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SUMMARY  

Proline-rich antimicrobial peptides (PrAMPs) internalize into susceptible bacteria using specific 

transporters and interfere with protein synthesis and folding. To date, mammalian PrAMPs have so 

far only been identified in artiodactyls. Since cetaceans are co-phyletic with artiodactyls, we mined 

the genome of the bottlenose dolphin Tursiops truncates, leading to the identification of two 

PrAMPs, Tur1A and Tur1B. Tur1A, which is orthologous to the bovine PrAMP Bac7, is 

internalized into E. coli without damaging the membranes using the inner membrane transporters 

SbmA and YjiL/MdM. Furthermore, like Bac7, Tur1A also inhibits bacterial protein synthesis by 

binding to the ribosome and blocking the transition from the initiation to the elongation phase. By 

contrast, Tur1B is a poor inhibitor of protein synthesis and may utilize another mechanism of 

action. An X-ray structure of Tur1A bound within the ribosomal exit tunnel provides a basis to 

develop these peptides as novel antimicrobial agents.  

 

KEYWORDS: antibiotic, Cathelicidin; Bac7, dolphin, PrAMP; ribosome; proline-rich 

antimicrobial peptide, Tur1A, Tur1B. 
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INTRODUCTION 

Most antimicrobial peptides (AMPs), especially -helical ones, mainly kill bacteria by disrupting 

the bacterial cell membrane. This mechanism of action makes such AMPs potent broad-spectrum 

antimicrobials, but with the drawback that they exhibit some toxicity towards host cells (Jenssen et 

al., 2006). By contrast, proline-rich antimicrobial peptides (PrAMPs) prevalently kill some Gram-

negative bacteria without perturbing the cell membrane. PrAMPs utilize bacterial inner membrane 

proteins to translocate into the cytoplasm where they inhibit intracellular targets, presumably 

explaining their lower cytotoxicity (Scocchi et al., 2011). Until now, PrAMPs have been identified 

in some arthropods and mammals, but as evolutionarily unrelated AMPs (Graf et al., 2017; Otvos, 

2002; Scocchi et al., 2011). However, within a specific class of animals, it is possible to group the 

PrAMPs into evolutionarily related families of peptides. In insects, for example, there are the 

apidaecins, isolated from members of the Apidea and Vespoidea superfamilies (Casteels et al., 

1994). Similarly, pyrrochoricin (Cociancich et al., 1994), metalnikowins (Chernysh et al., 1996) and 

the oncocins (Knappe et al., 2010; Schneider and Dorn, 2001) were identified as members of 

PrAMPs from the Hemiptera order. In mammals, PrAMPs discovered within different animals from 

the Artiodactyla order can be grouped together as homologues of the same cathelicidin-derived 

peptides. For example, the proline-rich Bac5 and Bac7 were isolated from distinct members of the 

Bovidae family, such as Bos taurus (cow) (Gennaro et al., 1989), Capra hircus (goat) and Ovis 

aries (sheep) ((Huttner et al., 1998; Shamova et al., 1999), reviewed by (Graf et al., 2017; Scocchi 

et al., 2011)).  

Distinct and unrelated PrAMPs do not necessarily display high sequence similarity, but 

rather appear to be related to each other by a generally high content of proline and arginine residues 

that are often arranged in short motifs repeated many times through-out the peptide sequence (e.g. -

PPXR- in Bac5 and -PRPX- in Bac7) (Graf et al., 2017; Scocchi et al., 2011). Additionally, most of 

the PrAMPs characterized to date also display a similar uptake mechanism as well as inhibitory 

properties on bacterial growth (Graf et al., 2017). The inner-membrane protein SbmA appears to be 

the principle PrAMP transporter in E. coli (Mattiuzzo et al., 2007), while the MdtM/YjiL multi-

drug resistance transporter seems to play an accessory role (Krizsan et al., 2015). Once in the 

bacterial cytosol, PrAMPs interfere with protein synthesis and folding (Graf et al., 2017; Scocchi et 

al., 2011). Both mammalian and invertebrate PrAMPs have been shown to inhibit protein synthesis 

by interacting with the ribosome (Krizsan et al., 2014; Mardirossian et al., 2014). Despite their 

diverse sequences, all characterized PrAMPs bind to an overlapping site within the ribosomal exit 

tunnel and inhibit translation by either blocking the transition from initiation to the elongation phase 

(Gagnon et al., 2016; Roy et al., 2015; Seefeldt et al., 2016; Seefeldt et al., 2015) or preventing the 
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dissociation of the release factors during translation termination (Florin et al., 2017). Although 

PrAMPs also bind to and inhibit the activity of the bacterial chaperone DnaK (Otvos et al., 2000; 

Scocchi et al., 2009), this is not sufficient, per se, to kill bacteria (Krizsan et al., 2014; Scocchi et 

al., 2009). Inhibition of protein folding is therefore not the main mode of action of PrAMPs. 

In mammals, all described PrAMPs belong so far to the cathelicidin family (Scocchi et al., 

2011), one of the main families of vertebrate host defence peptides and a prime example of 

diversity among AMPs. Cathelicidins are characterized by the presence of the cathelin-like domain 

(CLD), a large, conserved pro-region of uncertain function (encoded by the first three exons), and a 

highly variable AMP located at the C-terminus (encoded by the fourth exon) (Figure 1) (Zanetti, 

2005). Following the secretion of the pro-peptide into the extracellular medium or into the 

phagosomes of neutrophils, the active form of the AMP is produced upon proteolytic cleavage 

(Tomasinsig and Zanetti, 2005). Most vertebrate animals express only one or few cathelicidins, 

mostly comprising peptides that adopt helical conformations (Xhindoli et al., 2016). Artiodactyl 

species are an exception since they express numerous cathelicidins, which are comprised of AMPs 

with a diverse array of structures (-helices, disulfide-stabilised -hairpins or extended peptides 

rich in particular residues, such as tryptophan or proline) (Tossi et al., 2017). The presence of 

cathelicidin-derived PrAMPs in artiodactyls (Tossi et al., 2017) suggests that they may also be 

present in Cetacea since they are co-phyletic within the unique order of Cetartiodactyla (O'Leary 

and Gatesy, 2008; Spaulding et al., 2009). Here, we mined the available genome sequences of the 

cetacean Tursiops truncatus (the bottlenose dolphin), as well as physically probing its gDNA for 

homologues of known cathelicidin PrAMPs. This led to the identification of two previously 

unknown PrAMPs, which we termed Tur1A and Tur1B. The Tur1A and Tur1B peptides were 

synthesized and characterized for their antimicrobial activity, mode of entry into the bacterial cell 

and capacity to inhibit protein synthesis on ribosomes.  

 

RESULTS 

Identification of potential PrAMPs in the bottlenose dolphin  

To date, all mammalian PrAMPs identified in artiodactyls belong to the cathelicidin family. Since 

cetaceans are co-phyletic with artiodactyls, we hypothesized that cathelicidin-related PrAMPs could 

also exist in cetaceans. To investigate this, we searched the available genome sequence of the 

cetacean Tursiops truncatus (bottlenose dolphin) using the bovine and pig cathelicidin PrAMP 

sequences as queries. This led to the identification of a 32 residue proline-rich peptide with an 

overall charge of +10, which we termed Tur1A (Figure 1B). Analogous with other mammalian 
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cathelicidin, the Tur1A peptide was also encoded within the fourth exon of the gene and preceded 

by three exons encoding the cathelin-like domain (Figure 1A). The sequence and conserved gene 

organisation suggested that Tur1A was indeed a bona fide PrAMP, orthologous to the cathelicidin 

Bac7.   

In an attempt to directly validate the sequence, specific primers were used to selectively 

amplify the 4th exon of the gene from gDNA fragments extracted from Tursiops truncatus tissue. 

Unexpectedly, when sequenced, the amplified DNA encoded a sequence of what was apparently a 

paralogous PrAMP, which we termed Tur1B. Tur1B shares 53% identity with Tur1A, but has a 

lower overall charge (+6) and contains a number of tryptophan (W) residues (Figure 1B). While the 

EST database confirmed only the expression of Tur1B (GenBank: GT116023), the recently 

available Sequence Read Archive (SRA) database [bioproject PRJNA313464; (Morey et al., 2016)] 

validated the presence of both the tur1A and tur1B sequences in Tursiops truncatus. This bioproject 

provides an RNA-Seq with the hit frequency suggesting that tur1A is more extensively expressed 

than tur1B. These findings indicate that the bottlenose dolphin contains at least two distinct 

PrAMPs, Tur1A and Tur1B. Tur1A has high sequence similarity (58-59%) and similar charge with 

the fully active, 35-residue N-terminal regions of the bovine PrAMP Bac7 and porcine PR-39 

(Figure 1B). The homology with PrAMPs such as Bac7 was lower for Tur1B, which instead shows 

similarity in sequence and charge with the bovine Trp-rich Indolicidin (38% identity based on a 13 

residue stretch). Indolicidin is reported to internalize into the bacterial cytoplasm via a self-

promoted uptake mechanism (Hsu et al., 2005; Shagaghi et al., 2016), where it is suspected to 

selectively inhibit DNA synthesis (Ghosh et al., 2014).  

