

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: http://www.pediatr-neonatol.com

Images

A rare case of a calcified cephalhematoma mistaken as a skull fracture

ି 🔊

PEDIATRICS and NEONATOLOGY

Anan Shtaya ^{a,b,*}, Ala'a Almousa ^a, Bassam Dabbous ^a

 ^a Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
^b Atkinson Morley Neurosurgery Centre, St George's University Hospital NHS Trust, London, UK

Received Jul 7, 2017; received in revised form Aug 16, 2017; accepted Nov 10, 2017 Available online 15 November 2017

A 2-month-old-boy presented to our emergency department with an apparent depressed area in the left parietal region. His mother informed the emergency department about ventouse and forceps-assisted delivery at 41 weeks' gestation with unremarkable antenatal care. She noticed an initial soft swelling that was diagnosed at the time as a cephalhematoma and was conservatively treated. The swelling eventually decreased in size and hardened. There was no history of trauma; clinical examination was unremarkable apart from positional plagiocephaly and the presence of a depressed area in the left parietal region. Skull X-ray was inconclusive: ultrasound (Fig. 1A) suspected a skull fracture. Head computed tomography (Fig. 1C-F) revealed an outer surface of calcified cephalhematoma that collapsed inward, giving the appearance of a depressed parietal fracture. The natural course of cephalhematomas is gradual resorption¹; however, they may rarely require surgery.² Although extremely rare, cephalhematomas may ossify.³ Calcified cephalhematoma has been described as an overlying parietal defect; however, we report an unusual appearance that was mistaken for a fracture. Depressed calcified cephalhematoma is extremely rare and can be conservatively managed when no concerning deformity is present, as in this case.

Disclosure

The authors have nothing to disclose or declare in relation to this submission.

Funding

This case was completed with no dedicated funding.

E-mail address: ashtaya@sgul.ac.uk (A. Shtaya).

https://doi.org/10.1016/j.pedneo.2017.11.004

^{*} Corresponding author. Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 ORE, UK.

^{1875-9572/}Copyright © 2017, Taiwan Pediatric Association. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Figure 1 A. An ultrasound scan of the skull lesion, which demonstrates the suspected depressed left. parietal fracture (arrow). The right side of figure A shows normal skull ultrasound. B. Skull X-ray showing the suspected abnormal area (arrow). C. An axial bone-window head computed tomography (CT) showing the calcified cephalhematoma (arrow). D. A sagittal bone-window head CT showing the fractured calcified cephalhematoma (arrow) and bony defect (solid arrow). E. A coronal bone-window CT showing the depressed calcification (arrow). F. Three-dimensional reconstruction of head CT showing the calcified swelling (arrow).

References

- 1. Yoon SD, Cho BM, Oh SM, Park SH. Spontaneous resorption of calcified cephalhematoma in a 9-month-old child: case report. *Childs Nerv Syst* 2013;29:517–9.
- 2. Jang DG, Kang SG, Lee SB, Yoo DS, Huh PW, Cho KS, et al. Simple excision and periosteal reattachment for the treatment of

calcified cephalhematoma. Technical note. *J Neurosurg* 2007; **106**:162–4.

3. Kaiser GL, Oesch V. Sagittal craniosynostosis combined with ossified cephalhematoma—a tricky and demanding puzzle. *Childs Nerv Syst* 2009;**25**:103–10.