheses will remain until PfATP4 can be studied in 
isolation. 
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Divalent cation transport 
Calcium (Ca2+) is an important signalling cation and its concentration, or more specifically 
the free intracellular Ca2+concentration [Ca2+]i, is tightly regulated by Ca2+ buffers and Ca2+ 
transporters. In Plasmodium and other apicomplexan parasites, [Ca2+]i regulates key 
processes, including motility, cellular invasion and egress, and intracellular development, 
during different life cycle stages [29-33]. Unlike Toxoplasma that encodes a range of 
putative Ca2+ transporters, those annotated in the databases of Plasmodium parasites are 
scanty [34,35]. Only two Ca2+ transporters have been characterised in P. falciparum. The 
first is a sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) orthologue, PfATP6 [36]. 
PfATP6 is refractory to knockout attempts despite being amenable to homologous 
recombination, suggesting it is essential for the asexual erythrocytic stage of development 
[37]. It has also been identified as a target for artemisinins [36], see below also, and linked 
to a resistance mechanism against a novel antimalarial compound that is being put 
forward for clinical development [38]. The second Ca2+ transporter is the P. falciparum 
Ca2+/H+ exchanger, PfCAX [13,39,40], which is localised intracellularly (though the exact 
location is debated). The P. berghei homologue is predominantly expressed during 
parasite transmission and acts as a critical Ca2+ tolerance mechanism for the free living 
parasite developing within the mosquito gut [13]. It may also play a role in signalling, given 
new evidence that CAXs are directly involved in this process [41]. The lack of genomic 
evidence for more transporters involved in Ca2+ homeostatic control in Plasmodium 
parasites, even in light of evidence for multiple storage sites (e.g. acidocalcisomes [42]) 
and functional data for known Ca2+ homeostatic processes such as IP3R-like release 
mechanisms (reviewed in [43]), suggests novel Ca2+ transporters remain to be 
characterised.  
 
Iron is another important cation due to its ability to act as an electron donor and acceptor, 
existing in the ferric (Fe3+) and ferrous (Fe2+) forms physiologically. It has a central role in 
a range of cellular processes such as DNA, pyrimidine and haem synthesis, glycolysis and 
electron transport. While essential, iron can also be toxic by mediating the production of 
oxygen free radicals and, thus, its regulation is tightly controlled. However, little is known 
about the molecular basis of iron acquisition and its homeostatic control in malarial 
parasites. Several plasmodial genes encode putative iron transporters [9] and three have 
been characterised in recent years. The first is an orthologue of the zinc/iron permease, 
ZIP, family (of which two exist in Plasmodium genomes), which is termed the ZIP domain-
containing protein, ZIPCO. While not essential, it was found to be important to parasite 
development during the liver stage, and while transport function was not characterised 
directly, increasing extracellular iron could, in part, rescue P. berghei parasites in which 
ZIPCO was genetically disrupted [44]. The latter result, coupled with plasma membrane 
localisation, suggests that ZIPCO acts to import iron into the parasite [44]. The second is 
an orthologue of the vacuolar iron transporter, VIT, family, members of which are 
proposed to transport Fe2+ into acidic vacuoles. Using the yeast heterologous expression 
system, P. falciparum VIT was shown to transport Fe2+ with low micromolar affinity, in the 
first functional characterisation of a member of the VIT family [45]. It was later 
demonstrated to exchange Fe2+ for protons [46]. As with ZIPCO, P. berghei VIT was found 
not to be essential. However, it is important for both blood and liver stages of parasite 
growth, providing a tolerance mechanism against excess iron, and may localise to the 
parasite’s endoplasmic reticulum [45]. The third and most recently characterised iron 
transporter is PfCRT. PfCRT has a primary role in the development of resistance in P. 
falciparum to the antimalarial drug chloroquine. Localised to the parasite’s digestive 
vacuole, it has long been known that PfCRT mutants are able to transport chloroquine. 
However, the essential physiological role of PfCRT has received far less attention but is 
hotly debated [47-52]. Expressed in Xenopus laevis oocytes (frogs eggs), both wild-type 
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and mutant PfCRT transport Fe2+ and Fe3+, albeit with slight different kinetics [53]. How 
this relates to the physiological role of PfCRT and iron homeostasis in the parasite 
remains to be determined. 
 
