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a b s t r a c t 

Confirmation of pregnancy viability (presence of fetal cardiac activity) and diagnosis of fetal presenta- 

tion (head or buttock in the maternal pelvis) are the first essential components of ultrasound assessment 

in obstetrics. The former is useful in assessing the presence of an on-going pregnancy and the latter is 

essential for labour management. We propose an automated framework for detection of fetal presenta- 

tion and heartbeat from a predefined free-hand ultrasound sweep of the maternal abdomen. Our method 

exploits the presence of key anatomical sonographic image patterns in carefully designed scanning proto- 

cols to develop, for the first time, an automated framework allowing novice sonographers to detect fetal 

breech presentation and heartbeat from an ultrasound sweep. The framework consists of a classification 

regime for a frame by frame categorization of each 2D slice of the video. The classification scores are then 

regularized through a conditional random field model, taking into account the temporal relationship be- 

tween the video frames. Subsequently, if consecutive frames of the fetal heart are detected, a kernelized 

linear dynamical model is used to identify whether a heartbeat can be detected in the sequence. In a 

dataset of 323 predefined free-hand videos, covering the mother’s abdomen in a straight sweep, the fetal 

skull, abdomen, and heart were detected with a mean classification accuracy of 83.4%. Furthermore, for 

the detection of the heartbeat an overall classification accuracy of 93.1% was achieved. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

There have been significant advances in the analysis of ultra-

sound images in the last decade due in part to increased im-

age quality but also the introduction of modern machine learning

into the medical image analysis field ( Noble, 2016 ). Machine learn-

ing is arguably very well-suited to recognize sonographic patterns

in ultrasound images, which can form the basis of image-based

decision-making. By contrast, traditional biomedical image analysis

methods can find the dropouts, shadows, and sonographic signa-

tures characteristic of ultrasound images difficult to accommodate,

as they are the mapping of anatomy through the ultrasound im-

age formation process. The most successful traditional methods in

the literature are model-based methods that use strong geometric

models as priors to cope with missing boundaries and artefacts. 

Our particular interest is in obstetric ultrasound. The majority

of the image analysis literature in this area has focused on automa-

tion of fetal biometry measurement for the anomaly scan (taken
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t 18–22 weeks gestational age). See Challenge US ( Rueda et al.,

014 ) for a recent challenge that looked at a variety of meth-

ds and their performances. The anomaly scan is an essential ul-

rasound screening examination recommended worldwide for the

etection of fetal abnormalities and early fetal growth restriction

 Tiran, 2005 ). During a scan, a skilled sonographer acquires and

ecords a number of two dimensional (2D) images of key fetal

tructures in diagnostic planes, following a standardized clinical

rotocol (typically a minimum of 6 but often more than 20 images)

 Salomon et al., 2011 ). The goal is to diagnose structural abnor-

alities and to acquire biometry measurements that are verified

gainst fetal growth charts. Research has looked into automating

iometry measurement. For instance, Carneiro et al. (2008) used

 discriminative constrained probabilistic boosting tree classifier

or the detection and measurement of head, femur and abdomi-

al structures. In their framework the probabilistic boosting tree

lassifier was trained on a database of key structures, where

he nodes of the binary tree are strong classifiers trained using

daBoost. Rahmatullah et al. (2011b ); 2011a ) used Adaboost for

natomical object detection in 2D fetal abdominal ultrasound im-

ges, where their framework was designed to identify whether

he correct abdominal landmarks required for a standard plane
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ere present. Sun (2012) applied a graph-based approach for au-

omatic detection of the fetal skull, where initially the short-

st circular path was detected. An ellipse was then fitted to the

hape for finding the skull boundary. Ponomarev et al. (2012) ap-

lied a multilevel thresholding approach combined with edge de-

ection and shape-based recognition for segmentation of the fe-

al skull. Imaduddin et al. (2015) used Haar-like feature with Ad-

Boost to detect fetal skull and femur. They further applied a Ran-

omized Hough Transform for making biometry measurements.

nto et al. (2015) used a Random Forest to segment a head con-

our in fetal ultrasound scans that were acquired with a low-cost

robe. Perhaps the most similar work to our own is the work of

ei et al. (2015) , where densely sampled RootSIFT features were

xtracted and encoded using Fisher vectors for automatic recogni-

ion of fetal facial standard planes. 

Three dimensional (3D) ultrasound was introduced in the 1990s

s a technology designed to improve clinical workflow. It aimed

o replace multiple 2D acquisitions by a single 3D acquisition,

ollowed by standard plane finding in the volume. However,

anual standard plane finding is quite time-consuming. This

as led to a number of methods being proposed for automated

lane finding ( Chykeyuk et al., 2014; Yaqub et al., 2015 ) and some

ommercial systems now have automated plane finding as an

ption. However, the images from a 3D acquisition have a different

ppearance to those of a 2D acquisition and hence can contain

ifferent diagnostic value. It remains to be seen whether this type

f solution will become accepted clinically. Quantification of 3D

etal ultrasound has, however, shown some promising results. For

nstance, Yaqub et al. (2011) successfully used Random Forests to

erform fetal femur segmentation from 3D ultrasound volumes.

his framework was later extended to automatically detect local

rain structures in 3D fetal ultrasound images ( Yaqub et al.,

012 ). Namburete et al. (2015) used Regression Forests to estimate

he gestational age of a foetus from sonographic signatures in

he brain. In the latter case, the accuracy of the method in the

hird trimester was shown to be higher than the current clinical

tandard. 

