
For Peer Review
 

 

 

 

 

 

Improved Liver R2* Mapping by Pixel-wise Curve Fitting 

with Adaptive Neighborhood Regularization 
 

 

Journal: Magnetic Resonance in Medicine 

Manuscript ID MRM-17-18015.R1 

Wiley - Manuscript type: Full Paper 

Date Submitted by the Author: n/a 

Complete List of Authors: Wang, Changqing; University of Electronic Science and Technology of 
China, School of Automation Engineering; Southern Medical University, 
School of Biomedical Engineering; University of Wisconsin-Madison, 
Department of Radiology 
Zhang, Xinyuan; Southern Medical University, School of Biomedical 
Engineering 

Liu, Xiaoyun; University of Electronic Science and Technology of China, 
School of Automation Engineering 
He, Taigang; St George's University of London, Cardiovascular Science 
Research Centre; Royal Brompton Hospital, CMR Unit 
Chen, Wufan; University of Electronic Science and Technology of China, 
School of Automation Engineering; Southern Medical University, School of 
Biomedical Engineering 
Feng, Qianjin; Southern Medical University, School of Biomedical 
Engineering 
Feng, Yanqiu; Southern Medical University, School of Biomedical 
Engineering 

Research Type: 
T2* < Relaxation techniques < Technique Development < Technical 

Research 

Research Focus: Liver < Abdominal/Pelvic 

  

 

 

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine



For Peer Review

  

Improved Liver R2* Mapping by Pixel-wise Curve Fitting with Adaptive 

Neighborhood Regularization 

Changqing Wang
1, 2, 3

, Xinyuan Zhang
2
, Xiaoyun Liu

1
, Taigang He

4, 5
, Wufan Chen

1, 2
, 

Qianjin Feng
2
, and Yanqiu Feng

2
* 

1. School of Automation Engineering, University of Electronic Science and 

Technology of China, Chengdu, China 

2. School of Biomedical Engineering, Southern Medical University, Guangzhou, 

China 

3. Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA 

4. Cardiovascular Sciences Research Centre, St George’s University of London, 

London, United Kingdom  

5. Royal Brompton Hospital and Imperial College, London, United Kingdom 

 

Corresponding author: 

Dr. Yanqiu Feng       Email: foree@163.com 

School of Biomedical Engineering, 

Southern Medical University, 

Guangzhou, China 

Tel. +86 20 6164 8271 

Fax +86 20 6164 8274 

Running title: R2* Mapping with Adaptive Neighborhood Information 

The word count: 3915 

Key words: MR relaxometry; hepatic iron concentration; non-central chi noise; 

adaptive neighborhood regularization; R2* mapping 

 

Page 1 of 48

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

ABSTRACT 

Purpose: To improve liver R2* mapping by incorporating adaptive neighborhood 

regularization into pixel-wise curve fitting.  

Methods: MRI R2* mapping remains challenging due to the serial images with low 

signal-to-noise ratio (SNR). In this study, we proposed to exploit the neighboring 

pixels as regularization terms and adaptively determine the regularization parameters 

according to the inter-pixel signal similarity. The proposed algorithm, termed as 

pixel-wise curve fitting with adaptive neighborhood regularization (PCANR), was 

compared with the conventional non-linear least squares (NLS) and non-local means 

filter-based NLS (NLM-NLS) algorithms on simulated, phantom, and in vivo data.  

Results: Visually, the PCANR algorithm generates R2* maps with significantly 

reduced noise and well-preserved tiny structures. Quantitatively, the PCANR 

algorithm produces R2* maps with lower root mean square errors at varying R2* 

values and SNR levels compared with the NLS and NLM-NLS algorithms. For the 

high R2* values under low SNR levels, the PCANR algorithm outperforms the NLS 

and NLM-NLS algorithms in the accuracy and precision, in terms of mean and 

standard deviation of R2* measurements in selected region of interest respectively.  

Conclusions: The PCANR algorithm can reduce the effect of noise on liver R2* 

mapping, and the improved measurement precision will benefit the assessment of 

hepatic iron in clinical practice.  

