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AbstrAct
background We tested the hypothesis that routine 
MRI would improve the care and well-being of preterm 
infants and their families.
Design Parallel-group randomised trial (1.1 allocation; 
intention-to-treat) with nested diagnostic and cost 
evaluations (EudraCT 2009-011602-42).
setting Participants from 14 London hospitals, imaged 
at a single centre.
Patients 511 infants born before 33 weeks gestation 
underwent both MRI and ultrasound around term. 
255 were randomly allocated (siblings together) to 
receive only MRI results and 255 only ultrasound from 
a paediatrician unaware of unallocated results; one 
withdrew before allocation.
Main outcome measures Maternal anxiety, measured 
by the State-Trait Anxiety inventory (STAI) assessed in 
206/214 mothers receiving MRI and 217/220 receiving 
ultrasound. Secondary outcomes included: prediction of 
neurodevelopment, health-related costs and quality of 
life.
results After MRI, STAI fell from 36.81 (95% CI 35.18 
to 38.44) to 32.77 (95% CI 31.54 to 34.01), 31.87 
(95% CI 30.63 to 33.12) and 31.82 (95% CI 30.65 to 
33.00) at 14 days, 12 and 20 months, respectively. STAI 
fell less after ultrasound: from 37.59 (95% CI 36.00 
to 39.18) to 33.97 (95% CI 32.78 to 35.17), 33.43 
(95% CI 32.22 to 34.63) and 33.63 (95% CI 32.49 to 
34.77), p=0.02. There were no differences in health-
related quality of life. MRI predicted moderate or severe 
functional motor impairment at 20 months slightly 
better than ultrasound (area under the receiver operator 
characteristic curve (CI) 0.74; 0.66 to 0.83 vs 0.64; 0.56 
to 0.72, p=0.01) but cost £315 (CI £295–£336) more 
per infant.
conclusions MRI increased costs and provided only 
modest benefits.
trial registration  ClinicalTrials. gov 
NCT01049594 https:// clinicaltrials. gov/ ct2/ show/ 
NCT01049594. EudraCT: EudraCT: 2009-011602-42 (ht 
tps: //www. clinicaltrial sreg iste r. eu/).

IntroDuctIon
Parents of preterm infants are generally aware 
that their infants risk neurodevelopmental impair-
ment, and prematurity is associated with increased 

parental anxiety and unplanned use of healthcare 
after hospital discharge.1–4 Accurate information on 
an infant’s prognosis could facilitate targeting of 
follow-on services to affected children while reas-
suring families with healthy infants, reducing their 
anxiety and consumption of health resources.5

Neuroimaging is employed routinely to provide 
prognostic information. Cranial ultrasound is 
simple, inexpensive and widely used. MRI is more 
complex but has greater neuroanatomical definition 
and may have superior prognostic power.6–8 While 
there are some data on the sensitivity and specificity 
of these imaging modalities,9 10 their influence on 
the ongoing care and well-being of preterm infants 
and their families is unclear.

What this study adds?

 ► Brain imaging reduces maternal anxiety and 
MRI slightly more than ultrasound. However, 
the effect is not clinically significant and does 
not lead to better health- related quality of life.

 ► MRI predicts adverse motor outcomes slightly 
better than ultrasound, but both methods 
are insensitive and neither predicts cognitive 
problems.

 ► A single MRI costs about £300 more than 
routine serial ultrasound.
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What is already known on this topic?

 ► Prediction of neurological outcome in preterm 
infants is important but difficult, and although 
cerebral ultrasound is widely used to assign 
prognosis, it is highly insensitive.

 ► MRI is anatomically richer and might 
offer greater predictive power, with better 
information for parents and improved selection 
for ongoing care.

 ► Parents report that brain imaging has major 
emotional impacts on them, but the effect of 
imaging information on families’ well-being has 
not been systematically studied.
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However, these effects are likely to be subtle and profound: 
parents may find the greater verisimilitude of MRI more 
convincing, allowing more effective reassurance of normality 
and acceptance of intervention for adverse outcome; conversely, 
incidental findings on MRI might increase parental anxiety and 
escalate healthcare uptake. We are unaware of studies that have 
systematically examined the effect of neuroimaging information 
on families and patient-oriented outcomes.

We therefore examined whether, compared with ultrasound, 
information from MRI allows more precise selection for neuro-
developmental follow-on services, decreases parental anxiety, 
improves health-related quality of life and reduces ongoing 
recourse to healthcare.