 

Antimicrobial activity of Tur1A and Tur1B  

It has been previously shown that SbmA is the major PrAMP transporter, facilitating uptake of 

Bac7 fragments into the bacterial cytoplasm (Guida et al., 2015; Mattiuzzo et al., 2007), but that at 

higher concentrations of Bac7, the accessory transporter YjiL/MdtM also contributes to uptake 

(Krizsan et al., 2015). The antimicrobial activity of Tur1A and Tur1B was therefore assessed 

against E. coli strains lacking SbmA (sbmA), YjiL (yjiL) or lacking both SbmA and YjiL 

(sbmAyjiL) (Krizsan et al., 2015), and compared with activity against the parental E. coli strain 

BW25113 (Table 1). Tur1A had a comparable minimal inhibitory concentration (MIC) to Bac7(1-

35) against E. coli BW25113 (MICs of 1.2 M and 2.8 M, respectively), whereas Tur1B was less 

active (MIC of 7 M). Furthermore, Tur1A seemed to be less dependent on the SbmA transporter 

than Bac7(1-35) since the sbmA mutant showed little change in the MIC, whereas the MIC 
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increased more evidently for Bac7(1-35). Knocking-out the yjiL gene had little effect on the MIC 

for either peptide, whereas the double ΔsbmA/ΔyjiL deletion mutant exhibited a marked increase (5-

fold) in MIC for both Tur1A and Bac7(1-35). The activity of Tur1B, while generally less potent, 

did not seem to depend on the presence of either transporter. These data suggest that: (i) Tur1A uses 

an assisted internalization mode similar to other PrAMPs, such as for example Bac7, (ii) Tur1A can 

use either the SbmA or Yjil/MdtM transporters at concentrations close to the MIC (1-2 M), 

whereas Bac7(1-35) seems to use preferentially SbmA at lower concentrations and Yjil/MdtM only 

at higher concentrations (8 M), and (iii) Tur1B activity does not seem to depend on PrAMP 

transporters, suggesting it may have a different mechanism of action and/or entry.  

 

Internalization of Tur1A into E. coli cells  

In order to better correlate the uptake of Tur1A with the presence of a specific transport system, 

internalization of boron-dipyrromethene (BODIPY)-labelled peptides into E. coli cells was 

evaluated by cytofluorimetric analysis (Figure 2A and B). It should be noted that for these 

experiments cells were treated with a quite low peptide concentration (0.1 M). Cells were 

extensively washed before the total fluorescence was determined (Figure 2A). Because the total 

fluorescence comprises both tightly surface bound as well as internalized peptide, measurements 

were also made after washing with trypan blue, which quenches the BOPIDY (BY) fluorescence 

derived by the surface bound peptide and thus allows the amount of internalized peptide to be 

evaluated (Figure 2B). In the wildtype E. coli BW25113, the large difference between the 

Tur1A(Cys33)-BY fluorescence in the absence and presence of the trypan blue (Figure 2A and 2B) 

suggests a strong surface binding capacity of this peptide (Figure 2A). This probably explains the 

slower internalization of the peptide in comparison to the Bac7(1-35)(Cys36)-BY (Figure 2B). 

Nevertheless, the uptake of Tur1A(Cys33)-BY into E. coli BW25113 was efficient, even at very low 

concentrations. The absence of SbmA or YjiL did not significantly change the Tur1A(Cys33)-BY 

uptake, consistent with the unchanged MIC values (see Table 1). By contrast, uptake was 

significantly affected in the ΔsbmA/ΔyjiL double knock-out (Figure 2B) where corresponding 

increases in the MIC values were also observed (Table 1). Curiously, for both peptides, the 

presence of the transporters correlates not only with higher levels of internalized fluorescent 

peptide, but also with the increased amount of surface bound fluorescence. Propidium iodide (PI)-

uptake assays carried out in parallel indicated however that no membrane permeabilization occurred 

under these conditions (not shown).  
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The effect of Tur1A on permeabilization of E. coli BW25113 membranes was characterized 

by monitoring the PI-uptake after 15 min of incubation with Tur1A (Figure 2C) or Bac7(1-35) 

(Figure 2D) at concentrations of 1 µM or 8 µM, respectively (i.e. the MIC values in the presence or 

absence of transporters, as seen in Table 1). The membranolytic antibiotic polymyxin B (PxB) was 

used at 0.25 M as positive control for membrane permeabilization (>90% PI-positive cells). The 

level of membrane permeabilization for both Tur1A and Bac7(1-35) at 1 M was very low (<3% of 

damaged cells). Since this is within the range of the MIC, this is consistent with the notion that 

Tur1A, like Bac7(1-35), inhibits bacteria using an intracellular mechanism rather than via inducing 

membrane damage. For comparison, almost all cells become permeabilized in the presence of 

0.25 M PxB. However, we note that by increasing the peptide concentration to 8 µM, deleterious 

effects on membrane integrity were observed for Tur1A, as previously reported for Bac7(1-35) on 

Salmonella enterica typhimurium (Podda et al., 2006). Specifically, at 8 µM, Bac7(1-35) damaged 

the membranes of 50% of cells, whereas Tur1A damaged 70% cells. By prolonging the 

incubation time (to 60 min), or by increasing Tur1A concentration (to 16 M), permeabilization 

could be increased (but never to 100%), suggesting a time and concentration dependency (data not 

shown). However, for these longer times it is difficult to distinguish between a primary 

membranolytic effect and the disruption that occurs following bacterial death. Taken together, these 

results confirm that the antimicrobial activity of Tur1A against E. coli is principally correlated with 

its internalization into the cells rather than via membrane lysis, but that nevertheless at higher 

concentrations or incubation times, Tur1A, like Bac7(1-35), can induce membrane damage.  

 

Inhibition of in vitro protein synthesis using E. coli lysates  

Since the PrAMP Bac7(1-35), which is homologous to the Tur1A and Tur1B peptides, is known to 

inhibit bacterial protein synthesis (Mardirossian et al., 2014; Seefeldt et al., 2016), we investigated 

whether the Tur1A and Tur1B peptides also have inhibitory activity in E. coli lysate-based in vitro 

coupled transcription/translation assays (Figure 3A). The effect of the Tur1A and Tur1B peptides 

was assessed by monitoring the luminescence resulting from translation of the firefly luciferase 

reporter gene. As seen in Figure 3A, increasing concentrations of Tur1A efficiently reduced the 

luminescence in a dose-dependent manner, with an estimated IC50 <5 µM. By contrast, Tur1B was 

less effective with no influence on the luminescence observed at concentrations up to 10 µM, and a 

partial (70%) inhibition of protein synthesis observed only at 100 µM. This suggests that Tur1B is a 

worse translation inhibitor than Tur1A, and that transcription-translation may not be the main target 

for Tur1B. 
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To distinguish between effects on transcription and translation, we also assessed the direct effect on 

the bacterial translation machinery (Figure 3B). To do this, the in vitro translation assays were 

repeated but using transcribed mRNA template encoding the firefly luciferase, rather than DNA 

template as was used for the coupled assays. As seen in Figure 3B, similar results were obtained 

when mRNA template replaced the DNA template, namely, that Tur1A was an excellent inhibitor at 

concentrations over 10 µM and that the inhibition of luminescence was only observed for Tur1B at 

100 µM. These findings led us to conclude that Tur1A acts directly on the translation apparatus, 

rather than on transcription, as was observed previously for Bac7 (Mardirossian et al., 2014), 

whereas Tur1B only effects translation at high concentrations and is therefore likely to have another 

target and/or mechanism of action.  

 

 

 

Tur1A prevents the transition from initiation to elongation of translation 

To understand which step of the protein synthesis was inhibited by Tur1A, toeprinting assays were 

performed using a fully reconstituted E. coli in vitro translation system (Shimizu et al., 2001), as 

described previously for other PrAMPs (Gagnon et al., 2016; Seefeldt et al., 2016; Seefeldt et al., 

2015). The toeprinting assay uses reverse transcription to monitor the position of ribosomes on a 

reporter mRNA (Hartz et al., 1988). As shown in Figure 4, in the absence of antibiotic or peptide, 

ribosomes initiate and translate the mRNA until becoming stalled on three consecutive prolines 

(PPP) due to the absence of elongation factor EF-P in the system (Starosta et al., 2014). In the 

presence of the antibiotic thiostrepton (ThS), ribosomes can initiate at the AUG start codon but 

cannot translate further due to the inhibitory effect of the drug on elongation factors (Wilson, 2009).  

This is seen in the toeprint gel by an increase in the band corresponding to ribosomes stuck at the 

AUG codon and the loss of the band corresponding to ribosomes stalled at the PPP-motif. By 

contrast, the antibiotic edeine (Ede) prevents initiation complex formation by blocking fMet-tRNA 

binding to the 30S subunit (Dinos et al., 2004) and therefore represents a control for background 

reverse transcription stops. The reverse transcription stops, presumably due to secondary structure, 

are observed between the AUG and PPP codons in all reactions (Figure 4). For comparison, the 

PrAMP Myticalin A5 (MytA5) was also tested in the assay since this peptide inhibits T7 RNA 

polymerase but does not significantly affect bacterial protein synthesis (Leoni et al., 2017). As 

expected, increasing concentrations of MytA5 lead to a reduction and, at higher concentrations a 

complete loss, of all toeprint bands including the full-length mRNA. Like ThS, increasing 

concentrations of Tur1A led to the decrease in ribosomes stalled at the downstream polyproline 

sequence (PPP), as well as a concomitant appearance of toeprint signal corresponding to ribosomes 

stalled at the AUG start codon. At very high concentrations (100 µM), a reduction in the AUG 
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toeprint signal was observed, which may result from drop-off of the fMet-tRNA and disassembly of 

the ribosome initiation complex (Figure 4), as was observed previously for high concentrations of 

the PrAMPs Bac7(1-16) and Bac7(1-35) (Seefeldt et al., 2016). In contrast to Tur1A, concentrations 

up to 100 µM of Tur1B did not lead to a complete loss of the toeprint signal at the PPP-motif, 

indicating that ribosomes can still elongate in the presence of the Tur1B peptide. However, a slight 

reduction in the signal intensity of the PPP-band, coupled with the appearance of weak toeprints at 

the AUG start codon at 10 µM and 100 µM suggest that Tur1B can inhibit translation at higher 

concentrations, consistent with the results obtained using the in vitro translation assays (Figure 3).  