It is important to note, though not often discussed, that in

oth standard 2D and 3D fetal sonography screening a sonogra-

her follows a standardized clinical protocol, which defines crite-

ia for the plane definition - see for instance the ISUOG guide-

ines for standard plane criteria ( Salomon et al., 2011 ). Standard-

zed 2D planes of acquisition undergo specific quality control to

nsure they meet a set of predefined criteria. Moreover, sonog-

aphers need to be specifically trained to be able to meet these

tandards, as training programmes have previously shown to im-

rove measurement variability ( Sarris et al., 2011 ) and image qual-

ty ( Wanyonyi et al., 2014 ). We refer to this standardized protocol

s a constrained scan 

1 since all images should have a similar ap-

earance and contain certain anatomical structures, i.e. their ap-

earance is deliberately constrained. These constraints can some-

imes assist automated image analysis - for instance in abdominal

ircumference (AC) measurement, clear visualization of the stom-

ch bubble, umbilical vein and often the spine is expected - but

mportantly reduce the degrees of variability with respect to the

ppearance of a general ultrasound scan of the foetus. Constrained

cans are widely used in clinical practice, and simplify the image

nalysis challenge. However they have a key limitation. Acquisi-

ion of constrained scans requires a skilled sonographer. For wider

doption of clinical ultrasound in medicine and for uptake of ul-

rasound in the developing world, the need to acquire constrained

cans has to be relaxed in favour of much simpler scanning proto-

ols that a non-expert can readily learn. 
1 In the clinical setting this is referred to as a standardized scan. 

s  
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s  
Encouraging results from observational studies demonstrated 

hat trained and standardized healthcare workers in developing

ountries can perform as well as qualified sonographers in terms

f measurements reproducibility ( Rijken et al., 2009 ). An automatic

ideo acquisition analysis could potentially help in training, stan-

ardization and quality control in basic obstetric ultrasound for

valuating the fetal presentation and viability. The simplest scan-

ing protocol to learn would be a linear ultrasound video sweep

s illustrated in Fig. 1 a. In our work, we propose the use of this

ype of scan and name it a predefined free-hand acquisition pro-

ocol. A novice sonographer can readily be trained to acquire data

f this type. It is the analysis of data of this kind that we consider

n this article. The question is then what useful diagnostic infor-

ation can be automatically analysed from such videos? 

To place our work in perspective, Fig. 2 schematically summa-

izes how some of the current state-of-the-art literature in fetal

ltrasound image analysis maps between the skill needed for ac-

uisition and type of image interpretation and analysis (none, de-

ection & localization, quantification). As can be seen, most im-

ge analysis literature is in the lower third of this graph (data ac-

uired by a skilled sonographer). We have included the assisted

ree-hand works of Kadour and Noble (2009) ; Kadour et al. (2010) ;

rown et al. (2013) , which use controlled mechanical movement

f the probe or subject for elastography on the middle row. These

ethods generate visualization of ultrasound information and re-

uire a small amount of user input to guide probe placement. 

In recent years, several methods have been proposed for au-

omatic detection and localization of anatomical fetal structures

rom ultrasound videos. Linear Dynamical Systems (LDS) were

sed to localize structures of interest in an ultrasound video ob-

ained from a phantom by Kwitt et al. (2013) . In our own work

araci et al. (2014b ), developed independently at around the same

ime, a method that performed well on clinical ultrasound video

equences was proposed. In that work, the original video is broken

nto smaller sequences of shorter length, where all sub-sequences

ave the same length. The dynamics of the sequences are then

earned using a linear dynamical system. Identification and clas-

ification of the sequences of interest are then based on the simi-

arities between the estimated LDS model parameters. 

In an attempt to automatically find the image best representing

he fetal abdominal standard plane in a video sequence, Kumar and

hriram (2015) used a method based on the spatial configuration

f key anatomical landmarks. In previous works on which the cur-

ent paper builds, we have investigated the bag of visual words ap-

roach with feature symmetry filters ( Maraci et al., 2014a ) as well

s improved Fisher vector (IFV) encoding ( Maraci et al., 2015 ) with

 support vector machine (SVM) to identify frames of interest in

n ultrasound video. 

Finally, CNNs are gaining popularity in medical image analy-

is including analysis of ultrasound images although they are best

uited to very large datasets and balanced data (which we do not

ave in our application). Chen et al. (2015) used a convolutional

eural network (CNN) for standard plane localization of the skull

nd abdomen from an ultrasound video although the details of ac-

uisition were not stipulated. Gao et al. (2016) have recently used

 CNN for partitioning ultrasound video and ( Baumgartner et al.,

016 ) for standard plane detection. We discuss CNNs further in the

iscussion section. 

To the best of our knowledge, the automation of the task of

etecting the fetal presentation and heartbeat from a “predefined

ree-hand” ultrasound video has not been attempted before. We 

ropose a three-step detection framework for characterizing an ul-

rasound video obtained from a predefined free-hand constrained

can protocol for pregnancies beyond 28 weeks of gestation. The

rst step in our method automatically identifies the frames corre-

ponding to the fetal skull, abdomen and the heart. This is used
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Fig. 1. A predefined free-hand scan vs. a typical standardized obstetric scan: (a) Sonographer follows a simple scanning protocol for automated analysis to capture some 

structure of interest. (b) The sonographer scans over multiple paths to locate the best visual representation of the key structures, where they are saved for further analysis. 