MethoDs
study design
This parallel-group randomised controlled trial with 1:1 alloca-
tion compared the effect of prognostic information derived from 
either MRI or ultrasound on parental anxiety and coping, health 
costs and health-related quality of life. A nested diagnostic eval-
uation with blinded assessment compared the precision of the 
two investigations in selecting infants who should benefit from 
ongoing neurodevelopmental support and an economic evalua-
tion estimated associated costs.

Infants were eligible if born before 33 weeks gestational age 
and their mother was aged over 16 years and not a hospital inpa-
tient; they were excluded if they had major congenital malfor-
mation, prior MRI, care in a centre where preterm MRI was 
routine, metallic implants, parents unable to speak English or 
were subject to child protection proceedings.

Infants underwent both MRI and ultrasound as outpatients 
in a neonatal imaging centre at 38–44 weeks gestational age, 
then randomly allocated to receive information from one or 
other modality. Images were interpreted with access to the clin-
ical history and routine clinical ultrasound reports, but not the 
unallocated trial imaging. An experienced physician unaware of 
the unallocated result discussed the allocated images and neuro-
developmental prognosis in a structured interview with parents, 
providing permanent examples of the images and a written 
summary of the prognostic information. Information from the 
allocated images only was then passed to the infant’s General 
Practitioner, Paediatrician and other medical staff, who took all 
decisions regarding further care.

MrI
Standardised T1-weighted and T2-weighted MRI, including a 
T1-weighted dynamic scan (see table S1 in the online supple-
mentary file 1) was performed on a 3-Tesla system (Philips 
Medical Systems, Best, The Netherlands) using an eight-channel 
phased array head coil. Pulse oximetry, temperature and heart 
rate were monitored throughout and ear protection was used 
for each infant (President Putty, Coltene Whaledent, Mahwah, 
New Jersey, USA; MiniMuffs, Natus Medical, San Carlos, Cali-
fornia, USA). Chloral hydrate (25–50 mg kg−1) was administered 
to infants whose parents chose sedation for the procedure.

MRI was interpreted using a widely accepted scheme.11 To 
predict adverse prognosis for comparison with ultrasound, we 
selected images with moderate or severe changes, and sensitivity 
analysis examined the predictive value of severe changes alone.11

cranial ultrasound
Ultrasound images were acquired using an Antares ultrasound 
scanner with a multifrequency transducer (Toshiba Aplio MX, 

Model SSA-780A) initially set at 7.0 Hz. Standardised images 
were acquired through the anterior fontanelle in at least six 
coronal and five sagittal planes.

Ultrasound images were reported using prognostic values 
derived by a meta-analysis published prior to the study.10 To 
predict adverse outcome for comparison, we selected images 
showing any feature with an individual predictive probability 
for cerebral palsy of greater than 25%10: grade 3–4 periventric-
ular haemorrhage, periventricular leucomalacia, porencephalic 
cysts and/or ventricular size ≥4 mm above the 97th centile for 
age.

To ensure that the trial ultrasound reflected routine clinical 
ultrasound, we compared trial data with reports of clinical scans 
in hospital records.

outcomes
The primary outcome was maternal anxiety assessed by the state 
component of the State-Trait Anxiety Inventory (STAI)12: before 
the imaging visit, 14 days and 12 months after imaging and at 
18–24 months corrected age, immediately prior to the child’s 
neurodevelopmental assessment. Mothers and fathers completed 
separate questionnaires. Secondary outcomes included: 
maternal trait anxiety, paternal state and trait anxiety, question-
naires designed to assess mothers’ coping, economic costs and 
health-related quality of life assessed using the preference-based 
instruments EQ-5D-3L and SF-12 collected at 12 and 18–24 
months.13 14

For the nested diagnostic evaluation, children were scheduled 
to undergo a neurodevelopmental assessment by trained asses-
sors blind to the allocation groups at 18–24 months corrected 
age. The principal reference standard was moderate or severe 
functional motor impairment, defined as a gross motor function 
classification system (GMFCS)15 grade 2–5. We supported this 
by exploring the prediction of a Bayley Scales of Infant Develop-
ment III (BSID-III) motor domain score of <85.16 We explored 
the prediction of: cognitive and language abilities defined by the 
BSID-III cognition and language domains of <85,16 the parent 
report of children’s abilities-revised (PARCA-R)17 <4917 and the 
modified checklist for autism in toddlers (M-CHAT)18 failure of 
more than two critical items.

statistical analysis
The statistical analysis plan for the randomised trial was finalised 
prior to unblinding and the nested diagnostic evaluation prior to 
analysis, performed by independent statisticians.