Other transporters 
The wealth of genomic information, our growing understanding of apicomplexan 
transporters and a touch of serendipity have led to the characterisation of a number of new 
transporters in recent years, some of potential therapeutic interest. Asexual blood stage 
Plasmodium parasites and other stages are wholly dependent on glycolysis for their 
energy requirements. The P. falciparum hexose transporter (PfHT [54]) is the entry point 
for glucose into this process and its critical role has been demonstrated with both genetic 
and chemical approaches [55-57]. Yet the nature of the transporter responsible for the 
removal of the major byproduct of glycolysis, lactate, had remained elusive until recently. 
Two groups demonstrated that the surface (and digestive vacuole) expressed P. 
falciparum member of the microbial formate–nitrite transporter family, PfFNT, transports 
lactate and a range of other monocarboxylates, in a H+-coupled manner [58,59]. 
Furthermore and like PfHT [60,61], PfFNT is amenable to inhibition by a range of 
antiplasmodial compounds [62,63], highlighting its therapeutic potential. 
 
The Major Facilitator Superfamily includes numerous transporters found in the plasmodial 
parasites, including PfHT [54] and the more recently characterised vitamin B5 
pantothenate transporter PfPAT [64], yet an intriguing group of transporters within this 
large family shared no obvious homology with other characterised members. This led to 
them being named the novel putative transporters (NPT), of which there are 5 in 
Plasmodium [10]. While the essential role of one in P. berghei (PbNPT1) in the 
transmission of parasites was highlighted several years ago [65], its role was unknown. It 
was not until researchers studying a homologue in T. gondii (TgNPT1) undertook gene 
disruption experiments that the role was revealed. They demonstrated that conditional 
knock-down of the TgNPT1 gene killed the parasites when grown in Dulbecco's Modified 
Eagle's medium but surprisingly not when grown in RPMI 1640 medium [66]. By 
comparison of the composition of the two mediums, they were able to determine that 
TgNPT1 transports arginine in a selective manner and this was confirmed after expression 
of the transporter in Xenopus oocytes. Further experiments with PbNTP1 demonstrated 
that it also transported arginine along with other cationic amino acids [66]. These findings 
and the fact that there are 5 NPT sequences in Plasmodium and 16 in T. gondii suggests 
that the NPT may be a large novel family of amino acid transporters, and it will be 
interesting to see if this holds true. 
 

Future directions 
 
While our understanding of transport processes in apicomplexan parasites is increasing 
there is still much to learn. In the case of Plasmodium, our knowledge of the function of 
half of the ~5300 genes that form the plasmodial genomes is lacking and there will almost 
certainly be novel transport proteins awaiting discovery. As with many of the current 
putative transporters, identifying physiological substrates is often challenging, even if 
comparative analysis provides obvious candidates. In addition, identifying transporter 
location is also critical to interpretation of function and can be hindered by low copy 
number. Developments in super resolution microscopy may help with the latter, while the 
former could be circumvented using functional profiling of Plasmodium genomes (e.g. 
[14]), coupled to appropriate solute transport assays (with a similar approach used to 
identify novel glucose transporters in plants [67]).  
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In addition to the identification and characterisation of novel transporters, there are a 
number of important future directions. The majority of essentiality (and localisation) studies 
have been undertaken in the genetically amenable P. berghei mouse model. Studies in 
human infections, especially P. falciparum, are limited presently (e.g. PfHT [57]). As 
genetic studies in P. falciparum increase and become more efficient, it will be interesting to 
see if current discrepancies remain or are resolved. For example, two related putative K+ 
channels have been refractory to attempts at genetic disruption in P. falciparum in vitro, 
while both can be knocked out in P. berghei in vivo [68-70]. 
 
Even where transporters have been identified as essential, and potential drug targets, 
there remains an almost complete lack of structural studies. It has been nearly a decade 
since the crystal structure (to 2.05 A) of the likely non-essential P. falciparum 
aquaglyceroporin, PfAQP, was published [71] and this remains the only plasmodial 
transporter with a reported crystal structure. Structures for eukaryotic transporters in the 
literature are increasing (e.g. [72-74]), along with efforts to express plasmodial transport 
proteins of sufficient quality for structural determination (e.g. [46,75-77]). This suggests 
structural information will be forthcoming. 
 