Key words: MR relaxometry; hepatic iron concentration; non-central chi noise; 

adaptive neighborhood regularization; R2* mapping
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INTRODUCTION 

Chronic blood transfusions might induce excessive iron deposition in patients with 

transfusion-dependent anemia, such as thalassemia major and sickle cell disease. A 

timely and accurate iron chelation therapy is needed to maintain the body iron at safe 

levels while minimizing the risks of toxicity from iron chelation (1). Considering that 

excess iron tends to accumulate in the liver, hepatic iron concentration (HIC) is 

commonly used as a surrogate for the total body iron loading (2,3). Percutaneous liver 

biopsy is the current gold standard for the evaluation of HIC. However, liver biopsy is 

an invasive, painful, and expensive procedure with 1%−4% risk of potentially serious 

complications (4,5). In addition, notable deviations might be incurred from the 

sampling errors caused by the sample size and heterogeneous distribution of hepatic 

iron (6-9). These limitations can be avoided by applying MRI-based iron 

quantification methods (10,11). The transverse relaxation time (T2) and effective 

transverse relaxation time (T2*) techniques have emerged as reliable alternatives, and 

the relationships between R2 (1/T2) or R2* (1/T2*) and biopsied HIC have been well 

described (12,13).  

 

MRI R2* technique is becoming popular in clinical practice partly due to the short 

imaging time. For the liver R2* measurement, a representative value is typically 

obtained to assess the liver iron loading. Compared with the R2* measurement based 

on the expectations of the measured signals within a region of interest (ROI), the R2* 

mapping by pixel-wise curve fitting has the advantage of depicting the spatial 

distribution of HIC (12-15), which might reveal physiologically relevant information. 

However, R2* mapping remains challenging due to the low signal-to-noise ratio (SNR) 

serial images, especially in scenarios of high HIC. Multichannel array coils are 

usually applied, and MRI data are reconstructed by root-sum-square operation to 

obtain high SNR serial images. In such scenarios, the noise is assumed to follow a 

non-central chi distribution (16). Several noise-corrected curve fitting models were 

developed to address the noise issue (17,18). We have recently demonstrated that 
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fitting the signal to its first and second moments in the presence of non-central chi 

noise (M
1
NCM and M

2
NCM) are preferable for the ROI-based R2* estimation. The 

R2* map generated by pixel-wise curve fitting using the M
1
NCM model-based 

non-linear least squares (NLS) algorithm is still noisy for severe iron-overloaded liver 

(19).  

 

Recently, exploiting neighborhood similarity with low-rank and/or sparsity constraints 

is promising in accurately estimating parameter maps from undersampled MRI data 

(20-22). With regard to R2* mapping, a neighborhood exploiting approach, which 

combines the non-local means (NLM) denoising filter (23) and the M
2
NCM model, 

was shown to effectively reduce the effect of noise on quantified parameter maps (24). 

The preliminary results of combining the NLM filter and the M
1
NCM model were 

also presented in an early conference paper (25). However, in such two-step 

approaches, the error induced in the pre-filtering step might propagate to the 

following curve fitting step.  

 

To further improve the performance of noise suppression in R2* mapping, we 

proposed a novel method termed as pixel-wise curve fitting with adaptive 

neighborhood regularization (PCANR). In this algorithm, the neighboring pixels were 

exploited as regularization terms, and the regularization parameters were adaptively 

determined according to the inter-pixel signal similarity. Simulation, phantom, and in 

vivo experiments were conducted to evaluate the performance of the proposed method. 

The results of the proposed method were compared with those using the conventional 

NLS and two-step NLM-NLS algorithms.  

  

METHODS 

R2* Quantification 

By using the M
1
NCM model, R2* can be measured with high accuracy and precision, 

which is comparable to the best achievable precision defined by the Cramer-Rao 
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lower bound (17,18). The M
1
NCM model was therefore adopted for the NLS curve 

fitting in this study. As shown in (18), the first moment, i.e., the expectation of 

measured signal ��, in the presence of non-central chi noise is formulated as: 

����� = ��	
� ���
����‼��
�����
����! 		 �� � �− �� ; ��� ; − � �√�	!"#�$       [1] 

where �� is the standard deviation (SD) of Gaussian white noise in each channel and 

is estimated from the background area (18); ��� denotes the number of receiver coils; � is the monoexponential decay signal free of noise (� = �% ∙ exp�−*� ∙ +2∗�, where �% denotes the signal intensity at zero TE);	‼ is the double factorial and �� � is the 

confluent hypergeometric function. Given that the direct calculation of the confluent 

hypergeometric function is highly time consuming, the approximation by a rapid 

look-up table method was used for fast realization as previously described (19).  