The primary analysis was by repeated measures analysis of 
covariance using a mixed model which took account of the with-
in-subject variability, using scores at all three postrandomisation 
time points and adjusting for baseline anxiety and randomisation 
factors. The adjusted mean group differences between baseline 
and each time point with 95% CIs were calculated. Missing data 
in the STAI were imputed if one or two questions were unan-
swered in each form as per the test manual; with larger numbers 
of missing data, the questionnaire was excluded. To avoid bias, 
maximise the power of the study and allow analysis by intention-
to-treat, the missing-indicator method was used.19 20

Estimates of sample size based on an expected mean STAI total 
of 47, SD of 12 and correlation between follow-up measurements 
of 0.2 showed that 414 mothers were required to detect a mean 
difference of 2.5 at the 5% level with 90% power and an assess-
ment of the rates of multiple birth and withdrawals suggested 
that about 510 infants would need to be randomised. The rando-
misation procedure employed a minimisation algorithm on a 
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Figure 1 Consolidated Standards of Reporting Trials diagram for randomised study and for diagnostic evaluation. GMFCS, gross motor function 
classification system; STAI, State-Trait Anxiety Inventory.

original article

stand-alone computer that balanced site of neonatal care, gender 
and gestational age at birth. Siblings were allocated the same 
intervention.

Prespecified sensitivity analyses assessed the effects of a series 
of maternal characteristics and the imputation on the primary 
outcome. Prespecified subgroup analyses sought interactions 
between the treatment effect and a series of infant characteristics.

Healthcare costs were derived from the UK National Health 
Service perspective. Imaging-related costs were estimated using a 
microcosting approach in which component and unit costs were 
identified and valued.21 Data on healthcare resource use were 
collected at 12 and 24 months after randomisation and multiplied 
by unit costs (see table S2 in the online supplementary file 1) to 
obtain the cost per infant over the trial period. Preference-based 
scores for the EQ-5D-3L and SF-12 health status were derived 

using published algorithms.22 23 Missing data were imputed using 
a multiple imputation framework with chained equations.24 
Mean differences between the groups and associated uncertainty 
in healthcare resource use, cost and health-related quality of life 
scores were estimated using parametric methods.25 More details 
are given in the Expanded Methods in the supplementary file 1.

To determine diagnostic precision, sensitivity, specificity, 
positive and negative predictive values and the area under the 
receiver operator characteristic curve (AUROC) were calculated 
and AUROC compared between modalities.

Analysis of the primary outcome and principle reference stan-
dard are presented with unadjusted p-values. Inferences from 
secondary hypothesis tests were made controlling the family-wise 
error rate using the Bonferroni method. Prognostic values are 
presented with 95% CI.
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table 1 Baseline characteristics of the infants and their families

characteristics (families) MrI (n=214)* ultrasound (n=220)*

Mother’s age at 
randomisation, median (IQR)

32.4 (28.8, 37.0) 32.8 (29.0, 36.6)

  Maternal ethnicity, n (%)

    White 110 (52.1) 104 (47.7)

    Black or Black British 38 (18.0) 55 (25.2)

    Asian or Asian British 55 (26.1) 50 (22.9)

    Mixed 4 (1.9) 4 (1.8)

    Other ethnicity group 4 (1.9) 5 (2.3)

    Missing      3          2

  Mother’s age when leaving full time education, n (%) 

    ≤16 years 26 (12.5) 19 (9.0)

    17–19 years 33 (15.9) 33 (15.6)

    ≥19 years 142 (68.3) 151 (71.6)

    Still in full time education 7 (3.4) 8 (3.8)

    Missing      6          9

  Index of multiple deprivation quintiles, n(%)

    1 30 (14.0) 46 (20.9)

    2 37 (17.3) 31 (14.1)

    3 54 (25.2) 50 (22.7)

    4 62 (29.0) 57 (25.9)

    5 31 (14.5) 36 (16.4)

  Mode of delivery, n (%)

    Emergency caesarean—not 
in labour

71 (33.5) 75 (34·4)

    Emergency caesarean—in 
labour

49 (23.1) 43 (19·7)

    Elective section—not in 
labour

14 (6.6) 18 (8.3)

    Elective section—in labour 0 (0) 2 (0.9)

    Vaginal—forceps assisted 6 (2.8) 3 (1.4)

    Vaginal—spontaneous 72 (34.0) 77 (35.3)