 

Tur1A inhibits protein synthesis on Thermus thermophilus ribosomes 

Previous structural studies investigating the ribosome binding site of PrAMPs, such as oncocin and 

Bac7, utilized ribosome crystals from the thermophilic bacteria T. thermophilus (Gagnon et al., 

2016; Roy et al., 2015; Seefeldt et al., 2016; Seefeldt et al., 2015), however, it was not 

demonstrated that such PrAMPs actually display inhibitory activity against T. thermophilus 

translation. To address this, we established a T. thermophilus lysate-based in vitro translation assay 

based on an S12 lysate protocol that has been successfully used in the past for E. coli (Kim et al., 

2006) Huter et al., 2017) and Bacillus subtilis (Sohmen et al., 2015). Using the T. thermophilus 

lysate-based in vitro translation with firefly luciferase as a reporter it was possible to assess whether 

Tur1A can inhibit translation on T. thermophilus ribosomes. The Tur1B was not further tested since 

its inhibiting activity towards translation was low (see above Figure 3). As shown in Figure 5, the 

Tur1A peptide inhibited translation on T. thermophilus ribosomes very efficiently, with 80% 

inhibition observed even at 1 µM concentration of Tur1A. This indicates that structural studies 

using T. thermophilus ribosomes represent a valid model system for investigating the binding site of 

PrAMPs, such as Tur1A, on other bacterial ribosomes. 

 

The binding site of Tur1A on T. thermophilus ribosome 

We determined the structure of Tur1A bound to the T. thermophilus 70S ribosome at 3.3 Å 

resolution from X-ray diffraction data collected using a single co-crystal of a ternary complex 

between T. thermophilus 70S, Tur1A and YfiA, a protein that is used to lock the head of the 30S 

subunit in order to improve crystal-to-crystal reproducibility (Table S1) (Polikanov et al., 2014). A 

minimally biased Fo-Fc difference map calculated after refinement of a model of an empty T. 

thermophilus 70S ribosome showed clear density for residues 1-16 of Tur1A, with weaker density 
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visible for residues 17-22. This made it possible to build a complete model of Tur1A(1-16) and to 

trace the backbone for the remainder of the peptide. As in earlier structures of insect and 

mammalian PrAMPs bound to T. thermophilus 70S (Gagnon et al., 2016; Roy et al., 2015; Seefeldt 

et al., 2016; Seefeldt et al., 2015), Tur1A(1-16) binds to the exit tunnel in a reversed orientation 

relative to a nascent polypeptide chain (Figure 6A), blocking the binding site for the A-site tRNA 

and a significant portion of the ribosomal exit tunnel. Although its structure is very similar to that of 

the mammalian Bac7(1-16), the side chains of Arg1 and Arg4 of Tur1A showed no noticeable 

density, suggesting that these residues are more flexible in the case of Tur1A. Due to their strong 

structural resemblance to Bac7(1-16), the first 16 residues of Tur1A make similar contacts with the 

ribosome. A few differences are (i) in Tur1A, Phe5 stacks upon Pro7 (Figure 6B), whereas this is 

not possible in Bac7 because residue 5 is a proline, (ii) in Tur1A, Tyr9 stacks upon the basepair 

formed by nucleotides C2452 and U2504 of the 23S rRNA that comprise the ribosomal tunnel 

(Figure 6C). In Bac7, Arg9 makes an analogous stacking interaction with the C2452-U2504 base 

pair (Gagnon et al., 2016; Seefeldt et al., 2016), (iii) in Tur1A, Arg15 stacks upon basepair C2586-

C1782 of the 23S rRNA (Figure 6D), whereas in Bac7, residue 15 is a proline, and (iv) in Tur1A, 

Arg16 stacks against the side chain of residue His69 of ribosomal protein L4 at the tunnel 

constriction (Figure 6D), whereas in Bac7, Arg16 stacks against A2062 (Gagnon et al., 2016; 

Seefeldt et al., 2016). Residues 17-22 of Tur1A extend towards the exit of the nascent polypeptide 

tunnel, but do not appear to make any specific contacts with ribosomal components, in agreement 

with their weaker electron density. As with other known PrAMPs, the structural data therefore 

indicate that Tur1A is likely to inhibit translation by interfering with the binding of aminoacyl-

tRNA to the A-site. 

 

The N-terminal region is critical for the inhibitory activity of Tur1A 

The structural data suggest that the N-terminal region (residues 1-16) is critical for binding of 

Tur1A to the ribosome. To evaluate this, we synthesized three overlapping 16-residue Tur1A 

fragments, Tur1A(1-16), Tur1A(8-24) and Tur1A(16-32), and analysed their activity on living 

bacteria (Table 1). The MIC assays were performed against E. coli BW25113 and revealed that 

Tur1A(1-16) retained activity (MIC = 4µM), indicating that the C-terminal region is indeed 

dispensable for Tur1A antimicrobial activity. By contrast, both the Tur1A(8-24) and Tur1A(16-32) 

exhibited no antimicrobial activity, confirming that the N-terminal region is critical for the 

inhibitory activity of Tur1A. These findings are consistent with previous analysis of the related 

Bac7 orthologue, where the Bac7(1-16) fragment was also identified as being the shortest active 
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fragment (Benincasa et al., 2004). Nevertheless, the absence of antimicrobial activity of the 

Tur1A(8-24) and Tur1A(16-32) fragments may be due to lack of uptake, rather than inability to 

bind to ribosomes. To distinguish between these scenarios, the three Tur1A fragments were 

analysed for their inhibitory activity in an E. coli in vitro coupled transcription/translation assay 

(Figure 6E). Similar to the MIC results using whole cells, only the Tur1A(1-16) fragment inhibited 

in vitro protein synthesis to any extent, whereas the Tur1A(8-24) and Tur1A(16-32) fragments were 

completely inactive, even at concentrations as high as 100 µM (Figure 6E). This indicates that the 

inactivity of the N-terminally deleted Tur1A peptides is mainly due to their inability to bind to the 

ribosome. Deletion of the N-terminus removes the RRIR sequence of Tur1A (Figure 1), which is 

also conserved and essential in the Bac7 PrAMP (Benincasa et al., 2004).  

 

Effect of ribosomal RNA and protein mutations on PrAMP resistance 

Tur1A binds the ribosome inside the exit-tunnel, which is also the ribosomal binding site of the 

antibiotic erythromycin. Previously, it was demonstrated that mutations in the ribosome that confer 

resistance to erythromycin also confer cross-resistance to PrAMPs, such as oncocin and apidaecin 

(Gagnon et al., 2016, Florin et al., 2017). Therefore, we determined the MIC of Tur1A against E. 

coli erythromycin-resistant strains bearing mutations within the ribosomal exit tunnel, namely, 

A2503C, A2059G or A2059C in the 23S rRNA and alterations in ribosomal proteins L4 (K63E) 

and L22 (82MRK84) (Table S2). As controls, we also determined the MIC in the presence of 

Bac7(1-35), the apidaecin derivative Api137 and erythromycin. As expected, all the strains bearing 

rRNA mutations or ribosomal protein alterations had increased MIC against erythromycin 

compared to the wildtype strains (Table S2). Ribosomal protein alterations in L4 and L22 led to a 

modest increase in MIC for Api137, as reported previously (Florin et al., 2017). By contrast, there 

was no significant change in the MIC in the presence of Bac7(1-35), Tur1A or Tur1B (Table S2). 

While mutations of A2503 and A2059 have been reported to confer resistance to oncocin derivative 

Onc112 as well as Api137 (Gagnon et al. 2016; Florin et al., 2017), no resistance was observed with 

Bac7(1-35) (Gagnon et al., 2016). Curiously, we observed that while A2059C mutations confer 

resistance to Api137, A2059G did not, whereas the A2503G tested previously (Florin et al., 2017) 

and the A2503C tested here (Table S2), both conferred resistance to Api137. By contrast, we 

observed no increase in the MIC in the presence of Tur1A and Tur1B (Table S2), consistent with 

their high sequence similarity with Bac7 (Figure 1).  

 

DISCUSSION 
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Here we have identified two PrAMPs from the bottlenose dolphin Tursiops truncatus, which we 

termed Tur1A and Tur1B. Tur1A is highly similar to the PrAMPs from Bos taurus Bac7 and from 

Sus scrofa PR-39, sharing 58% and 59% sequence identity, respectively (Figure 1). According to 

our findings, Tur1A is the only PrAMP that is conserved across the order of Cetartiodactyla. This 

suggests that the Tur1A/Bac7/PR-39 family could be the most ancient family of mammalian 

PrAMPs, dating back approximately 60 million years ago, as calculated by TimeTree (Hedges et al., 

2015), to before the evolutionary split between dolphins, cows and pigs. Consistent with their high 

sequence identity, the mechanism of action and uptake of Tur1A is also similar to Bac7 and PR-39. 

Like Bac7, Tur1A is also taken up by the bacterial cell using the SbmA and YjiL/MdtM 

transporters and mainly inhibits bacterial growth by targeting the ribosome, rather than via 

membrane permeabilization. However, unlike Bac7, the isolated role of both these transporter does 

not affect significantly the uptake of the peptide, indicating that Tur1A exploits the combined effect 

of these transporters to enter the bacterial cell.  