Fig. 2. Ultrasound scan spectrum: Controlled sonographer guidance and automated image analysis increases from left to right, to obtain clinically valid measurements. On 

the Y axis, data acquisition protocol changes from being constrained at the bottom to free-hand on the top. 
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to infer the fetal presentation as explained in Section 2.2 . The sec-

ond step takes candidate heart frames from the first step to local-

ize the position of the fetal heart as explained in Section 2.3 . Fi-

nally the dynamics of the fetal heart are modelled from fetal heart

frames to identify whether a fetal heart is beating or not. Exper-

iments and results are presented in Section 3 , followed by a dis-

cussion and conclusion. Earlier versions of some of the component

algorithms have been presented in short conference and workshop

papers ( Maraci et al., 2014b; 2015; Bridge and Noble, 2015 ). The

current paper describes the complete algorithm in detail for the

first time and presents substantial experimental evaluation of the

complete framework to justify its design. 
d  
. Methods 

.1. Experimental setup 

323 videos were acquired from subjects participating in the

NTERGROWTH-21 ST project ( Sarris et al., 2013; Papageorghiou

t al., 2014 ) at the University of Oxford. Data acquisition was car-

ied out using a mid-range ultrasound machine (Philips HD9 with

 V7-3 transducer) by a number of experienced obstetricians who

ere trained for about 10 min to follow the simple scanning pro-

ocol. The predefined free-hand ultrasound videos were acquired

hile moving the transducer from the maternal cervix to the fun-

us following the longitudinal axis of the uterus as in Fig. 1 a. All
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Fig. 3. Steps for feature vector extraction. Preprocessing involves masking each frame and reducing the image size to improve computational cost. Feature extraction (SIFT, 

rootSIFT, SURF) is then carried out on each image. The extracted features are clustered by a Gaussian mixture model (GMM) and encoded using BoVW, VLAD, or FV encoding. 

Fig. 4. The main steps of the framework. Given a new training video, all the frames are first classified into “skull”, “abdomen”, “heart” or “other”. If a set of consecutive fetal 

heart frames are detected in step A, they are further analysed in step B to identify whether a heartbeat can be found. In step T A , the green colour represents the training 

dataset of frames corresponding to the fetal abdominal class, yellow indicates the training dataset of fetal hearts, red indicates the dataset of fetal skulls and white indicates 

the dataset of frames which belong to the “other” class. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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oetuses had a normal growth according to international standards

 Villar et al., 2014 ). 

The feature extraction process is illustrated in Fig. 3 and the

ull algorithm we have developed is shown schematically in Fig. 4 .

n step A, a multi-class discriminative classifier - trained using the

ata in T A - is deployed to categorize ultrasound data into four

lasses of fetal structure: skull, abdomen, heart and “other”. At test

ime, given a set of unseen video frames, a pre-trained classifier is

sed to categorize the data into the four classes. 

Considering the typical heartbeat frequency of a foetus and scan

peed (30 fps) employed in this work, it is assumed that heart

otion can be captured in at least 30 frames, if it indeed exists.

herefore, if 30 or more consecutive frames are classified as fe-

al heart frames in step A, they are passed on to step B to iden-

ify whether the fetal heart beats or not. In this step, a kernel dy-

amic texture classifier is trained based on training sequences in

 

B , where positive samples in the training set are short videos of

 beating fetal heart, and negative samples are sequences that do

ot contain a fetal heartbeat. Moreover, it is important to note that
 a  
s the ultrasound videos are intentionally kept simple and general,

he likelihood of having a long sequence of a fetal heartbeat is low.

n what follows, each of the steps are explained in more detail. 

.2. Step A - Video frame classification 

In this subsection we describe the 4-class video frame classi-

cation step in more detail. We chose what is sometimes called

 hand-crafted feature classification approach rather than deep

earning because this class of method is often well-suited to prob-

ems defined by relatively small amounts of data (here we had 323

ideos), there is significant class imbalance, and the relative rich-

ess of features that can represent the problem. 

.2.1. Features 

Dense feature extraction, as used in this paper, has become an

ssential part of many state-of-art image classification methods.

n this paper, the speeded up robust feature (SURF) descriptors

s described by Bay et al. (2006) and the scale-invariant feature
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transform (SIFT) descriptors ( Lowe, 2004 ) were utilized and com-

pared. The SIFT algorithm computes a histogram of local oriented

gradients around an interest point and stores the bins in a 128-

dimensional vector (8 orientation bins for each of the 4 × 4 lo-

cation bins). The SURF descriptor describes a distribution of Haar

wavelet responses at each interest point neighbourhood and ex-

ploits the integral images to estimate Haar features for speed. It

results in a 64-dimensional vector and its lower feature dimen-

sions enables a faster detection, at a cost of potentially sacrificing

detection accuracy. 

In this paper, both features are densely computed over each im-

age with a stride of 4 pixels. Dimensionality reduction of SIFT fea-

tures using PCA followed by square rooting the feature vectors has

been shown to improve classification results ( Arandjelovi ́c and Zis-

serman, 2012 ) in computer vision applications, so we also study its

effect on ultrasound images. Additionally, feature vectors are en-

coded using the traditional bag-of-visual-words (BoVW), vector of

locally aggregated descriptors (VLAD) ( Jegou et al., 2010 ), and the

improved Fisher vector (FV) ( Perronnin et al., 2010 ) and a compar-

ison between the results of each approach is provided. 

The FV encoding approach works by aggregating a large set

of feature vectors into a high-dimensional space. A common ap-

proach, which we utilize here, is to fit a parametric generative

model such as a Gaussian Mixture Model (GMM) to the features

and then to encode the derivatives of the log-likelihood of the

model with respect to its parameters. First and second order dif-

ferences between the dense features and each of the GMM centres

can then be estimated. 