    Missing      2          2

  Antenatal steroids, n (%)

    Full 179 (86.5) 183 (86.4)

    Partial 30 (12.2) 28 (11.8)

    None 5 (2.3) 9 (4.1)

Characteristics (infants) MRI (n=255)† Ultrasound (n=255)†

    Sex: Male, n (%) 127 (49.8) 126 (49.4)

    Gestational age at birth 
(weeks), median (IQR)

30 (27, 31) 30 (27, 31)

    Birth weight (g), mean (SD) 1303.5 (393.0) 1306.0 (387.7)

    Gestational age at scan 
(weeks), median (IQR)

43 (41, 44) 43 (41, 44)

    Twin or triplet birth, n (%) 77 (30.2) 67 (26.3)

    Surfactant treatment, n (%) 139 (54.5) 138 (54.1)

    Days ventilated, median 
(IQR)

1 (0, 3) 1 (0, 2)

    Days on CPAP, median 
(IQR)

7 (1, 32) 7 (2, 28)

*Number of mothers in each group (MRI and ultrasound).
†Number of infants in each group (MRI and ultrasound).
 Index of multiple deprivation quintile group for a valid postcode (1, ≤8.49 (least 
deprived); 2, 8.5–13.79; 3, 13.8–21.35; 4, 21.36–34.17; 5: ≥34.18 (most deprived); 
http://tools.npeu.ox.ac.uk/imd/).
CPAP, continuous positive airway pressure.

table 2 Neurodevelopmental outcomes at 18–24 months

Infant outcomes at 20–
24 months MrI (n=255)* ultrasound (n=255)*

Infant age at assessment, median 
(IQR)

20.20 (20.00–20.79) 20.20 (20.00–20.50)

  Gross Motor Function Classification Scale, n (%)

    No abnormality or grade 1 221 (92.86) 229 (93.09)

    Grade 2 8 (3.36) 12 (4.88)

    Grade 3  3 (1.26) 2 (0.81)

    Grade 4 4 (1.68) 2 (0.81)

    Grade 5 2 (0.84) 1 (0.41)

    Missing    17     9

  Bayley-III motor composite 
score, mean (SD)

93.19 (14.02) 95.04 (12.62)

     Missing, n    17      9

  Bayley-III cognitive composite 
score, mean (SD)

91.16 (14.14)  92.91 (13.67)

    Missing, n    17     9

Bayley-III language composite 
score, mean (SD)

89.23 (17.73) 91.11 (17.15)

    Missing, n    17     9

  PARCA-R composite, mean 
(SD)

45.20 (24.78) 48.02 (23.97)

    Missing, n    21    10

  M-CHAT failing two or more 
critical items, n (%)

85 (35.42) 67 (27.24)

    Missing, n    15     9

*Number of infants in each group (MRI and ultrasound).
Bayley-III, Bayley Scales of Infant Development III; M-CHAT, modified checklist for 
autism in toddlers; PARCA-R, parent report of children’s abilities-revised.

original article

The study protocol was approved by the Hammersmith and 
Queen Charlotte’s Research Ethics Committee (09/H0707/98), 
and written informed consent was obtained in every case. The 
trial was registered prior to enrollment with the European Clin-
ical Trials Database (EudraCT 2009-011602-42). The trial was 
overseen by an independent steering committee with advice 
from a data monitoring and ethics committee.

results
Between 16 April 2010 and 31 July 2013, we screened 3619 admis-
sions to level 1, 2 and 3 neonatal units at 14 London Hospitals 
and found 1831 eligible infants. Six hundred and sixty-two infants 
were recruited, 151 withdrew before imaging, and recruitment 
was closed when 511 infants in 435 families had been imaged at 
around term corrected age. MRI was successfully acquired in 507 
infants and ultrasound in 511. One family withdrew after imaging 
but prior to allocation. Two hundred and fifty-five infants were 
randomly allocated to MRI and 255 to ultrasound. The Consol-
idated Standards of Reporting Trials diagram is given in figure 1, 
baseline characteristics of the infants and their families in table 1 
and neurodevelopmental outcomes in table 2.