 

Conventional NLS Algorithm 

In the R2* mapping, the decay signals at each pixel were fitted to derive the 

corresponding R2* value by minimizing the following objective function: 

 ./0�1,��∗3�45 − 6��%, +2∗�3��, ∀89 ∈ ;		 [2] 

where �45 is a vector representing the intensities of decay signals at target pixel 89 
in image domain ;, and 6�∙� is the curve fitting model, which was selected as 

M
1
NCM model (right-hand side of Eq. [1]) in this study. A nonlinear 

Levenberg-Marquardt optimization was implemented to solve Eq. [2] (26,27).  

 

NLM-NLS Algorithm 

As described in (24,25), the NLM-NLS algorithm filters the serial images using the 

NLM filter (23) and subsequently fits the filtered signals pixel-wisely using Eq. [2] to 

obtain the R2* map. The serial images were separately filtered, and the filtered output 
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at each target pixel was the weighted average of all the pixels in the search window. 

The weight was adaptively calculated based on the Gaussian-weighted Euclidean 

distance between the neighborhood patches of the target pixel and its neighboring 

pixel; large weights were assigned to the pixels with similar neighboring patches. 

Given the filtered images, R2* map can be obtained by the conventional NLS 

algorithm (Eq. [2]). 

 

PCANR Algorithm 

Pixels with similar decay signals can be assumed to have similar R2* values, and thus 

can be simultaneously fitted to reduce the effect of noise. The PCANR algorithm was 

given by minimizing the following objective function: 

 ./0�1,��∗3�45 − 6��%, +2∗�3��
+ = >�89 , 8?� @�4A − 6��%, +2∗�@�� , ∀89 ∈ ;4A∈B5,?C9 		     

[3] 

where the first part is the fidelity term, and the second part is the regularization term. 8?  is the neighboring pixel in search window D9 	 around target pixel 89 , the 

regularization parameter >�89 , 8?� was adaptively calculated as follows: 

 >E89, 8?F = expG−@�45 − �4A@��ℎ� I,					∀	8? ∈ D9 	J0K	8? ≠ 89 ,	 [4] 

where parameter ℎ	controls the degree of smoothing. This parameter was related to 

the noise level and was determined by ℎ = M��, where M is a tuning parameter. 

During implementation, >�89 , 8?�  was normalized by its maximum. Every 

neighboring pixel 8? ∈ D9 contributed to the R2* estimation for the target pixel 89. 
Its contribution was controlled by the regularization parameter >�89 , 8?�, which can 

be calculated based on the Euclidean distance (‖∙‖� in Eq. [4]). The regularization 

parameter >�89, 8?� is large when the decay signals at pixel 8?	are similar to the 

decay signals at pixel 89, whereas this parameter is small when the decay signals at 
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pixel 8? are dissimilar to those at pixel 89.  

 

Figure 1 shows the regularization parameters for pixels in a search window centered 

at a representative parenchyma pixel and the corresponding decay signals. The target 

pixel was located in the parenchyma adjacent to vessels. Figure 1d shows that the 

parenchyma pixels in the search window are assigned with large regularization 

parameters, whereas the vessel pixels in the search window are assigned small 

regularization parameters. Figure 1e shows the decay signals at multiple TEs for all 

the pixels in the search window. The pixels with large regularization parameters have 

decay signals similar to the target pixel.  

 

Parameter Settings 

The parameter settings (search window D9  and smoothing parameter ℎ) in the 

PCANR algorithm are of vital importance for the performance of R2* mapping. For a 

good trade-off between the computational load and R2* mapping performance, the 

search window D9  was empirically set to 11 × 11 for both the NLM-NLS and 

PCANR algorithms in this study. The influence of smoothing parameter ℎ on R2* 

mapping was first evaluated by simulation and an approximately optimal ℎ value 

was then determined. A fixed smoothing parameter ℎ	of 2.0�� was used for the 

PCANR algorithm in the following simulation, phantom, and in vivo studies. With 

regard to the NLM-NLS algorithm, the optimal	ℎ that produced minimum RMSE 

value was used in the simulation study, whereas a fixed ℎ of 3.0�� was used in the 

phantom and in vivo studies.  