Specifically, given I = ( x 1 , . . . , x N ) a set of D dimensional SIFT

feature vectors extracted from an image, and � = (μk , �k , πk : k =
1 , . . . , K) the parameters of a Gaussian Mixture Model fitting the

distribution of the descriptors (where K is the number of multi-

variate Gaussian distributions, μk , �k and π k are the mean, vari-

ance and the prior probability of each Gaussian distribution k ), the

GMM associates each vector x i to a mode k in the mixture with a

strength given by the posterior probability such that, 

q ik = 

exp 

[ 
− 1 

2 
( x i − μk ) 

T �−1 
k 

( x i − μk ) 
] 

�K 
t=1 

exp 

[ 
− 1 

2 
( x i − μt ) T �

−1 
k 

( x i − μt ) 
] . (1)

Given N SIFT feature vectors, the mean and covariance devia-

tions vectors for each mode k are defined such that, 

u jk = 

1 

N 

√ 

πk 

N ∑ 

i =1 

q ik 
x ji − μ jk 

σ jk 

, (2)

v jk = 

1 

N 

√ 

2 πk 

N ∑ 

i =1 

q ik 

[ (
x ji − μ jk 

σ jk 

)2 

− 1 

] 
, (3)

where j = 1 , . . . , D and represents the vector dimensions. The

Fisher vector � of image I is then constructed by stacking the vec-

tors u k and v k for each of the K modes in the Gaussian mixtures,

�(I ) = [ u 1 T
 , . . . , u k T

 , v 1 T
 , . . . , v k T

 ] T  . (4)

VLAD encoding utilizes a similar approach to Fisher vectors

and encodes a set of local feature descriptors, I = (x 1 , . . . , x N ) , ex-

tracted from an image using a dictionary built using a clustering

method such as Gaussian Mixture Models (GMM) or K-means clus-

tering. More formally, let q ik be the strength of the association of

data vector x i to cluster μk , such that q ik ≥ 0 and 

∑ K 
k =1 q ik = 1 ,

where the association may be either soft (e.g. obtained as the pos-

terior probabilities of the GMM clusters) or hard (e.g. obtained

by vector quantization with K-means). VLAD encodes feature x by

considering the residuals v k = 

∑ N 
i =1 q ik (x i − μk ) . The residuals are

stacked together to obtain the vector ˆ �(I ) = [ . . . , v ᵀ , . . . ] T . 
k 
.2.2. Classification 

We use support vector machines (SVM) for classification. One

f the advantages of using SVM-based classification is that it al-

ows for an efficient use of kernels. The SVM hyperparameters were

uned based on a small sub-set of the data that was randomly

elected. Once the optimal parameters were estimated they were

sed for training the classifier. For non-linear problems, kernel

unctions allow the data to be projected to a higher-dimensional

eature space , where a linear model can then be used to clas-

ify the data. Moreover, while linear kernels can be highly effi-

ient ( Joachims, 2006 ), non-linear kernels have shown to produce

igher classification accuracy ( Zhang et al., 2007 ). It was shown

hat square rooting SIFT ( sqrt(SIFT/sum(SIFT)) ) is similar to using

he non-linear Hellinger’s kernel in the original input space, with-

ut its computational costs ( Arandjelovi ́c and Zisserman, 2012 ). 

The classifier is trained to categorize the frames into the four

lasses of fetal skull, fetal abdomen, fetal heart and “other” struc-

ures. As the data used in this study consists of an ordered se-

uence of frames, temporal information is used to regularize the

lassification results. In order to utilize this temporal information

 conditional random field (CRF) graphical model ( Lafferty et al.,

001 ) is constructed, where each frame of the video is represented

s a node in the graph. CRFs have previously been successfully

sed to regularize machine learning for medical image analysis so-

utions for example in Bauer et al. (2011) ; McIntosh et al. (2013) ;

owozin et al. (2011) . Here the classification scores for each frame

re converted into probabilities and used as the node potential in

he graph. This setting smooths out the classifier scores by taking

nto account the neighbouring frames, where the joint probability

f an assignment to all the nodes f i (variables) is defined as the

ormalized product of a set of non-negative potential functions, 

p( f 1 , f 2 , . . . , f N ) = 1 /Z 

N ∏ 

i =1 

φi ( f i ) 
E ∏ 

e =1 

φe ( f e j , f e k ) . (5)

ere we have a potential function for each node i, φi (), and edge

, φe (), in the graph where ( f e j , f e k ) represents an edge between

odes j and k . As each frame of the video is treated as a node in

ur graphical model, the node potential φi () for that frame is set

o the probability scores obtained from the first step. The edge po-

ential function φe () between any two nodes is the probability of a

ode transitioning from one state to another and has been empiri-

ally set based on the videos in the training dataset. Moreover, Z is

he normalization constant to ensure the distribution sums to one

ver all possible joint configurations of the variables. Finally, the

iterbi ( Forney Jr, 1973 ) algorithm is used to find the most proba-

le classification result for each frame. 

.3. Step B.1 - Locating the fetal heart 

The frame classification procedure described in Section 2.2 is

ble to identify the frames containing the fetal abdomen. In order

o assess fetal viability, it is necessary to detect the location of the

eart within these frames. This task is complicated by the fact that,

hen simple sweeps are used, the orientation of the heart rela-

ive to the probe is variable and unknown. We therefore chose to

ake use of rotation invariant detection methods, first introduced

or computer vision applications by Liu et al. (2014) and adapted

or fetal echocardiography in Bridge and Noble (2015) . An extended

ersion of this work can be found in Bridge et al. (2017) . 

.3.1. Rotation invariant features 

The method for calculating rotation invariant features is based

n the use of a set of complex-valued rotation invariant basis func-

ions, b , that have a particular form that is described in polar co-

rdinates ( r, θ ) by the product of a radial profile p ( r ) and a Fourier
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Fig. 5. Set of profiles and basis functions with J = 3 , K = 4 (only k ≥ 0 displayed). 