Primary outcome
The primary outcome was assessed in 423 mothers, 206/214 
of the MRI group and 217/220 of the ultrasound group. The 
results are given in table 3. The STAI state score was significantly 
lower after imaging in the MRI group, with the largest difference 
between groups appearing at 1 year (overall p-value accounting 
for all follow-up assessments=0.02). Analysis without imputa-
tion of baseline data produced a similar conclusion (p=0.04). 
This difference persisted after accounting for maternal age 
(p=0.02), ethnicity (p=0.02), social deprivation (p=0.02), 

level of education (p=0.03) or prior information that the infant 
had an adverse outcome (p=0.05), and there was no effect of 
multiple births (p=0.42).
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table 3 State-trait anxiety inventory results (STAI)

outcome MrI (n=206)*
ultrasound 
(n=217)* p Value

Primary outcome

Maternal state STAI at baseline 
(95% CI)

36.81 
(35.18 to 38.44)

37.59
(36.00 to 39.18)

0.02

Maternal state STAI at 14 days 
(95% CI)

32.77
(31.54 to 34.01)

33.97
(32.78 to 35.17)

Maternal state STAI at 
12 months (95% CI)

31.87 
(30.63 to 33.12)

3.43
(32.22 to 34.63)

Maternal state STAI at 
18–24 months corrected age 
(95% CI)

31.82 
(30.65 to 33.00)

33.63
(32.49 to 34.77)

Secondary outcomes

Maternal trait STAI at baseline 
(95% CI)

37.02
(35.64 to 38.39)

38.22
(36.86 to 39.58)

0.56

Maternal trait STAI at 14 days 
(95% CI)

35.15
(34.03 to 36.27)

34.77 
(33.70 to 35.84)

Maternal trait STAI at 
12 months (95% CI)

34.97
(33.83 to 36.10)

35.38 
(34.29 to 36.47)

Maternal trait STAI at 
18–24 months corrected age 
(95% CI)

34.70
(33.64 to 35.77)

35.77
(34.74 to 36.81)

Paternal state STAI MRI (n=168)† Ultrasound 
(n=176)†

Paternal state STAI at baseline 
(95% CI)

34.47
(32.75 to 36.19)

35.19 
(33.50 to 36.89)

0.78

Paternal state STAI at 14 days 
(95% CI)

32.43 
(31.04 to 33.83)

32.76
(31.43 to 34.10)

Paternal state STAI at 12 months 
(95% CI)

30.45
(29.01 to 31.88)

31.29 
(29.93 to 32.64)

Paternal state STAI at 
18–24 months corrected age 
(95% CI)

31.92 
(30.55 to 33.29)

31.38
(30.06 to 32.70)

Paternal trait STAI MRI (n=168)‡ Ultrasound 
(n=178)‡

Paternal trait STAI at baseline 
(95% CI)

34.54 
(33.12 to 35.95)

35.24 
(33.78 to 36.71)

0.82

Paternal trait STAI at 14 days 
(95% CI)

33.15 
(31.93 to 34.36)

33.15 
(32.00 to 34.31)

Paternal trait STAI at 12 months 
(95% CI)

32.10 
(30.85 to 33.35)

33.13 
(31.95 to 34.31)

Paternal trait STAI at 
18–24 months corrected age 
(95% CI)

33.43 
(32.23 to 34.63)

32.86 
(31.72 to 34.01)

*Number of mothers with primary and secondary outcome data (STAI) in each 
group (MRI and ultrasound) at baseline, 14 days, 12 months and 18–24 months 
corrected age,
†Number of fathers with secondary outcome data (state STAI) in each group (MRI 
and ultrasound) at baseline, 14 days, 12 months and 18–24 months corrected age.
‡Number of fathers with secondary outcome data (trait STAI) in each group (MRI 
and ultrasound) at baseline, 14 days, 12 months and 18–24 months corrected age.
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Anxiety scores for mothers whose infants did not develop 
moderate or severe functional motor impairment were lower for 
the MRI group, while for those whose infants did were higher 
(p-value for interaction=0.01). The difference between the 
groups was not influenced by gestational age at birth (p=0.43), 
need for mechanical ventilation (p=0.82) or whether the allo-
cated imaging predicted adverse outcome (0.87).

secondary outcomes
There was no significant difference in maternal STAI (p=0.55), 
paternal state (0.77) or trait anxiety (p=0.81).

There were no significant differences in health-related quality 
of life (see table S3 in the online supplementary file 1). No 

significant differences were observed in any category of health-
care resource use (see table S4 in the online supplementary file 
1). Mean costs of delivering a single MRI scan and routine clin-
ical ultrasound were £773 and £458, respectively, a significant 
mean cost difference (95% CI) of £315 (£295–£336) per infant 
(see table S5 in the online supplementary file 1). The total mean 
cost per infant over the 24 months follow-up was £16 231 and 
£10 916 for the MRI and ultrasound groups, respectively, a 
non-significant mean cost difference (95% CI) of £5315 (−£188 
to £10 819). To describe maternal confidence in caring for their 
infants further, we report the results of relevant questionnaires 
in table S6 in the online supplementary file 1. These show most 
mothers coping well in both groups.