 

 

Experimental Data 

Simulations 
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A mask delineating liver anatomy (Fig. 1a, including two compartments: parenchyma 

and blood vessels) and a non-uniform �% reference map (Fig. 1b) were derived from 

an in vivo liver dataset through a semiautomatic parenchyma extraction method (28). 

Both the mask with complicated structures and the non-uniform S0 map were designed 

to mimic a realistic liver. In the simulations, the liver parenchyma R2* values ranged 

from 100 s
−1

 to 1000 s
−1

 with an increment of 100 s
−1

, and the vessels R2* values 

were constantly set to 33 s
−1

. Figure 1c shows an example of R2* map with liver 

parenchyma R2* value of 500 s
−1

. The noise-free image for each channel was 

generated by sampling the monoexponential decay model at the TEs that correspond 

to the actual settings for in vivo experiments (see below). Noisy images were then 

synthesized by adding zero mean Gaussian complex noise with SD ��  to the 

noise-free images from each channel and performing the root-sum-square operation of 

all channels. Note that the number of receiver coils ��� was set to 8, same as the in 

vivo study. Noisy images were simulated with SNRs of 15, 30, and 60 to evaluate the 

performance of R2* mapping under varying noise levels; SNR was defined as max	��%�/�� to avoid dependence on TE.  

 

To evaluate the performance of the proposed algorithm with varying R2* values, a 

R2* map was synthesized using a Gaussian function with a SD of 24 pixels to model 

slowly-varying iron overload levels (Fig. 6a). Mean R2* value for the liver 

parenchyma was 800 ± 160 s
−1

; and the liver vessel R2* values were constantly set to 

33 s
−1 

for simplicity. Simulations were then performed with SNRs of 15, 30, and 60 in 

the aforementioned way.  

 

Phantom Data 

A phantom was designed with eight agar-based vials, and each vial was filled with 

distilled water and different concentrations of iron (Ferumoxytol, AMAG 

Pharmaceuticals, Lexington, MA), ranging from 0 µg/ml to 441.18 µg/ml. All vials 
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were submerged in a tap water bath and scanned using a 3D multi-echo spoiled 

gradient echo pulse sequence on a 1.5 Tesla (T) clinical MRI system (GE Healthcare, 

Waukesha, WI) with an eight-channel phased-array coil. The imaging parameters 

were set as follows: repetition time (TR) = 12.98 ms, TEmin = 0.92 ms, echo spacing = 

0.8 ms, number of echoes = 12, flip angle = 2° to minimize T1-related bias, slice 

thickness = 3 mm, number of excitations (NEX) = 1, matrix size = 256 × 256, and 

field of view = 200 × 400 mm
2
. The phantom was scanned 16 times with the same 

protocol and was averaged to assess the influence of SNR on R2* mapping.  

 

In Vivo Data 

The data from four subjects (two females and two males, ages 22 ± 8) with iron 

overload from normal to severe were retrospectively analyzed after the approval from 

our institutional review board and the informed consent were obtained. The patients 

were performed on a 1.5 Tesla (T) Sonata scanner (Siemens Medical Solutions, 

Erlangen, Germany) using a six-channel anterior array coil combined with a 

two-channel spine array coil and 2D spoiled gradient echo acquisition with fat 

saturation. Axial images were acquired with the following parameters: TR = 200 ms, 

TEmin = 0.93 ms, echo spacing = 1.34 ms, number of echoes = 12, flip angle = 20°, 

slice thickness = 10 mm, NEX = 1, matrix size = 64 × 128, and field of view = 200 × 

400 mm
2
. All echoes were acquired in a single TR using monopolar readouts, and the 

multiple-echo images were acquired within a breath-hold of approximately 13 s.  

 

Performance Evaluations 

In the simulations, the estimated R2* and corresponding error maps were presented 

for visual inspection. The root mean square error (RMSE) was calculated as a 

quantitative criterion to quantify the accuracy of R2* mapping, and was defined as: 

 +U�� = V1U=E+2∗�89� − +2∗X �89�F�9 , 
[6] 
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where +2∗�89� and +2∗X �89� are the true and estimated R2* values at pixel 89 , 
respectively, and U is the number of pixels in the selected ROI.  