The saturation and hue represent the complex magnitude and argument respec- 

tively ( Bridge and Noble, 2015 ). 
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asis on the angular coordinate, θ ( Liu et al., 2014; Bridge and No-

le, 2015 ): 

 j,k (r, θ ) = p j (r) e ikθ (6)

or 0 ≤ r < R , 0 ≤ θ < 2 π , where j indexes a set of different

adial profiles, p j ( r ). Notice that, while the form of the radial pro-

le is general, the angular part of the separable form of the basis

unction must be the Fourier basis in order to achieve the desired

otation invariance. Fig. 5 illustrates a set of basis functions. 

In order to use the framework with a vector-valued image rep-

esentation (such as the gradient), v ( p ), we must first express the

rientation of the vectors in a Fourier orientation histogram. This

epresents an orientation histogram as a truncated set of M Fourier

eries coefficients, rather than a set of discrete bins. The m th coef-

cient at image position p is: 

 m 

(p ) = ‖ v (p ) ‖ e −im arg (v (p )) , m = 0 , 1 , . . . , M. (7)

When working with discrete images, we sample the basis func-

ions on a rectangular grid and use them as a filter kernel on the

ourier histogram images. One feature with parameters j, k, m de-

cribing the window centred at position ( x ) is therefore given by,

 j,k,m 

(p ) = b j,k (p ) ∗ c m 

(p ) , (8)

nd a complete description of a window is built up by using a

umber of such basis functions. In our experiments, parameters

, k, m are empirically set to 6,4,4 respectively. As a result of the

hift property of the Fourier series, the complex magnitude of the

esulting features are analytically invariant to the orientation of the

nderlying image. 

.3.2. Support vector classification 

For classification of each window as heart or non-heart we use

 linear SVM classifier with the rotation invariant features from

ection 2.3.1 as input. At test time, each pixel in each frame is

ssigned a classification score as the output of the SVM classifier,

eflecting the probability of belonging to a heart. For each image

ocation, we simply sum these scores across frames to get a total

core for each pixel, and choose the pixel with the highest score to

e the location of the centre of the heart. 

Note that the location only needs to be approximate as the next

tep uses ROIs around the estimated location for heartbeat detec-

ion and the accuracy of location is not the critical factor. 

.4. Step B.2 - Detecting the fetal heartbeat 

Once a minimum of 30 consecutive video frames of the fetal

eart are identified and the heart is localized using the proce-

ures described in Section 2.3 , they are compiled together to form

 short video sub-sequence. Our goal is to derive a model of a
eartbeat in terms of the intensity patterns in this video subse-

uence. Moreover, we investigate the accuracy of the framework

hen learning the dynamics on heart ROI compared to the en-

ire image. The positive training examples used are short video se-

uences of a fetal heartbeat and the negative training sequences

re short video sequences that do not contain a heartbeat, ran-

omly extracted from the videos in dataset. Therefore, the classi-

er is trained to perform a binary classification to identify whether

ny given sequence, during test time, contains the correct dynam-

cs and motion that corresponds to a fetal heartbeat. 

Specifically, the feature trajectories (dynamics) of the sequences

f frames, { y t } T t=1 
, are modelled as the output of a linear dynam-

cal system (LDS). We follow Doretto et al. (2003) for the sys-

em identification of the model, which models pixel intensities in

ach frame as the output of a LDS. However as opposed to us-

ng the raw pixel intensities, we instead use the output of frames

ltered by a feature symmetry filter ( Rajpoot et al., 2009 ), which

roduces a contrast invariant representation of structures on each

rame. In this model, the appearance of each video frame is de-

ermined through the observed variable and the motion and dy-

amics in the video over a given time is determined through the

idden-state variables, which are sampled from a Gauss–Markov

rocess. Furthermore, the observed frame at any given time can

e constructed from a linear combination of the hidden state vari-

bles. Therefore, given an ultrasound sequence S of T video frames,

et S = [ y 1 , . . . , y T ] , where y t ∈ R 

d refers to the frame observed at

ime t . It is assumed that at each time instant t , a noisy version of

he image can be measured, y (t) = S (t) + w (t) , where w (t) ∈ R 

d is

n independent and identically distributed (i.i.d.) sequence drawn

rom a known distribution, resulting in a positive measured se-

uence y (t) ∈ R 

d for t = 1 , . . . , T . The evolution of an LDS can be

odelled as: 

x t+1 = Ax t + v t 

y t = Cx t + w t 

(9) 

ere x t ∈ R 

n is the state of the LDS and y t ∈ R 

d are the observed

ixel intensities at time t . Matrix A ∈ R 

n ×n is the state transition

atrix that describes the dynamics of the state evolution and C ∈
 

d×n is the output matrix. 

In a linear system such as Eq. 9 , the output matrix C can be es-

imated via singular value decomposition of the observation matrix

 , where C can be restricted to the N largest eigenvalues. However,

ere a non-linear model known as a Kernel Dynamic Texture (KDT)

 Chan and Vasconcelos, 2007; Kwitt et al., 2013 ) is used where the

volution of the hidden states of the model are kept linear. In or-

er to capture the dynamics of the video the output matrix C is re-

laced by a non-linear observation function C : R 

n → R 

d . Therefore

iven the same ordered ultrasound sequence S = [ y 1 , . . . , y T ] and a

ernel function k ( y 1 , y 2 ) with associated feature transformation <

( y 1 ), φ( y 2 ) > , the c th eigenvector kv c can be used to obtain the

 th kernel principal component in the feature space: 

v c = 

T ∑ 

i =1 

αi,c φ(y i ) (10) 

here αi, c represents the i th component of the c th weight vec-

or and αc = 

1 √ 

λc 
kv c , assuming the eigenvectors are sorted in de-

cending order of the eigenvalues { λc } T c=1 . Here λc and kv c are the

 th largest eigenvalue and eigenvector of the kernel matrix K re-

pectively. Finally the sequence of hidden states X and the state

ransition matrix A can be estimated as 

 = αᵀ K 

 = [ x 1 , . . . , x T −1 ][ x 0 , . . . , x T −2 ] 
† (11) 
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Table 1 

Mean classification accuracies. The most accurate configurations for the 

different f eatures and encoding strategies, over the number of words. 