Diagnostic precision
Twenty-two infants had ultrasound scans and 72 had MRI 
scans predicting adverse prognosis. GMFCS and BSID-III were 
assessed in 484 infants at median 20.18 (IQR 20.00–20.66) 
months corrected age. Sensitivity, specificity, positive and nega-
tive predictive values and AUROC could be calculated for 480 
MRI and 484 ultrasound images; results are given in table 4. 
Trial and routine clinical ultrasound were compared in the 420 
infants where clinical reports were available and showed no 
difference: trial AUROC 0.66 (0.58–0.74), routine 0.68 (0.59–
0.77293), (p=0.45).

Evaluating the principal reference standard, MRI was more 
predictive of moderate or severe functional impairment than 
ultrasound (AUROC: MRI (0.74 (0.66–0.83); ultrasound (0.64 
(0.56–0.72), (p=0.01)) and more predictive of outcome in the 
BSID-III motor domain (AUROC: MRI 0.64 (0.58 to 0.70); 
ultrasound 0.57 (0.53 to 0.61), (p=0.008). Severe changes alone 
on MRI produced lower AUROC.

Prediction of PARCA-R was assessed in 475 infants and 
M-CHAT in 482. AUROC for all neurocognitive and language 
domain tests were less than 0.6, although better by MRI for 
M-CHAT (p=0.006) and PARCA-R (p=0.003), and sensitivity 
was low.

DIscussIon
Preterm birth has long-lasting effects on individuals and families, 
and increased maternal anxiety adversely influences child devel-
opment.3 4 26 This study describes the wider effects of informa-
tion on the lives of preterm infants and their families.

Mothers’ anxiety was reduced in both groups after they received 
information from neuroimaging, slightly more after MRI. This 
effect was not limited to a particular group of mothers or infants, 
was unaffected by the severity of the infants’ medical problems and 
was not a reflection of long-term anxiety traits; it was nuanced with 
MRI increasing anxiety in mothers whose children had emerging 
impairments. Though statistically significant, the effect was of little 
clinical significance. The STAI was persistently less than 40, and 
thus regarded as normal, and imaging information did not alter 
health-related quality of life or decrease the need for infant health-
care and had no effects on fathers. However, the results show that 
imaging information does not increase family anxiety, and the 
statistically significant difference between the groups is evidence 
that the study was correctly powered and a type 2 error unlikely.

Prediction of adverse outcome is an important aspect of neonatal 
care.27 Our principal reference standard for diagnostic assessment 
was moderate or severe functional motor impairment (GMFCS 
2–5),28 which is frequently used in preterm infants29 and reduces the 
variability inherent in distinguishing mild impairment from normal 
at this age. It has been suggested that GMFCS is less stable before 
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original article

age 2,30 but comparable predictions were made of suspected motor 
impairment defined by the BSID-III, an established test which 
correlates with, although probably underestimates, long-term 
motor deficits.31 MRI was a better, but still imperfect predictor, 
selecting 15% of survivors of whom one-quarter had moderate 
or severe functional motor deficits while missing approximately 
one-third of children with neuromotor problems.

As well as motor function, neurocognitive abilities are important 
in determining long-term outcomes, particularly in children of 
economically disadvantaged families,32–35 and neurocognitive 
testing around 2 years stably predicts later ability.36 37 Neither 
MRI nor ultrasound provided precise prediction of cognitive or 
language function, or an increased risk of autism.

These results appear to be robust. The sample comprises over 
25% of the eligible patients from a diverse range of neonatal units, 
more than in the largest systematic review,9 and neurodevelop-
mental outcomes were typical of the preterm population.38 39 MRI 
was acquired in 99% of infants and interpreted using a widely avail-
able scheme.9 11 We did not study volumetric or diffusion MRI: 
despite predictive power in group studies6 40 41 they often involve 
specific computational methods. Trial ultrasound had similar prog-
nostic value to routine clinical examinations, and the values used 
to inform parents were broadly supported by this larger cohort.11 
Results were unchanged by the sensitivity analyses.

MRI thus did no harm, but provided only modest improve-
ments in patient and family outcomes, while increasing the cost 
of care by around £315 per patient. These data do not suggest 
that all preterm infants should be offered MRI.
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