 

The mean and SD of the estimated R2* values in the liver parenchyma (1325 pixels) 

in the simulation study and those for each vial (340 pixels) in the phantom study were 

calculated for the quantitative performance assessment. Extreme outliers, which have 

distance to the interquartile range exceeding three times the length of the interquartile 

range, were excluded from the calculation. Considering the unknown ground truth, 

only the visual inspection of the quality of R2* maps was implemented for the in vivo 

study.  

 

RESULTS 

Simulations 

Figure 2 shows the influence of smoothing parameter ℎ = M�� in the NLM-NLS and 

PCANR algorithms on R2* mapping. For both NLM-NLS and PCANR algorithms, 

the R2* mapping RMSEs follow a convex pattern with increasing ℎ from 0�� to 7��. The minimum RMSEs produced by the NLM-NLS and PCANR algorithms were 

substantially lower than that produced by the NLS algorithm for varying R2* values 

and noise levels. The PCANR algorithm consistently yields smaller minimum RMSEs 

than the NLM-NLS algorithm. In addition, the minimum RMSE of the PCANR 

algorithm is less sensitive to ℎ compared with that of the NLM-NLS algorithm. The 

PCANR algorithm with ℎ = 2.0�� is shown to approximately produce minimum 

RMSE for different R2* and SNR levels.  

 

Figure 3 shows estimated R2* and corresponding error maps under varying SNR 

levels (15, 30, and 60) and R2* reference values (200, 500, and 800 s
−1

). The NLS 

algorithm produced noisy R2* maps that exhibit a certain number of outliers, 
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especially at the low SNR of 15. Although the NLM-NLS algorithm produced R2* 

maps that are less affected by the noise; however, measurement errors were still 

observed near the edges of liver parenchyma and vessels. Compared with the NLS 

and NLM-NLS algorithms, the PCANR algorithm effectively reduces the effect of 

noise on R2* mapping and produces accurate R2* maps in all cases, which can be 

observed clearly from the corresponding error maps (Fig. 3b).  

 

The plots of R2* mapping RMSEs against R2* reference values under different SNRs 

(15, 30, and 60) are shown in Figure 4. As partly shown in Figure 2, the RMSEs 

produced by the NLM-NLS and PCANR algorithms were substantially lower than 

that produced by the NLS algorithm. Compared with the NLM-NLS algorithm, the 

PCANR algorithm produced 46%–84% lower RMSEs. Figure 5 shows plots of mean 

and corresponding SD of parenchyma R2* values against R2* reference values under 

varying SNR levels (15, 30, and 60). For low R2* values or high SNR levels, all three 

algorithms produced accurate R2* estimates that were close to the identity line. For 

high R2* values and low SNR levels, the mean of NLS and NLM-NLS measurements 

slightly overestimated the R2*, whereas the mean of PCANR measurements exhibited 

no bias from the R2* reference values. In addition, the PCANR algorithm produced 

the lowest SDs for any R2* reference value and SNR level, which is consistent with 

the performance of R2* mapping RMSEs (Fig. 4).  

 

Figure 6 evaluates the performance of the NLM-NLS and PCANR algorithms under 

slowly-varying R2* values. Figure 6b plots the RMSE of R2* mapping against 

smoothing parameter ℎ = M�� . The PCANR algorithm with ℎ = 2.0��  also 

produces approximately minimum RMSEs that are well below the minimum RMSEs 

by the NLM-NLS algorithm. Figures 6c and 6d present estimated R2* and 

corresponding error maps under varying SNR levels (15, 30, and 60). The PCANR 

results are less noisy than the NLM-NLS results, and with reduced errors.  
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Phantom Study 

Figure 7 shows the mean and corresponding SD of estimated R2* values in each vial 

depicted for datasets with different NEXs (1, 4, and 16). For the dataset with NEX of 

1, the SNRs were from 22.24 to 55.62 for eight vials with different iron 

concentrations. For validation, the dataset with NEX of 16 was processed, and the 

decay signals in each vial were first averaged and then fitted to the M
1
NCM model. 