Breakdown plots are shown in Appendix A . 

No. Words ↓ SIFT L 1 SIFT L 5 rootSIFT L 1 rootSIFT L 5 SURF L 5 

10 74 .9 79 .5 72 78 .4 72 .5 

20 77 .4 80 .3 78 79 .1 74 .8 

40 81 .5 81 .7 80 .3 81 77 .7 

60 82 .2 83 81 82 .3 77 .5 

80 80 .7 82 81 .8 82 .8 77 .9 

100 81 .5 82 .5 82 .7 83 78 .5 
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2.4.1. Distance metrics 

Given a KDT model estimate for each sub-sequence, a suit-

able metric now needs to be defined to assess similarity between

any two sub-sequence models. Prior work on comparison met-

rics of LDSs range from metrics based on subspace angles be-

tween the observability subspaces of the systems ( De Cock and

De Moor, 20 0 0 ) to metrics based on the Binet–Cauchy kernels

( Vishwanathan et al., 2007; Bissacco et al., 2007 ) and finally met-

rics based on the KL-divergence of the probability distributions

of the stochastic processes ( Chan and Vasconcelos, 2005 ). A full

comparison of these classes of metrics is outside the scope of

this paper. However, Chaudhry and Vidal (2009) illustrated on a

number of applications that the similarity metrics based on the

Martin Distance and Binet–Cauchy maximum singular values ker-

nel produced the best results. Furthermore, we have previously

shown ( Maraci et al., 2014b ) that the Binet–Cauchy maximum sin-

gular values kernel produced superior results on medical ultra-

sound data. 

The Binet–Cauchy (BC) singular value kernel

( Vishwanathan et al., 2007 ) used in this paper can be explained as

an extension of the BC trace kernel. Given two LDS models M 1 and

M 2 (represented by their model parameters), with corresponding

sequences { y M i 
t } T t=1 that have the same underlying noise process,

the trace kernel for the two non-linear dynamical systems (NLDS)

is as follows: 

K NLDS ( M 1 , M 2 ) := E v ,w 

[ ∞ ∑ 

t=0 

λt k ( y 
1 
t , y 

2 
t ) 

] 
, (12)

where λ is a weight factor between 0 and 1 and E is the expected

value of the infinite sum of inner products with respect to the joint

probability distribution of v t and w t . Thus the BC trace kernel for

NLDS is defined as 

K NLDS ( M 1 , M 2 ) = x T

 

0 
P̄ x 

ᵀ 
0 + 

λ

1 − λ
trace ( Q ̄P + R ) (13)

where x 0 is the initial state of the system, P̄ = 

∑ ∞ 

t=0 λt (A 

1 
t ) T

 FA 

2 
t ,

F is the inner product matrix between all the Kernel PCA (KPCA)

components and Q and R are the state and output covariance ma-

trices. To remove the dependency on the initial state and the noise

process, Chaudhry et al. (2009) proposed the BC maximum singu-

lar value kernel for NLDSs as K 

σ
NLDS 

= max σ ( ̄P ) , where σ rep-

resents the singular values kernel, to take into account only the

dynamics of the NLDS. Thus a normalized kernel of the similarity

values can be constructed such that K( M 1 , M 2 ) = 1 if M 1 = M 2 as

K(M 1 , M 2 ) = 

K( M 1 , M 2 ) √ 

K( M 1 , M 1 ) , K( M 2 , M 2 ) 
(14)

A distance between two sequences with LDS parameters M 1 and

M 2 can now be computed as d( M 1 , M 2 ) = 2(1 − K( M 1 , M 2 )) . This

distance is then used as the kernel in an SVM classification frame-

work to identify the presence or absence of a fetal heartbeat in the

sequence. 