The inhibition of protein synthesis in vitro by Tur1A has been demonstrated not only in E. 

coli, but also in T. thermophilus lysates, thereby confirming the validity of using T. thermophilus 

70S ribosomes for the structural analysis. The binding site of Tur1A overlaps significantly with that 

observed previously for Bac7 (Gagnon et al., 2016; Seefeldt et al., 2016) (Figure 6), and Tur1A 

exhibits the same mechanism of action as Bac7 to prevent the transition from the initiation to the 

elongation phase of translation (Figure 4). However, slight sequence deviations between Tur1A and 

Bac7 result in subtle differences in the binding mode and interaction with the components of the 

ribosomal peptide exit tunnel (Figure 6). Such detailed insights will be important for understanding 

the sensitivity of particular regions of the PrAMPs to sequence variation. Sequence variations are 

also likely to explain why Tur1A was slightly more permeabilizing towards bacterial membranes 

than Bac7 (Figure 2). A detailed mutagenesis analysis exchanging residues between Tur1A and 

Bac7 could be used to identify which sequence determinants are critical for uptake and/or ribosome 

interaction, and thus provide a structure-activity relationship upon which to base further rational 

design of synthetic PrAMPs for clinical applications.  

Although the partial sequence homology suggests that Tur1B may be evolutionarily related 

to the Tur1A/Bac7/PR-39 family of PrAMPs, Tur1B is significantly divergent so as to have only a 

modest inhibitory effect on translation (Figures 3 and 4). Instead, the presence of four tryptophan 

residues within Tur1B and its lower charge, imparts characteristics on this peptide that are similar to 

indolicidin, a short bovine proline-tryptophan rich AMP (Selsted et al., 1992). Tur1B almost 

appears to be intermediate between the proline-arginine rich AMPs and the proline-tryptophan rich 
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AMPs, therefore further studies into Tur1B could provide additional evolutionary insight into this 

latter group of peptides. Indeed, as observed for indolicidin (Mattiuzzo et al., 2007), the transporter 

SbmA does not play a significant role in the mode of action of Tur1B. While the details of the mode 

of action of indolicidin are still under discussion, permeabilization of bacterial membrane appears to 

be an important part of its moderate antimicrobial activity (Falla et al., 1996). Therefore, we think it 

is likely that Tur1B also acts mainly on the bacterial membrane. However, further studies will be 

necessary to address this directly.  

In conclusion, our study has extended our knowledge on the distribution among animals of 

PrAMPs and cathelicidins, providing insight into their evolution. We demonstrate that sequence 

variations within the cathelicidin family of PrAMPs, as evident by comparing Tur1A with Bac7 and 

PR-39 sequences, leads to subtle alterations in the binding mode and interaction with the ribosome 

but retains the potent activity and distinct mechanism of action. In contrast, further sequence 

variation as observed in the Tur1B peptide leads to a peptide with a completely unrelated properties 

and mechanism of action. We believe such structure-activity relationships will be critical for 

development of this class of AMPs as valid lead compounds to combat the ever-increasing 

emergence of multi-drug resistant bacteria.  

 

SIGNIFICANCE 

The discovery of the two proline-rich antimicrobial peptides (PrAMPs) Tur1A and Tur1B in 

dolphins indicates that these peptides also exist amongst cetaceans. Previously, evidence of 

PrAMPs was reported only in some terrestrial mammals. Tur1A was shown to kill bacteria by 

inhibiting protein synthesis, specifically preventing the transition from initiation to elongation. This 

reiterates the mode of action described for other PrAMPs, such as Bac7 and oncocin, previously 

identified in cows and insects. This also provides information on the evolutionary convergence of 

Tur1A with some insect PrAMPs, and on its evolutionary relationship with some bovine PrAMPs. 

By contrast, Tur1B displays a low inhibitory effect on protein synthesis. Instead, Tur1B appears to 

be an intermediate between a ribosome-targeting PrAMP and other proline-rich peptides that act 

mainly by permeabilizing the bacterial membrane, thus offering interesting hints on the relationship 

between these two groups of PrAMPs. Lastly, both the Tur peptides, but especially Tur1A, have a 

potent antibacterial activity to be exploited in the fight against the increasing prevalence of 

antibiotic-resistant pathogens.  
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Table 1. Minimal inhibitory concentrations (MIC) for Tur1A, Tur1B, Bac7(1-35) and Tur1A 

fragments against E. coli BW25113 strains.  

 MIC (µM) on E. coli BW25113 strains 

Peptide wild type  ΔsbmA  ΔyjiL  ΔsbmA / ΔyjiL  

Tur1A 1.2 (±0.4) 2.3 (±1.3) 1.9 (±1.1) 6.4 (±2.2) 

Tur1B 7 (±1.9) 4 8 8 

Bac7(1-35) 2.8 (±1.0) 6.3 (±2.6) 1.8 (±0.5) 14 (±3.7) 

Tur1A(1-16) 4 nd nd nd 

Tur1A(8-24) >64 nd nd nd 

Tur1A(16-32) >64 nd nd nd 

Data represent the average and standard deviation (±) calculated after three independent 

experiments performed as internal duplicates (n=6). nd, not determined. 
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FIGURE LEGENDS 

 

Figure 1. Gene structure and peptide sequences of dolphin PrAMPs Tur1A and Tur1B. (A) 

Cathelicidin gene structure with PrAMP encoded in Exon 4. (B) Peptide sequences of dolphin 

Tur1A and Tur1B compared with orthologues from bovine Bac7(1-35) and porcine PR-39, as well 

as bovine indolicidin. a %Id indicates identity relative to the Tur1A or Tur1B sequences as 

determined using Clustal Omega. Conserved residues among PrAMPs are shaded grey. Conserved 

residues between Tur1B and indolicidin are underlined. 

 

Figure 2. Flow-cytometry evaluation of Tur1A internalization into E. coli cells and membrane 

interaction/permeabilization. The fluorescence intensity (MFI) of wildtype BW25113 (wt) and 

mutant sbmA, yjiL and sbmA/yjiL E. coli cells exposed to fluorescent derivatives of Tur1A or 

Bac7(1-35) is shown. Bacterial cells (1×10
6
 CFU/ml) were incubated with 0.1 µM of each peptide 

for 10 min, extensively washed, and analyzed by flow cytometry (A) without or (B) with incubation 

with 1 mg/ml of the trypan-blue quencher for 10 min at 37°C. Data are expressed as the average 

MFI with a standard deviation for three independent experiments. Flow cytometric analysis of 

propidium iodide-uptake in E. coli BW25113 cells after 15 min treatment with (C) 1 µM and 8 µM 

Tur1A or (D) 1 µM and 8 µM Bac7(1-35) or 0.25 µM PolymixinB (PxB). The fluorescence of the 

untreated cells is indicated by the grey histogram. The reported data are representative of at least 

three independent experiments with comparable results (see Figure S1). PxB was used only once, 

as a comparison. 104 cells (events) were read for each measurement. Statistical significance: 

Student-Newman-Keuls Multiple Comparisons Test, ANOVA (*=p < 0.05; **= p < 0.01).  

 

Figure 3. Effect of Tur1A and Tur1B on in vitro translation reactions. (A) Effect of Tur1A and 

Tur1B on E. coli in vitro coupled transcription/translation assays and (B) on E. coli in vitro 

translation assay using mRNA template. Assays were performed in the absence (-) or presence of 

increasing concentrations of peptides (1 µM, 10 µM or 100 µM). The luminescence resulting from 

reactions performed in the absence of peptide was normalized to 100%. Reactions lacking DNA 

(No DNA) or RNA (No RNA) template were performed as negative controls. The error bars 

represent the standard deviation of the mean from three independent experiments.  
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Figure 4. Toe-print analysis of Tur1A and Tur1B effect on translation. Fluorescence scan of a 

polyacrylamide gel analysis of toeprinting reactions performed in the absence (-) or presence of 

100 µM thiostrepton (ThS), 1-100 µM Tur1A, Tur1B, Myticalin A5 (MytA5) and 50 µM edeine 

(Ede). Toeprint signals corresponding to ribosomes stalled at the AUG start codon or at the 

polyproline stretch (PPP) are indicated with arrows, as is the reverse transcription product of the 

full-length mRNA (FL) and bands resulting from reverse transcription stops at secondary structure 

(SS). Sequencing lanes (C and A) are included for reference with corresponding nucleotide and 

peptide sequences for these regions. This gel is representative of three independent experiments (see 

Figure S2). 

 

Figure 5. Effect of Tur1A on in vitro translation assays using T. thermophilus extracts. 

Translation reactions were performed in the absence (-) or presence of increasing concentrations of 

Tur1A. The luminescence resulting from reactions performed in the absence of peptides was 

normalized to 100%. Reactions lacking RNA (No RNA) template were performed as negative 

controls. The error bars represent the standard deviation of the mean from three independent 

experiments.  