Another area of research that has received little attention is the role of host transporters in 
the development of Plasmodium parasites. The relatively small permeome of Plasmodium 
suggests that the parasites have efficiently hijacked their host’s functions to reduce their 
own genome and, thus, increase their fitness. A few studies have reported altered 
endogenous host transporter activity of varying importance in both erythrocyte (e.g. 
[78,79]) and liver stages of Plasmodium development (e.g. [80-82]) and further studies are 
warranted. In addition, there remains the open question of the involvement of host 
transporters in the altered permeability of host erythrocytes, following Plasmodium 
infection. Termed the new permeability pathways, NPP, and similar to volume-activated 
chloride channels [83,84] in function, their formation in the erythrocyte plasma membrane 
involves multiple parasite proteins [85-87] but may also involve host transporters [88,89]. 
 
A final and intriguing role for plasmodial transporters is in the action of artemisinins. 
Recent proteomic studies, using click chemistry, have identified a large pool of proteins 
that artemisinins interact with, suggesting a pleotropic mechanism of action [90,91]. The 
artemisinin interactome contains a variety of transporters, including PfATP4/6 and PfCRT. 
It will be interesting to determine the exact nature of each interaction and its importance, 
given our current reliance on artemisinins for successful malaria treatment. 
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Summary 

 Transporters are a large group of proteins that facilitate the movement of solutes 
between membrane bound compartments.  

 Recent genome-wide profiling studies have demonstrated the importance of 
transporters to apicomplexan parasites, including Plasmodium and Toxoplasma.  

 High quality functional, structural and localisation data are required if the 
therapeutic potential of apicomplexan transporters is to be realised. 
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Figures and Boxes 
 
 

 
 
Figure 1. Graphical representation of different transporter classes. 
Shown are channels - proteins that are essentially gated, water-filled pores and carriers - 
proteins that bind solutes and then undergo conformational change to move them across a 
membrane. Carrier proteins are further classified into three subclasses: primary, active 
carriers – these use energy derived directly from ATP, predominantly, to drive transport, 
secondary, active carriers – these use the energy derived from the electrochemical 
gradients of solutes such as H+ and Na+ to drive the transport of other solutes against their 
own electrochemical gradients, and facilitative carriers - these facilitate the transport of 
substrates down their electrochemical gradients.  
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Box 1. Heterologous expression systems 
Heterologous expression systems provide less complicated environments in which to 
characterise proteins. They are a powerful and often necessary approach for the study of 
transport proteins, particularly those from organisms that are challenging to work with, 
such as intracellular parasites. Once expression of a transporter of interest in a 
heterologous system has been achieved (by either transfection or injection of RNA), the 
system (as a whole, as single cells or as membrane/vesicular preparations) can be used 
to characterise function, with various methodologies. Cell-free systems have also been 
developed [92]. However, it is important to note that information derived from expressions 
systems may not always relate to how transporters may function in their native 
environments. For example, they may not localise to the same region or there may be 
differential post-translational effects. 
 
Xenopus oocytes (frog’s eggs) are an attractive expression system for quantifying 
transport activity, particularly (although not exclusively) if the transporter of interest 
localises to the plasma membrane (e.g. PfHT [54]). They provide a relatively 
straightforward means for electrophysiological approaches and tracer transport 
experiments following transient expression by RNA injection [93]. Furthermore, a general 
low background level of endogenous transport activity is often a major advantage.  
 
Another attractive whole cell heterologous expression system is the highly characterised 
and genetically amenable yeast, Saccharomyces cerevisiae. In particular, the availability 
of yeast mutants lacking a particular transport pathway provide systems for phenotype 
rescue following expression of a foreign transporter. For example, S. cerevisiae has three 
main Ca2+ transport pathways that accumulate Ca2+ into internal stores and can provide 
tolerance to excess Ca2+: a Ca2+-ATPase (PMC1) and a Ca2+/H+ exchanger (VCX1) 
present at the vacuolar membrane, and a Ca2+-ATPase (PMR1) present at the 
endoplasmic reticulum. When one or more of these Ca2+ transporters are deleted, the 
yeast cannot grow on high concentrations of Ca2+ in the growth medium [94,95]. Use of 
mutant yeast lines with these transporters deleted has been used for successful functional 
validation of Ca2+-ATPases (e.g. PfATP6 [37]).  
 