The resulting R2* values were highly correlated with the iron concentrations with an 

r
2
 of 0.9996 and were used as the reference (slope of the reference line is 2.142). 

Similar to the previous results in the simulation study, the PCANR algorithm yields 

closer R2* estimates to the reference values than both the NLS and NLM-NLS 

algorithms. With regard to precision, the PCANR algorithm produces the smallest SD 

for each combination of iron concentration and NEX.  

 

In Vivo Study 

Figure 8 shows the in vivo R2* maps for four livers with none (Fig. 8a), mild (Fig. 

8b), moderate (Fig. 8c), and severe iron overload (Fig. 8d). Similar to the results in 

the simulation study (Fig. 3), the R2* maps produced by the NLS algorithm were 

seriously degraded by the noise, and a certain number of extreme outliers exist in the 

severe iron-overloaded liver. The NLM-NLS algorithm led to blurring of tiny details 

(indicated by red arrows) and presence of residual noise near the edge of liver 

parenchyma (indicated by black arrows). Compared with the NLS and NLM-NLS 

algorithms, the PCANR algorithm effectively suppresses the effect of noise on R2* 

mapping and clearly preserves the tiny details. In addition, the distributions of 

parenchyma R2* values produced by the PCANR algorithm are more concentrated 

from the histograms (not shown) than those produced by the NLS and NLM-NLS 

algorithms.  
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DISCUSSION 

R2* mapping by conventional pixel-wise curve fitting is usually degraded by noise, 

especially when the SNR is low in high-speed or high-resolution acquisition. The 

PCANR algorithm improves the performance of liver R2* mapping by exploiting 

neighboring pixels to regularize the curve fitting for each target pixel. A distinct 

characteristic of the PCANR algorithm is that the regularization parameters are 

adaptively determined according to the inter-pixel signal similarity. Only those pixels 

with similar decay signals are assigned with large regularization parameters in the 

curve fitting for R2* mapping. The simulation, phantom, and in vivo results reveal 

that the PCANR algorithm can yield more accurate R2* maps than the NLS and 

NLM-NLS algorithms, especially for high R2* values under low SNR levels.  

 

The PCANR algorithm reduces the effect of noise on R2* mapping by simultaneously 

fitting all the pixels similar to the target pixel, which is based on the assumption that 

the main difference between similar decay signals is caused by the noise. In this 

algorithm, all neighboring pixels contribute to the R2* quantification of each target 

pixel, and the pixels with larger regularization parameters contribute to the final R2* 

estimate. If the regularization parameters are set as zero for all neighboring pixels, the 

PCANR algorithm is reduced to the conventional NLS algorithm that independently 

fits each pixel. Note that the NLM-NLS algorithm also uses neighboring pixels to 

reduce the effect of noise on R2* mapping but in a two-step pattern: the serial images 

are first denoised, and pixel-wise curve fitting is then conducted for R2* mapping. 

However, this two-step pattern may induce the potential error propagation from the 

denoising step to the curve-fitting step. Compared with the NLM-NLS algorithm, the 

PCANR algorithm incorporates noise suppression and curve fitting into a unified 

one-step regularization framework, and this probably explains why the PCANR 

algorithm achieves better performance in reducing noise-related quantification errors 

for R2* mapping.  
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Accurate R2* mapping can provide clinically relevant information that characterizes 

the spatial distribution of iron in the liver. In the practice of R2* relaxometry liver 

iron measurement, the R2* map produced by the NLS algorithm is usually degraded 

by noise, and thus cannot reveal the actual iron distribution in the liver, especially in 

the presence of severe iron overload. In addition, the mean of R2* measurements 

within an ROI by the NLS algorithm may overestimate iron level as shown by the 

simulation study. This overestimation is caused by the non-Gaussian distribution of 

fitted R2* values, as demonstrated in our previous work (29). The NLS algorithm also 

produces a certain number of extremely high R2* values above 2500 s
−1

. In the report 

of the representative R2* value in an ROI, no consensus was formed on whether to 

exclude those extremely high R2* values from the final measurement. These 

extremely high R2* values are successfully eliminated by the proposed PCANR 

algorithm. As a result, the reliability of R2* analysis is increased, especially for liver 

with severe iron overload. The blurring of tiny details in the NLM-NLS results (Fig. 8) 

is probably because no patches can be found truly similar to the central patch in the 

NLM denoising.  