 

Figure 6. Binding site of Tur1A on the ribosome. (A) The structure of Tur1A(1-22) (blue) is 

superimposed with that of Bac7(1-16) (green) (Seefeldt et al., 2016) and density contoured at +2.5 σ 

of a minimally-biased Fo-Fc map shows the location of the Tur1A peptide (blue mesh). The density 

was trimmed using the carve function in Pymol, with a 3 Å cutoff. The various sections of the 

nascent polypeptide exit tunnel are labelled, as well as ribosomal proteins L4 and L22 (white). (B-

D) detailed view of (B) Phe5 stacking on Pro7 of Tur1A, (C) Tyr9 of Tur1A stacking on the 

C2452-U2504 basepair of the 23S rRNA, and (D) Arg15 and Arg16 of Tur1A stacking on basepair 

C2586-C1782 of the 23S rRNA and His69 of L4, respectively. (E) Luciferase activity after in vitro 

E. coli coupled transcription/translation assays performed in presence of Tur1A(1-16), Tur1A(8-24) 

or Tur1A(16-32). Reactions were performed in the absence (-) or presence of increasing 

concentrations of peptides. The luminescence resulting of reactions performed in the absence of 

peptides was normalized to 100%. Reactions lacking DNA template (No DNA) were performed as 

negative controls. The error bars represent the standard deviation of the mean from two independent 

experiments.  
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STAR METHODS 

Detailed methods are provided in the online version of this paper and include the following: 

 KEY RESOURCES TABLE 

 CONTACT FOR REAGENT AND RESOURCE SHARING 

 EXPERIMENTAL MODEL AND SUBJECT DETAILS 

o Bacterial strains and growth conditions 

 METHOD DETAILS 

o Peptide identification  

o Peptide synthesis 

o Minimum inhibitory concentration determination  

o Flow cytometry 

o In vitro transcription and translation in E. coli  

o In vitro translation in T. thermophilus  

o Toe-printing assays 

o Purification of T. thermophilus 70S ribosomes 

o Purification of YfiA 

o T. thermophilus 70S-YfiA-Tur1A complex formation 

o Crystallization of T. thermophilus 70S-YfiA-Tur1A  

o Data collection and processing 

o Model building and refinement 

 QUANTIFICATION AND STATISTICAL ANALYSIS 

o In vitro data analysys 

 DATA AND SOFTWARE AVAILABILITY 

o Accession numbers 

 

 

CONTACT FOR REAGENT AND RESOURCE SHARING  

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Daniel N. Wilson (daniel.wilson@chemie.uni-hamburg.de). 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 

E. coli strain and growth conditions 

The E. coli strain BL21STAR was grown at 37°C in Luria-Bertani broth with shaking (200 rpm).  

All the other E. coli strains were grown at 37°C in Müller-Hinton broth with shaking (140 rpm). 

The E. coli strains BW25113, N281, N282 and AB301 required no antibiotics. The E. coli strains 

BW25113ΔsbmA and BW25113ΔyjiL required 50 µg/ml kanamycin, BW25113ΔyjiL/ΔsbmA 

required 50 µg/ml kanamycin and 15 µg/ml tetracycline. The E. coli strains SQ110ΔtolC, 

SQ110ΔtolC A2059C, SQ110ΔtolC A2059G, SQ110ΔtolC A2305C required 25 µg/ml kanamycin 

and 50 µg/ml spectinomycin. The T. thermophilus strain HB8 was grown in 1×YT medium without 

antibiotics at 70°C.  

The E. coli strains BW25113, BW25113ΔsbmA::Kmr and BW25113ΔyjiL::Kmr are part of 

the KEIO collection (Baba et al., 2006). The double mutant E. coli 

BW25113ΔsbmA/ΔyjiL::KmrTetr (Krizsan et al., 2015) was generously provided by Prof. Ralf 

Hoffmann, University of Leipzig, Germany. The E. coli strains AB301 with its mutants 

N281(mutation on L22) and N282(mutation on L4), the SQ110ΔtolC::Kmr and its mutants 

SQ110ΔtolC::KmrSprA2059C, SQ110ΔtolC::KmrSprA2059G, SQ110ΔtolC::KmrSprA2305C 

were generously provided by Profs Alexander Mankin and Nora Vasquez-Laslop, University of 

Illinois, Chicago, USA. 

 

METHODS DETAILS 

Peptide identification   

The Tursiops truncatus genome sequence is available as part of the Mammalian Genome Project 

(Lindblad-Toh et al., 2011), however, it was determined by first generation Sanger sequencing and 

has a relatively low coverage (2.6-fold), so it is only considered partial. Blasting the bovine and 

porcine PrAMP sequences led to the identification of a possible orthologue in both the Ensemble 

turTru1 scaffold 36647 and GeneScaffold 2343, which we termed Tur1A. The tur1A gene sequence 

encoding Tur1A was not present in Genebank, and the low coverage of turTru1 raised the question 

of the certainty of the identification. Thus, to validate the identification, an attempt was made to 

selectively amplify and sequence the corresponding gene fragment from gDNA purified from 

bottlenose dolphin tissue, at the Sequencing Facility of the Applied and Comparative Genomics 

group (University of Trieste). Frozen muscle tissue samples were obtained from the Mediterranean 

Marine Mammal Tissue Bank, at the Dept. Veterinary Experimental Sciences, Univ. of Padova, and 

DNA was extracted using the E.Z.N.A.® Mollusc DNA Kit (Omega Bio-Tek), following the 
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provided protocol. Amplification primers were designed using Genomics Workbench 5.1 (CLCbio), 

based on the DNA sequence 5’ and 3’ to the 4th exon encoding Tur1A. The forward primer, 5’-

CTTGTGACCCTGGGA-3’, was based on a sequence in the intron preceding the fourth exon, the 

reverse primer 5’-ATAACTTCCTCCAGGCTTCA-3’ was based on a sequence from the 3’-UTR. 

The PCR product was purified on a 2% agarose gel showing a major band of the expected size (470 

bp), which was excised and extracted using the Perfectprep® Gel Clean-up kit (Eppendorf). Sanger 

sequencing was carried out on a Hitachi 3130 Genetic Analyzer (Applied Biosystems) using the 

same forward and reverse primers, but resulted in a different sequence than expected and was 

therefore named tur1B, encoding the Tur1B peptide. Since the direct sequencing had not confirmed 

the presence of tur1A, suggesting instead the presence of a paralogous sequence, the EST database 

was blasted with both sequences to determine if they were expressed. The EST database confirmed 

the expression of Tur1B only (GenBank: GT116023). On the other hand, the more recent Sequence 

Read Archive database bioproject PRJNA313464 (Morey et al., 2016) confirmed the presence of 

both the tur1A and tur1B sequences in Tursiops truncatus.  

 

Peptide synthesis 

Tur1A, Tur1B, the orthologous bovine peptide fragment Bac7(1-35) and the mussel peptide 

Myticalin A5 were synthesised on a Biotage Initiator+ Alstra automated microwave synthesizer 

using Fmoc chemistry. All peptides were synthesized on a 0.1 mmole scale using Fmoc-Pro-TGA 

or Fmoc-Arg(Pbf)-TGA resins (Novabiochem/Merck) as appropriate, and single couplings with a 6-

fold amino acid excess at 75°C. Peptides were cleaved with a version of Reagent K (85% TFA, 6% 

DODT, 3% thioanisole, 2% phenol, 2% triisopropylsilane, 2% water), subsequently purified by 

preparative RP-HPLC (Phenomenex Kinetex, C18, 2.6 μm, 100 Å, 50x4,6 mm) using a 15-45% 

H2O to CH3CN gradient (0.05% trifluoroacetate (TFA)) and confirmed by ESI-MS (Bruker Esquire 

4000) [Tur1A calculated MW=3972.9, measured MW=3972.3; Tur1B calculated MW=4032.8, 

measured MW=4033.2; Bac7(1-35) calculated MW=4201.2, measured MW=4207.1; MW 

calculated with Peptide Companion, Coshi Soft]). Tur1A and Tur1B stock solutions were prepared 

in deionized water from purified peptides that had been lyophilized three times from a 10 mM HCl 

solution to remove TFA. The concentrations were estimated by using a Nanodrop 2000 based on the 

extinction coefficients at 214 nm as described by (Kuipers and Gruppen, 2007), and based on the 

absorption of Tyr at 280 nm for Tur1A ( = 1450 M-1cm-1) or of Trp at 280 nm for Tur1B ( = 5500 

M-1cm-1).  
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Fluorescently labelled Tur1A(Cys33)-BY and Bac7(1-35)(Cys36)-BY were prepared in the 

same manner, but adding a C-terminal Cys residue to each sequence by using Fmoc-Cys(Trt)-2-

chlorotrityl chloride resin (Novabiochem/Merck). After cleavage, peptides were reacted with 

BODIPY-FL [N-(2-aminoethyl)maleimide] (1 eq. peptide/10 eq. dye) in 30% CH3CN, 10 mM 

sodium phosphate buffer at pH 7.4, as described previously (Mattiuzzo et al., 2007). The labelled 

peptides were purified by reverse-phase high performance liquid chromatography (RP-HPLC) on a 

Phenomenex semi-preparative column (Jupiter™, C18, 5 µm, 300 Å, 100x10 mm) with a linear 

gradient from 10-30% of CH3CN in 40 min, and the correct sequence verified by ESI-MS 

[Tur1A(Cys33)-BY calculated MW=4489.8, measured MW=4489.9; Bac7(1-35)(Cys36)-BY 

calculated MW=4310.3, measured MW=4310.7]. After lyophilisation from 10 mM HCl, the 

concentration of labelled peptide stock solution was determined by spectrophotometric 

determination of BODIPY (ε504 = 79000 M-1 cm-1 in MeOH) (Invitrogen Molecular Probes 

Handbook, section 2.2).   

Tur1A fragments were synthesized by automated solid-phase peptide synthesis (SPPS) on a 

Whatman 50 cellulose membrane using a MultiPep RSI peptide synthesizer/pipetting robot 

(Intavis), the manual synthesis protocol was described in (Hilpert et al., 2007). Briefly, before robot 

synthesis, functionalisation of the cellulose membrane (10 cm x 15 cm) was carried out by 

overnight incubation in 0.2 M Fmoc-Gly-OH (Aldrich), 0.24 M N,N'-diisopropylcarbodiimide 

(DIC, Fluka) and 0.4 M N-methylimidazole (NMI, Aldrich) in dimethylformamide (DMF, VWR). 