3. Results and discussion 

Experiments were designed to evaluate the accuracy of the pro-

posed framework. The first experiment evaluated the accuracy of

the frame classification task, including the use of different low-

level features and SVM kernels. The second experiment compared

detecting heartbeats on full images with first localizing a region of

interest (ROI) around the heart and only detecting the heartbeat

from analysis of heartbeat ROIs. 
.1. Classifying video frames 

In order to ensure training and test data are independent, a

ve-fold cross validation procedure was implemented for training

he classifier. At each training step, the model was trained on four

fths of the videos (260 videos) and tested on the unseen one fifth

65 videos). RootSIFT, SIFT, and SURF descriptors were calculated

n each 240 × 320 image with a stride of 4 pixels. Moreover, SIFT

nd rootSIFT descriptors were calculated at 9 different scales with

 scaling factor of 
√ 

2 . As the ultrasound data is only visible within

he ultrasound fan (field of view), all feature descriptors were only

omputed within the bounding box around this region to avoid cal-

ulating redundant information. The number of words (GMM clus-

ers) was varied from 10 clusters to 100 and the three feature en-

oding techniques (BoVW, VLAD, and FV) were utilized to encode

ach image before classification. Furthermore, to investigate the ef-

ect of SIFT feature dimensionality reduction on classification ac-

uracy, on the experiments in which the number of words exceed

0, SIFT features were decorated and reduced in dimensions from

28D to 40D and 20D, as suggested in Chatfield et al. (2011) . The

ffect of subdividing the data into 1 × 1 and 2 × 2 spatial

ubdivisions were also investigated. Here, for each tile, the corre-

ponding features were computed and stacked as one. In addition,

he effect of using larger SIFT descriptor patches was investigated,

y varying the SIFT patch size (8 × 8, 16 × 16, 32 × 32, and

 4 × 6 4 pixels). Finally, the accuracy of using different SVM ker-

els, namely the linear kernel, Hellinger kernel and the χ2 kernel

as investigated. Fig. 6 summarizes the classification accuracies for

ach of the four classes, where the number of words vary from 10

o 100. The experiments were repeated using the BoVW, illustrated

sing black colour, VLAD illustrated using blue, and FV encoding

llustrated using cyan. For the experiments where PCA is used to

educe feature dimensions, the classification accuracy is illustrated

sing a single point on the plot, indicated by the same colour and

ointer shape. Finally, L 1 indicates no spatial subdivisions and L 5

ndicates the additional 4 spatial subdivisions. As can be seen, gen-

rally, increasing the number of words up to 80, improves classifi-

ation results but a further increase to 100 does not show any sub-

tantial improvement to the classification accuracies. Regardless of

he use of spatial subdivision, the skull and “other” classes have

he best performance and fetal heart is the class that performs the

orst. Moreover, Figs A.11 , A.12 , and A.13 show the mean classi-

cation accuracies where the number of GMM clusters have var-

ed between 10 and 100 utilizing different features (SIFT, rootSIFT,

nd SURF), feature encoding techniques (BoVW, VLAD, FV), and

VM kernels (linear, Hellinger, χ2 ). Similarly, Figs A.14 , A.15 , and

.16 show the mean average precision for the same experiments.

 summary of the most accurate configurations are illustrated in

ables 1 and 2 . 

As can be seen from Figs A.11 and A.12 , the gain in accuracy

s only marginal when the number of GMMs is extended beyond

ighty clusters. Moreover, when the SIFT and rootSIFT features are

sed, the χ2 SVM kernel results in the worst performance com-
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Fig. 6. Classification accuracies for skull, abdomen, heart, and other structures. In- 

dividual class accuracies are reported for SIFT and rootSIFT features, while varying 

the encoder type (BoVW, VLAD, FV) and number of words. A SVM classifier with 

Hellinger kernel is utilized.(For interpretation of the references to colour in this fig- 

ure legend, the reader is referred to the web version of this article.) 

Table 2 

Mean average precision. The most accurate configurations for the different 

features and encoding strategies, over the number of words. Breakdown 

plots are shown in Appendix A . 

No. Words ↓ SIFT L 1 SIFT L 5 rootSIFT L 1 rootSIFT L 5 SURF L 5 

10 82 .4 88 .5 81 .2 88 .1 81 .6 

20 87 .3 90 .3 87 .9 90 .1 82 .8 

40 89 .6 91 .8 89 .2 90 .9 85 .8 

60 90 .9 92 .5 90 .4 92 .3 86 .3 

80 91 .2 92 .8 90 .9 92 .7 86 

100 92 93 .3 92 .2 93 .4 87 .2 
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ared to using the linear or the Hellinger’s kernel. Generally the

esults for the other two kernels are very similar with minor im-

rovements when the Hellinger kernel is used. For the SURF fea-

ures, the choice of the kernel does not have a dramatic effect on

he accuracy. 

As for the different feature encodings, FV encoding demon-

trates a small gain in accuracy across the experiments compared

o using VLAD or BovW. PCA dimensionality reduction can also

rovide a small boost to the accuracy when 80 or more words

re used. It is interesting to note that the use of spatial subdivi-

ion boosts the classification results as smaller structures can be

etter learned when the feature descriptor is augmented by spa-

ial subdivision. Figs. A .11, A .12, A .13, A .14, A .15 , and A .16 show the

ean classification and mean average precisions results. Moreover,

he most accurate cofiguration in these figures are summarized in

ables 1 and 2 . 

It is worth noting that using PCA to reduce the feature di-

ensionality to 20 reduces the classification performance results

n all experiments. However, for rootSIFT descriptors, using PCA

o reduce the feature dimensionality to 40 improves the perfor-

ance when spatial subdivisions are used, but reduces the per-

ormance when spatial subdivisions are not used. This can be ex-

lained by the fact that rootSIFT L 1 descriptors capture less infor-

ation compared to rootSIFT L 5 , and thus reducing their dimen-

ions even further results in loss of vital discriminative informa-

ion. It is interesting to note that SIFT L 1 and SIFT L 5 features illus-

rate a similar effect when PCA is applied to reduce feature di-

ensionality, whereby a decreased classification accuracy is ob-

erved. Figs. A.13 and A.16 show plots of the mean classification

ccuracy and mean average precision that have been obtained us-

ng the SURF feature descriptor. Similar to the previous experi-

ents, FV encoding results in better performance compared to the

ther encoding techniques. In addition, the fetal skull and “other”

lasses have the best classification performance and the fetal heart

s shown to be the most challenging class. In order to better under-

tand the effect of the three encoding techniques, the SVM kernels,

nd PCA dimensionality reduction on the classification accuracy of

ach individual class, an experiment was conduction where the

umber of GMM clusters was fixed to 80. The results are shown in

ig. 7 . It is interesting to note that FV and VLAD encoding mainly

oost up the classification performance for skull and other class.

heir performance for these two classes are very similar. FV en-

oding results in slightly better accuracy for the abdomen class. 