 

The performance of both PCANR and NLM-NLS algorithms depends on the 

smoothing parameter as shown in Figures 2 and 6b. The smoothing parameter ℎ 

controls the decay of the regularization parameters as a function of the Euclidean 

distance between the signals. A high ℎ leads to the over-smoothing in R2* map, 

whereas a low ℎ leads to the insufficient regularization from the neighboring pixels 

and results in noisy R2* map. As a widely-adopted approach (20,21), the smoothing 

parameter ℎ = M�� was assessed using RMSEs in the simulation study. The results 

(Figs. 2 and 6b) reveal that the PCANR algorithm can consistently produce smaller 

minimum RMSEs at varying SNR levels and is less sensitive to the smoothing 

parameter than the NLM-NLS algorithm. This is because the PCANR algorithm 

actually combines denoising and the NLS fitting using a unified objective function, 

and is thus more tolerable to denoising errors than the NLM-NLS algorithm. The 
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PCANR algorithm with a fixed smoothing parameter ℎ of 2.0�� outperforms the 

NLM-NLS algorithm with its optimal smoothing parameter settings.  

 

The performance of both PCANR and NLM-NLS algorithms also depends on the size 

of search window. Increasing the size of search window has the potential to improve 

the R2* mapping accuracy but at the expense of increased computational burden. In 

this work, the search window of 11 × 11 was experientially determined by balancing 

the accuracy and time cost. The computation time of the current implementation was 

259 s on a 64-bit Windows 10 system with a 2.50 GHz Intel Core processor and 16.0 

GB of random access memory. Further increasing window size did not significantly 

improve R2* mapping accuracy. Note that the code was programmed using MATLAB 

(MATLAB 7.12.0, Mathworks) and the implementation can be further accelerated by 

C++ programming and parallel computing, which is beyond the scope of this 

manuscript but warranted in a future study.  

 

Simulation with fixed relaxation rate has the advantage of providing the reference 

R2* values for comparison and is consistent with the phantom experiment. In practice, 

the iron concentration might vary across the liver. Thus, we also performed simulation 

with a non-uniform R2* distribution by modeling the spatial distribution of R2* in the 

liver as a slowly-varying Gaussian function. Simulation with a R2* distribution closer 

to the realistic situation or a more comprehensive phantom development is warranted 

in future. The in vivo study is limited due to lack of reference standard for the 

algorithm evaluation. Although multiple averages can be used to improve the imaging, 

the substantially increased scanning time will increase the susceptibility to respiration 

motion. Future studies should make a concerted effort between scientists and 

clinicians to validate the development on large patient cohorts and to explore its 

clinical usefulness.  
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CONCLUSIONS 

Liver R2* mapping by conventional pixel-wise curve fitting is usually degraded by 

the noise, especially in the presence of severe iron overload. The PCANR algorithm 

can reduce the effect of noise on R2* mapping with improved accuracy and will 

benefit the assessment of hepatic iron and its distribution. Finally, the PCANR 

algorithm can be extended to the quantitative mappings of other MR parameters, such 

as T1, T2, and diffusion coefficients.  

Page 16 of 48

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

FIGURE LEGENDS 

Figure 1. Liver mask, S0 map, and examples of R2* map for simulations, as well as 

example of regularization parameters and decay signals in the PCANR algorithm. 

(a-b): Mask and S0 map are obtained from an in vivo dataset. (c): An example of 

synthesized R2* map with R2* values of 500 s
−1

 for the parenchyma and 33 s
−1

 for 

blood vessels. (d): For pixels in a search window with size of 11 × 11 (red frame 

centered around a parenchyma pixel, which was marked by a green circle in (a)), 

regularization parameters are adaptively calculated according to Eq. [4] in the 

PCANR algorithm. (e): Discrete decay signals for pixels in the search window are 

plotted and marked by circles (by cross for the target pixel) with color according to 

their regularization parameters in (d).  