Functionalisation was followed by Glycine deprotection in 20% piperidine (v/v, Acros Organics) in 

DMF (20 min + 10 min). Peptide synthesis at discrete spots addressed by the robot was performed 

using 9-fluorenyl-methoxycarbonyl/tert-butyl (Fmoc/tBu) strategy. Fmoc amino acids [Bachem, 

0.5 M stock solutions in N-methyl-2-pyrrolidone (NMP, VWR)] were pre-activated with equimolar 

quantities of 1-hydroxybenzotriazole hydrate (HOBt, Aldrich) and DIC (both 1.1 M stock solutions 

in NMP) and assembled in double coupling procedure (2x10 min) per cycle to ensure higher 

coupling efficiency at each amino acid position. Spotting volumes of 0.8 µl for the first cycle and 

0.9 µl for the following cycles were used. After amino acid coupling cycle, unreacted residues were 

capped applying a 5 min acetic anhydride treatment (5% v/v in DMF, Fluka). Subsequent Fmoc 

cleavage was achieved using 20% (v/v) piperidine in DMF (2x 5 min). Final cleavage of amino acid 

side-chain protecting groups was carried out with 25 ml of 90% TFA (Acros Organics), 3% tri-

isopropylsilane (TIPS, Acros Organics) and 2% water in dichloromethane (DCM, Acros Organics) 

for 30 min followed by a 120 min treatment with 25 ml of 50% TFA, 3% TIPS and 2% water in 

DCM. Peptide amides were cleaved from the solid support by incubating the membrane in a 

saturated ammonia gas atmosphere overnight. An internally standardised control peptide, and 
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individually chosen peptides from that synthesis, were used to determine SPOT synthesis yield and 

quality. Individual SPOTs were punched-out with a one-hole-puncher, transferred into a sterile 96-

well round-bottomed polypropylene non-treated microtiter plate and dissolved overnight in 200 µl 

of autoclaved water. Peptide solution were quantified with a NanoDrop ND1000 spectrophotometry 

at 280 nm. Dissolved peptides were further analysed by analytical RP-HPLC on a Shim-pack VP-

ODS column (120 Å, 150x4.6 mm, Shimadzu) using a LC2010AHT system (Shimadzu). The 

binary solvent system contained 0.1% (v/v) TFA in H2O (HPLC-grade, VWR, solvent A) and 0.1% 

(v/v) TFA in acetonitrile (HPLC-grade, VWR, solvent B). A linear gradient of 5% to 70% solv B in 

32.5 min with an initial 3 min isocratic equilibration was used at a flow rate of 1 ml/min. The purity 

of the crude control peptides were between 37% and 68%. The remaining spots were then excised 

from the membrane, placed in microtiter plates and the cleaved peptides resuspended overnight in 

200 l sterile water, lyophilised and re-lyophilized from 200 l 10 mM HCl solution to remove 

TFA. The final stock solutions, obtained by resuspending the pellets in 50 µl of sterile water, were 

quantified spectrophotometrically using a Nanodrop 2000 as described above.  

 

Minimum inhibitory concentration determination 

Bacterial cultures were grown overnight to the stationary phase, diluted in fresh Mueller-

Hinton broth (MHB) and incubated to an OD600 ≈ 0.3 at 37°C under agitation (if required, in the 

presence of antibiotic) and diluted to 5 × 105 colony forming units (CFU)/ml in medium. 

Antimicrobial agents, diluted in MHB to a concentration of 128 µM, were added to the first 

wells of a round-bottom microtiter plate and then serially two-fold diluted with MHB into 

successive wells in a final volume of 50 µl. Subsequently, 50 μl of the bacterial suspension was 

added to each well, to a final load of 2.5 × 104 CFU/well and reducing by half the antibacterial 

compound concentration in each well. The plate was sealed to minimise evaporation and 

incubated overnight at 37°C. The MIC was calculated as the lowest compound concentration 

inhibiting visible bacterial growth.  

 

Flow cytometry  

The integrity of bacterial cell membranes was assessed by measuring the Propidium iodide (PI) 

uptake via flow cytometric assays, performed with a Cytomics FC 500 (Beckman-Coulter), 

acquiring 104 bacterial cells for each measurement. as described previously (Benincasa et al., 2009; 

Guida et al., 2015). Briefly, mid-log phase bacterial cultures, diluted to 1 × 106 CFU/ml in MHB, 

were incubated at 37°C for different times with increasing concentrations of peptides, in the 
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presence of propidium iodide (PI) at a final concentration of 10 μg/ml. Membrane damage was 

assessed in terms of the % of PI positive cells. For evaluation of peptide uptake, bacterial cultures in 

mid-log phase were diluted to 1 × 106 CFU/ml in MHB and incubated at 37°C for different times 

with different concentrations of BOPIDY (BY) fluorescently marked peptides [Tur1A(Cys)33-BY or 

Bac7(1-35)(Cys)36-BY] and analysed as described previously (Benincasa et al., 2009; Guida et al., 

2015)). Analyses were carried out after extensive washing only, or after washing and addition of 

Trypan Blue (TB) quenching the fluorescence of the peptide bound to the bacterial surface 

(Benincasa et al., 2009). Data analysis was performed with the FCS Express3 software (De Novo 

Software). Data are expressed as the mean ± standard deviation (S.D.).  

 

In vitro transcription/translation and translation in E. coli 

For in vitro transcription/translation assays, the RTSTM 100 Escherichia coli HY (Biotech Rabbit) 

was used for testing all samples. 0.1 µl of RNase inhibitor (RNasin®, 20-40 U/µl, Promega) and 

1 µl of peptide solution were added to 5 µl of RTS reaction mix (containing either mRNA or DNA 

template encoding the Photinus pyralis luciferase protein), with a final peptide concentration of 

1 μM, 10 μM or 100 μM as required. After incubation for 1 h at 30°C with shaking (750 rpm), 2 µl 

of each reaction were mixed with 8 µl kanamycin (50 mg/ml) to stop the process and 40 μl of 

Luciferase assay substrate solution (Promega) and then transferred into a white 96-well, flat bottom 

microtiter plate (Greiner). In positive controls, nuclease-free water was added instead of peptide 

solution. Negative controls contained nuclease-free water instead of both the peptide solution and 

mRNA/DNA template. The activity of the reporter protein was assessed and quantified using a 

Tecan Infinite M1000 plate reader. Relative values were calculated as a percentage of the positive 

control. The in vitro translation assay was performed using the PURExpress System (NEB). 

Reactions were performed according to the manual at 37°C for up to half an hour. Luminescence 

was determined as described above for the in vitro transcription/translation assay 

 

In vitro translation on Thermus thermophilus ribosomes 

The in vitro translation on T. thermophilus ribosomes was performed using an S12 lysate, prepared 

based on protocol described for E. coli (Kim et al., 2006) Huter et al., 2017) with minor variations. 

T. thermophilus strain HB8 (DSM-579) were grown in 1 x YT medium to an OD600 ≈ 0.6 at 70°C, 

centrifuged at 5000 x g at 4°C for 15’ and washed three times with Buffer A (10 mM Tris-acetate 

buffer (pH 8.2), 14 mM MgOAc, 60 mM KOAc, 1 mM DTT, 6 mM -mercaptoethanol). The cell 
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pellet was flash-frozen in liquid nitrogen and stored at -80°C until use. The pellet was thawed, 

resuspended in Buffer A and cells were lysed by three passages through an M-110L Microfluidizer 

Processor (Microfluidics) at >15000 psi. Cell debris was removed by centrifuging at 12000 x g for 

10 min at 4°C. The cleared supernatant was aliquoted, flash frozen in liquid nitrogen and stored at -

80°C. To perform the in vitro translation, 6.75 µL of cell lysate and 1 µL of peptide solution (to a 

final concentration of 1 µM, 10 µM or 100 µM) were added to a reaction mixture consisting of 240 

mM HEPES-KOH, pH 8.0, 0.6 mM PEG8000, 60 mM glucose, 4.4 µg tRNA mix, 1.2 mM ATP, 

1.2 mM GTP, 0.85 µg folinic acid, 1 mM DTT, 90 mM potassium glutamate; 80 mM ammonium 

acetate, 20 mM K2HPO4, 1.8 mM of each amino acid, 12.6 mM magnesium acetate and 200 ng of 

custom made firefly luciferase mRNA, to a final volume of 25 µL. Samples were incubated at 30°C 

(due to heat sensitivity of the reporter Fluc protein) for 1 h with shaking (550 rpm) and 8 μL from 

each sample were then mixed with 2 μL kanamycin (50 mg/ml) to block further translation, and 40 

μL of Luciferase assay substrate (Promega) in the wells of a white 96-well flat bottom microtiter 

plate (Greiner). The luminescence was measured using a Tecan Infinite M1000 plate reader. 

Relative values were determined with respect to positive control in the absence of peptide and 

defined as 100%. 

 

Toe-printing assay 

For toe-printing assays, the PURExpress in vitro transcription/translation kit (NEB) was used with 

an H-ns-PPP template, comprising the N-terminal 1-36 nucleotides of E. coli hns (Uniprot-

P0ACF8) gene but modified such that residues 20-22 are replaced by three proline residues (5’-

ATTAATTACGACTCACTATAGGGATATAAGGAGGAAAACATATGAGCGAAGCACTTAA

AATTCTGAACAACCTGCGTACTCTTCGTGCGCAGGCAATTCCGCCGCCGCTTGAAACG

CTGGAAGAAATGCTGGAAAAATTAGAAGTTGTTGTTTAAGTGATAGAATTCTATCGTT

AATAAGCAAAATTCATTATAACC-3’, start-, PRO3- and stop-codons respectively are in 

underlined bold). Reactions were set up by mixing 2 μL Solution A, 1.5 μL Solution B, 1 μL (0.5 

pmol) of H-ns-PPP template 0.1 μL of RNasin® (20-40 U/µl, Promega), 1 μL of peptide (to a final 

concentration of 1 μM, 10 μM or 100 μM) or 1 μL of antibiotic (to a final concentration of 100 μM 

for thiostrepton or 50 μM for edeine) in PCR tubes. The control contained only nuclease-free water 

instead of peptide or antibiotic. Samples were incubated for 15 min at 37°C for 

transcription/translation, under agitation (550 rpm), cooled on ice for 5 min and then equilibrated at 

RT for 2 min. 1 μL (2 pmol) of Alexa647-labelled NV-1 toe-print primer (5’- 

GGTTATAATGAATTTTGCTTATTAAC-3’) was then added to each reaction and samples were 
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incubated for 5 min at 37°C. For the reverse transcription, 0.5 μl of AMV reverse transcriptase 

(NEB), 0.1 μl dNTP mix (10 mM) and 0.4 μl Pure System Buffer were added to each reaction and 

samples were incubated for 20 min at 37°C. To stop the reaction and degrade RNA, 1 μl of 5M 

NaOH was added to each reaction and samples were incubated for 15 min at 37°C. After 

neutralizing with 0.7 μl HCl 25% (v/v) and 20 μl of toe-print resuspension buffer, samples were 

purified using the QIAquick Nucleotide Removal Kit (Qiagen), adding to samples 200 μl of PN1 

buffer and following the supplier’s instructions. DNA was eluted using 80 μl of RNase-free water, 

dried in a vacuum centrifuge and re-suspended in 4 μl of formamide-loading dye. Samples were 

heated for 5 min at 95°C, then separated by electrophoresis on a 6% polyacrylamide gel (19:1 

acrylamide: bisacrylamide) containing 7 M urea, at 2000 V. Gels were scanned using a Typhoon 

FLA9500 imaging system (GE Healthcare). Sequencing was carried out by mixing 1 μL (0.5-0.8 

pmol) of DNA template, 5 μL of Sequencing buffer, 9 μL of nuclease-free water, 1 μL (10 pmol) of 

Alexa647-labelled NV-1 toe-print primer and 1 μL of Hemo Klen Taq polymerase. To 4 μL 

aliquots of this mix were then respectively added 2 μL of ddATP, ddTTP, ddGTP or ddCTP, and 

the mixtures incubated in a thermocycler [2 sec 95°C, 30 x (30 sec 95°C, 30 sec 42°C, 1 min 70°C), 

1 min 70°C, 8°C storage]. Samples were then heated and loaded on a gel as indicated for the toe-

print assay.  

 

Purification of T. thermophilus 70S ribosomes 

T. thermophilus 70S ribosomes were purified as described previously (Selmer et al., 2006) and 

resuspended in buffer containing 5 mM HEPES-KOH, pH 7.5, 50 mM KCl, 10 mM NH4Cl, and 10 

mM Mg(CH3COO)2 to yield a final concentration of 26-32 mg/mL. For storage, T. thermophilus 

70S ribosomes were flash frozen in liquid nitrogen and kept at -80 °C.  

 

Purification of YfiA 

YfiA was expressed from a pGS21A expression vector in BL21 Star RARE cells as described 

previously (Polikanov et al., 2014). The culture was grown at 37°C (220 rpm) to an OD600 of 0.6 

and induced with 1 mM IPTG for 4 hours. Cells were harvested and lysed with a French press three 

times at 15000 psi in 20 mM Tris-HCl pH 7.6, 100 mM NH4Cl, 10 mM MgCl2 and 1 mM -

mercaptoethanol. The lysate was centrifuged at 50000 x g for 1 hour and the YfiA protein was 

purified on a Ni-NTA matrix using a linear gradient from 0-1 M imidazole in 20 mM Tris-HCl pH 

7.6, 100 mM NH4Cl, 10 mM MgCl2 and 1 mM -mercaptoethanol. Following size exclusion 
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chromatography using a Superdex 75 column (GE healthcare) in 20 mM Tris-HCl pH 7.6, 100 mM 

NH4Cl, 10 mM MgCl2, 1 mM -mercaptoethanol, YfiA was concentrated to 87 mg/mL and flash 

frozen in liquid nitrogen. 

 

T. thermophilus 70S-YfiA-Tur1A Complex formation 

A ternary complex was formed by first incubating a mixture of 5 µM T. thermophilus 70S 

ribosomes and 50 µM YfiA at 37°C for 10 min, followed by the addition of 50 µM Tur1A and 

further incubation at room temperature for at least 15 min. The complex was then centrifuged 

briefly before use for crystallization. The final sample buffer prior to crystallization contained 5 

mM HEPES-KOH, pH 7.6, 50 mM KCl, 10 mM NH4Cl and 10 mM Mg(CH3COO)2.  

 

Crystallization of the T. thermophilus 70S-YfiA-Tur1A complex 

Published conditions were used as a starting point for screening crystallization conditions by vapor 

diffusion in sitting-drop trays at 20°C (Polikanov et al., 2014; Selmer et al., 2006). Crystallization 

drops consisted of 3 µl of ternary T. thermophilus 70S-YfiA-Tur1A complex and 3-4 µl of reservoir 

solution containing 100 mM Tris-HCl, pH 7.6, 2.9% (v/v) PEG 20,000, 7-10% (v/v) 2-methyl-2,4-

pentanediol (MPD) and 175 mM L-arginine. Crystals appeared within 2-3 days and grew to approx. 

1000 × 100 × 100 µm within 7-8 days. For cryoprotection, the concentration of MPD was increased 

in a stepwise manner to yield a final concentration of 40% (v/v). The ionic composition during 

cryoprotection was 100 mM Tris-HCl, pH 7.6, 2.9% (v/v) PEG 20000, 50 mM KCl, 10 mM NH4Cl 

and 10 mM Mg(CH3COO)2. Back soaking of the peptide was prevented by including 50 M Tur1A 

in the final cryoprotection solution. Following overnight incubation at 20°C, crystals were flash 

frozen in a nitrogen cryostream at 90 K for subsequent data collection.  

 

Data collection and processing 

Diffraction data were collected at beamline ID23-1 of the European Synchrotron Radiation Facility 

(ESRF) in Grenoble, France. A complete dataset was obtained by merging 0.1° oscillation data 

collected at 100 K with a wavelength of 0.97625 Å from multiple regions of the same crystal. Initial 

data processing, including integration and scaling, was performed with XDS (Kabsch, 2010). The 

data collected could be indexed in the P212121 space group, with unit-cell dimensions around 210 

Å × 450 Å × 625 Å and an asymmetric unit containing two copies of the T. thermophilus 70S 

ribosome. 
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Model building and refinement 

A high-resolution structure of the apo T. thermophilus 70S ribosome crystallized in the same space 

group and similar unit cell as the crystal used in this study (PDB 4Y4O) was used directly for rigid 

body refinement in Phenix (Adams et al., 2010). Rigid bodies comprised four domains from the 

small 30S subunit (head, body, spur and helix h44) and three domains from the large 50S subunit 

(body, L1 stalk and the N-terminus of ribosomal protein L9). Restrained crystallographic 

refinement consisting of multiple cycles of positional and individual B-factor refinement was then 

carried out using the Phenix package. Non-crystallographic symmetry restraints between the two 

copies of the T. thermophilus 70S ribosome in the asymmetric unit were also applied during 

refinement. After confirming that density corresponding to the Tur1A peptide was visible inside the 

exit tunnel in a minimally biased Fo−Fc map, a model of Tur1A was built manually in Coot (Emsley 

and Cowtan, 2004). The sidechains of Arg1 and Arg4 of Tur1A showed no noticeable density in the 

original Fo-Fc map or in the 2Fo-Fc map obtained after complete refinement of the structure and 

therefore were not included in the final model. Further refinement and model validation were 

carried out in Phenix and on the MolProbity server (Chen et al., 2010), respectively. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

In vitro data analysis 

Data are presented as mean values +/- the standard deviation (SD) calculated from  independent 

experiments using the software Excel (Microsoft). The number of experimental and technical 

replicates for each experiment is also described in each individual figure legend. The statistical 

significance has been calculated using the Student-Newman-Keuls Multiple Comparisons Test, 

ANOVA (*=p < 0.05; **= p < 0.01), with the software GraphPad Instat 3. For flow-cytometry 

experiments, data analysis was performed with the FCS Express3 software (De Novo Software). 

 

DATA AND SOFTWARE AVAILABILITY 

Accession numbers 

The atomic coordinates for the Tur1A-70S complex have been deposited in the PDB with the 

accession number 6FKR. 
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5’-UTR 3’-UTRExon 1 Exon 2 Exon 3 Exon 4

Cathelin-like domain Exon 4Signal sequence

Peptide  Organism  Sequence  alignment  %Ida
 Charge 

PR-39 S. scrofa RR-RPRPPYLPRPRPPPFFPPRL---PPRIPPGFPPRFPPRFP 

RRIRPRPPRLPRPRPRPLPFPRPGPRPIPRPLPFP-------- 
 

RRIRFRPPYLPRPGRRPRFPPPF---PIPRIPRIP-------- 
 

RRIPFWPPNWPGPWLPPWSPPDF---RIPRILRKR-------- 

----------ILPWKWPWWPWRR-------------------- 

58 (32) +10 

Bac7(1-35) B. taurus 59 (40) +10 

Tur1A T. truncatus  100 (53) +10 

Tur1B T. truncatus  53 (100) +6 

Indolicidin B. taurus 23 (38) +3 
 

Figure 1
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REAGENT or  RESOURCE SOURCE IDENTIFIER 

Bacterial Strains 

Escherichia coli K12 BW25115 
Keio collection (Baba et al., 

2006) 
N/A 

Escherichia coli K12 BW25113ΔsbmA 
Keio collection (Baba et al., 

2006) 

Strain number 

JW0368-1 

Escherichia coli K12 BW25113ΔyjiL 
Keio collection (Baba et al., 

2006) 