 

Figure 2. Influence of the smoothing parameter ℎ = M�� on R2* mapping RMSEs 

for different combinations of SNRs (15, 30, and 60) and R2* reference values (100–

1000 s
−1

). Stars, dotted lines, and solid lines represent RMSEs by the NLS, 

NLM-NLS, and PCANR algorithms. Note that colors encode different R2* reference 

values (100–1000 s
−1

 from red, pass through yellow, green, cyan, blue, and magenta).  

 

Figure 3. Estimated R2* maps (a) and error maps (b) for simulations with different 

SNRs (15, 30, and 60) and R2* reference values (200, 500, and 800 s
−1

).  

 

Figure 4. R2* mapping RMSEs by the NLS, NLM-NLS, and PCANR algorithms for 

SNR = 15, 30, and 60.  

 

Figure 5. Mean and SD values of the estimated R2* in the simulation study for SNR 

= 15, 30, and 60.  

 

Figure 6. Simulation with nonuniform R2* distribution. (a): The synthesized R2* 

map. Mean R2* value in the liver parenchyma was 800 ± 160 s
−1

; the vessels have a 
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constant R2* value of 33 s
−1

. (b): Influence of the smoothing parameter ℎ = M�� on 

R2* mapping RMSEs under different noise levels. (c-d): Estimated R2* maps and 

error maps. The RMSE was provided in the bottom-right corner of each R2* map.  

 

Figure 7. Mean and SD values of the estimated R2* in the phantom study for NEX = 

1, 4, and 16. Note that for validation, the dataset with NEX of 16 is processed, the 

decay signals in each vial are first averaged and then fitted to the M
1
NCM model, and 

the resulting R2* values are linearly correlated with iron concentrations and used as 

reference.  

 

Figure 8. In vivo R2* maps for livers with none (a), mild (b), moderate (c), and 

severe (d) iron overload.  
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Figure 1. Liver mask, S0 map, and examples of R2* map for simulations, as well as example of 
regularization parameters and decay signals in the PCANR algorithm. (a-b): Mask and S0 map are obtained 

from an in vivo dataset. (c): An example of synthesized R2* map with R2* values of 500 s−1 for the 

parenchyma and 33 s−1 for blood vessels. (d): For pixels in a search window with size of 11 × 11 (red frame 
centered around a parenchyma pixel, which was marked by a green circle in (a)), regularization parameters 
are adaptively calculated according to Eq. [4] in the PCANR algorithm. (e): Discrete decay signals for pixels 
in the search window are plotted and marked by circles (by cross for the target pixel) with color according to 

their regularization parameters in (d).  
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Figure 2. Influence of the smoothing parameter h=βσg on R2* mapping RMSEs for different combinations of 
SNRs (15, 30, and 60) and R2* reference values (100–1000 s−1). Stars, dotted lines, and solid lines 

represent RMSEs by the NLS, NLM-NLS, and PCANR algorithms. Note that colors encode different R2* 
reference values (100–1000 s−1 from red, pass through yellow, green, cyan, blue, and magenta).  
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Figure 3. Estimated R2* maps (a) and error maps (b) for simulations with different SNRs (15, 30, and 60) 
and R2* reference values (200, 500, and 800 s−1).  
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Figure 4. R2* mapping RMSEs by the NLS, NLM-NLS, and PCANR algorithms for SNR = 15, 30, and 60.  
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Figure 5. Mean and SD values of the estimated R2* in the simulation study for SNR = 15, 30, and 60.  
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Figure 6. Simulation with nonuniform R2* distribution. (a): The synthesized R2* map. Mean R2* value in 
the liver parenchyma was 800 ± 160 s−1; the vessels have a constant R2* value of 33 s−1. (b): Influence of 
the smoothing parameter h=βσg on R2* mapping RMSEs under different noise levels. (c-d): Estimated R2* 

maps and error maps. The RMSE was provided in the bottom-right corner of each R2* map.  
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Figure 7. Mean and SD values of the estimated R2* in the phantom study for NEX = 1, 4, and 16. Note that 
for validation, the dataset with NEX of 16 is processed, the decay signals in each vial are first averaged and 
then fitted to the M1NCM model, and the resulting R2* values are linearly correlated with iron concentrations 

and used as reference.  
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Figure 8. In vivo R2* maps for livers with none (a), mild (b), moderate (c), and severe (d) iron overload.  
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