Strain number 

JW5785-1 

Escherichia coli K12 BW25113ΔyjiL/ΔsbmA (Krizsan et al., 2015) N/A 

Escherichia coli N281 (Wittmann et al., 1973) N/A 

Escherichia coli N282 (Wittmann et al., 1973) N/A 

Escherichia coli AB301 (Bouck and Adelberg, 1970) N/A 

Escherichia coli SQ110ΔtolC (Florin et al., 2017) N/A 

Escherichia coli SQ110ΔtolC A2059C (Florin et al., 2017) N/A 

Escherichia coli SQ110ΔtolC A2059G (Florin et al., 2017) N/A 

Escherichia coli SQ110ΔtolC A2305C (Florin et al., 2017) N/A 

Thermus thermophilus HB8 DSMZ Catalog # DSM-579 

BL21 Star Thermofisher Catalog # C601003 

Biological Samples   

Tursiops truncates muscle tissue 
Mediterranean Marine 

Mammal Tissue Bank 
N/A 

tRNA from Escherichia coli MRE600 Roche 
Catalog # 

10109550001 

Thermus thermophilus 70S ribosomes This study N/A 

Chemicals, Peptides, and Recombinant Proteins 

YfiA protein This study N/A 

Tur1A This study N/A 

Tur1B This study N/A 

Tur1A(Cys33)-BY This study N/A 

Bac7(Cys36)-BY This study N/A 

Myticalin A5 (Leoni et al., 2017) N/A 

Tur1A(1-16) This study N/A 

Tur1A(8-24) This study N/A 

Tur1A(16-32) This study N/A 

Kanamycin Sigma Catalog # 60615 

Erythromycin Sigma Catalog # E6376 

Spectinomycin Sigma Catalog # S4014 

Thiostrepton Sigma Catalog # T8902 

Edeine N/A N/A 

Fmoc-Arg(Pbf)-NovaSyn® TGA Novabiochem Catalog # 856042 

Trifluoroacetic acid (TFA) Sigma Catalog # 91700 

3,6-dioxa-1,8-octanedithiol  (DODT) Sigma Catalog # 465178 

Thioanisole Sigma Catalog # 88470 

Triisopropylsilane (TIPS) Sigma Catalog # 233781 

N,N'-diisopropylcarbodiimide (DIC) Fluca N/A 

N-methylimidazole VWR 
Catalog # 

AAA12575-22 

Dimethylformamide (DMF) VWR 
Catalog # 

BDH1117-4LG 

Piperidine Acros Organics Catalog # P/3520 

BDP FL maleimide Lumiprobe Catalog # 21480 

N-Methyl-2-Pyrrolidinone VWR 
Catalog # CA71007-

814 
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1-hydroxybenzotriazole hydrate (hOBt) Sigma Catalog # 54802 

Prpidium iodide Sigma Catalog # P4170 

RNasin Promega Catalog # N2511 

rNTPs Sigma 
Catalog # 27-2025-

01 

PEG-8000 Sigma Catalog # 1546605 

AMV reverse transcriptase NEB Catalog # M0277 

Hemo Klen Taq NEB Catalog # M0332 

ddNTPs Sigma 
Catalog # GE27-

2045-01 

2-methyl-2,4-pentanediol (MPD) Sigma 

Catalog # 

00000000820819100

0 

Critical Commercial Assays 

E.Z.N.A.® Mollusc DNA Kit Omega Bio-Tek Catalog # D3373 

Perfectprep® Gel Clean-up Kit Eppendorf N/A 

RTSTM 100 Escherichia coli HY Biotech Rabbit 
Catalog # 

BR1400101 

Luciferase Assay System Promega Catalog # E1500 

PURExpress in vitro transcription/translation kit NEB Catalog # E6800S 

QIAquick Nucleotide Removal Kit Qiagen Catalog # 28304 

Deposited Data 

The crystal structure of the Tur1A-70S complex This study 

PDB ID 6FKR 

(https://www.rcsb.or

g/structure/6fkr) 

Oligonucleotides 

Tur1A FW 5’-CTTGTGACCCTGGGA-3’ Eurofins Genomics N/A 

Tur1A RV 5’-ATAACTTCCTCCAGGCTTCA-

3’ 
Eurofins Genomics N/A 

NV-1 

5’GGTTATAATGAATTTTGCTTATTAAC-3’ 
Thermo-Fisher N/A 

Recombinant DNA 

H-ns-PPP This study N/A 
pGS21A (Polikanov et al., 2014) N/A 

2XermCL_S10K (Arenz et al., 2016) N/A 

Software and Algorithms 

Genomics Workbench 5.1 (CLCbio) QIAGEN bioinformatics 

https://www.qiagenb

ioinformatics.com/pr

oducts/clc-

genomics-

workbench/ 

FCS Express3 software De Novo Software 

https://www.denovo

software.com/site/D

ownloadLanding.sht

ml 

XDS (Kabsch, 2010) 

http://xds.mpimf-

heidelberg.mpg.de/ht

ml_doc/downloading

.html 

Phenix (Adams et al., 2010) 

https://www.phenix-

online.org/download

/ 

http://www.sigmaaldrich.com/catalog/product/usp/1546605
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Coot (Emsley and Cowtan, 2004) 

https://www2.mrc-

lmb.cam.ac.uk/perso

nal/pemsley/coot/ 

Other 

Hitachi 3130 Genetic Analyzer Applied Biosystems N/A 

Biotage Initiator+ Alstra Biotage Catalog # 356017 

Kinetex, C18, 2.6 μm, 100 Å, 50x4,6 mm Phenomenex 
Catalog # 00A-4462-

E0 00 

Esquire 4000 Bruker Daltonics N/A 

NanoDrop2000 Thermo Fisher Scientific Catalog # ND-2000 

Jupiter™, C18, 5 µm, 300 Å, 100x10 mm Phenomenex 
Catalog # 00G-4053-

E0 

MultiPep RSi Intavis N/A 

Shim-pack VP-ODS column (120 Å, 

150x4.6 mm,) 
Shimadzu N/A 

Cytomics FC 500 Beckman-Coulter N/A 

Tecan Infinite M1000 Tecan N/A 

M-110L Microfluidizer Processor Microfluidics N/A 

Typhoon FLA9500 GE Healthcare Catalog # 29187191 

Protino Ni-NTA agarose beads Macherey-Nagel Catalog # 745400 

Superdex HiLoad S75 16/600 GE Healthcare Catalog # 28989333 
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Figure S1, related to Figure 2. Flow-cytometry evaluation of Tur1A membrane 

permeabilization on BW25113 E. coli cells. Propidium iodide-uptake in E. coli BW25113 cells 

after 15 min treatment with 1 µM and 8 µM Tur1A or 1 µM and 8 µM µM Bac7(1-35). Error bars 

represent the standard deviation calculated on three and five independent experiments performed for 

both peptides at 1 µM and 8 µM, respectively. 10
4 

cells (events) were read for each measurement. 
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2 
 

 

Figure S2, related to Figure 4. Toe-print evaluation of Tur1A and Tur1B effect on ribosomal 

function, at increasing concentrations. (A,B) Fluorescence scan of a polyacrylamide gel analysis 

of toe-printing reactions performed in the absence (-) or presence of 100 µM thiostrepton (ThS), 1-

100 µM Tur1A and Tur1B, 50 µM edeine (Ede) and in (B) also of 1-100 µM Myticalin A5. Toe-

print signals corresponding to ribosomes stalled at the AUG start codon or at the polyproline stretch 

(PPP) are indicated with arrows, as is the reverse transcription product of the full-length mRNA 

(FL). Sequencing lanes (C, U, A and G in (A) and C, A in (B)) are included for reference.  
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Table S1, related to Figure 6. Data collection and refinement statistics  

 Tur1A-70S complex 

Data collection  

Space group P212121 

Cell dimensions  

    a, b, c (Å) 209.68, 449.24, 621.91 

    α, β γ () 90.00, 90.00, 90.00 

Resolution (Å) 49.8(3.3) 

Rsym or Rmerge 67.8(206.1) 

I / σI 5.21(1.01) 

Completeness (%) 98.5(98.9) 

Redundancy 7.0(7.2) 

  

Refinement  

Resolution (Å) 3.3 

No. reflections 858,052 

Rwork / Rfree 0.19 / 0.25 

No. atoms  

    Protein/nucleic acid 289,856 

    Ligand/ion 2,702 

    Water 0 

B-factors  

    Protein/nucleic acid 42.5 

R.m.s. deviations  

    Bond lengths (Å) 0.03 

    Bond angles () 2.05 
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Table S2, related to Figure 6. Sensitivity of erythromycin resistant E. coli strains to PrAMPs.  

Data represent the average and the standard deviation (±) calculated on three independent 

experiments (n=3). *Ery stands for erythromycin. 

 

 

 MIC (µM) on E. coli strains 

 
N281 

(L4) 

N282 

(L22) 

AB301 

(wt) 

SQ110ΔtolC 

(wt) 

SQ110ΔtolC  

A2059C 

SQ110ΔtolC  

A2059G 

SQ110ΔtolC  

A2503C 

Tur1A 1 1 1 0.5 0.5 0.5 0.5 

Tur1B 8 
10.7 

(±4.6) 
8 8 8 8 

6.7 

(±2.3) 

Bac7 

(1-35) 

2.7 

(±1.1) 

2.7 

(±1.3) 
4 1 1 1 1 

Api137 8.0 >32 
2.3 

(±1.3) 

0.8 

(±0.3) 
>32 2 >32 

Ery* 1024 1024 
112 

(±32) 
2,0 2048 2048 2048 
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Supplementary Information consists of Figures S1-S2 and Tables S1-S2 

 

Figure S1 Flow-cytometry evaluation of Tur1A membrane permeabilization on BW25113 E. coli 

cells.  
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