To investigate the effect of various rootSIFT descriptor patch

izes, the number of words was fixed to 80 and PCA was used

o reduce the feature dimensions to 40. The mean accuracy and

ean average precision (mAP) have been calculated for this ex-

erimented and are summarized in Table 3 (bold indicates best

esults). As can be seen, larger patch sizes improve classification

ccuracy, especially the results for the fetal heart. This is an intu-

tive finding as the fetal heart is a small structure and larger de-

criptors can capture a better representation of structures of inter-

st in relation to other anatomical structures. Moreover, applying
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Fig. 7. Mean classification accuracy for all four classes individually. The number of GMM is set to 80 clusters to allow for a performance comparison on each class, using the 

three encoding techniques, with and without PCA dimensionality reduction. 

Table 3 

Video frame classification results (Step A). The effect of increasing the rootSIFT descriptor size from an 8 × 8 to a 

16 × 16 patch is shown, where the number of the GMM is set to 80 modes and the PCA is used to reduce feature 

dimensions to 40. 

rootSIFT Skull class. Abdomen class. Heart class. Other class. Mean Mean ave. 

Patch Size Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%) Precision (%) 

8 × 8 94 .38 89 .17 35 .21 94 .58 78 .33 90 .01 

16 × 16 95 .83 91 .04 50 .42 97 .71 83 .75 93 .37 

32 × 32 96 .46 92 .08 60 .63 97 .92 86 .77 94 .75 

64 × 64 96 .25 86 .13 72 .92 97 .92 87 .55 95 .25 

 

 

 

 

 

 

 

 

 

S  

a  

a  

i  

s  

k  

a  

s  

m  
the CRF model to the classification scores regularizes the results

and eliminates sudden peaks. This is illustrated in Fig. 8 , where

the top bar illustrates the raw classification scores. As can be seen,

there are a number of frames that have been incorrectly classified

as other and abdomen but applying the CRF regularizes the results

as illustrated on the bottom bar. The results show that CRF regu-

larization makes the choice of rootSIFT and SIFT features less sig-

nificant because it levels their accuracy to a similar level. How-

ever, it cannot washout the differences between SURF and root-
IFT or SIFT. This is because the accuracy obtained using the SIFT

nd rootSIFT features are close, but the SURF features result in

 significantly lower accuracy. From a total of 129 unseen videos

n the test dataset, 41 videos missed either the skull or abdomen

tructures as assessed by visual inspection of videos. Unfortunately,

eeping the sweeps so simple increases the chance of missing key

natomical structures. Therefore, automatic detection of fetal pre-

entation would not be possible in such scenarios. From the re-

aining 88 videos, the presentation was correctly identified in 76
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Fig. 8. Classification scores for a test video: Raw classification scores are shown on the top bar and regularized scores on the bottom bar. The red colour represents the 

frames that have been classified as fetal skull, and similarly yellow, green and grey represent the fetal heart, abdomen and other structures, receptively. As can be seen, the 

misclassified frames have been relabelled correctly based on their neighbouring frames through the regularization process. Moreover, the slices labelled 1 − 5 on the left, 

correspond to approximate locations of the five sample frames illustrated on the right. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Table 4 

Accuracy of fetal heart localization. The algo- 

rithm described in Section 2.3 is used to local- 

ize the fetal heart in each sequence and crop 

the frames around the located heart. Accuracy 

is reported in terms of the euclidean distance 

between predicted heart centre point and the 

groundtruth (GT). 

Accuracy indication % 

Within GT diameter 82 .4 

Within GT radius 65 .5 

Within half GT radius 55 .6 

v  

s  

d  

g  

c  

T  

s  

t

 

g  

t  

t  

t  

c  

t  

v  

d  

S  

c

3

 

f  

s  

o  

c  

l  

a  

p  

s  

Fig. 9. Normalized Euclidean distance between the centre points of the predicted 

fetal heart and the groundtruth. A histogram of the normalized euclidean distances 

between the groundtruth points and the predicted centre points. The histogram is 

skewed towards lower distance points. 
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ideos sweeps (83.4%). One of the main challenges with free-hand

weeps is to ensure correct anatomical structures are present and

isplayed appropriately. Inspecting some of the failure cases sug-

ests that unusual appearance of the fetal skull or abdomen has

ontributed to mis-detection or failure to detect the presentation.

hese include views of the skull or abdomen that had not been

een in the training set and can be addressed in the future studies

hrough larger and more comprehensive datasets. 

Generally, the fetal skull and abdomen have significant distin-

uishing characteristics such as their outer boundaries and inner

exture structures. In addition, they both occupy a substantial por-

ion of the image on each frame. However, in our dataset this is not

he case for the fetal heart. Due to the simplified scanning proto-

ol, it is easy for fetal heart views to be very similar to those of

he fetal abdomen. Moreover, the fetal heart is contained within a

ery small portion of the image, in comparison to the skull or ab-

omen. Indeed it may not even be captured as part of sweep at all.

uch factors make fetal heart detection and characterization highly

hallenging in our dataset. 

.2. Localizing the fetal heart 

136 short video sequences of a fetal heartbeat each of 30

rames long were extracted from the dataset. The method de-

cribed in Section 2.3 was applied to find the approximate location

f the fetal heart. The Euclidean distance between the predicted

entre point of the fetal heart and the ground truth (GT) was calcu-

ated. Furthermore, a histogram of the distances is shown in Fig. 9

nd the localization accuracy is shown in Table 4 . As only the ap-

roximate location of the heart is required, the accuracy of this

tep was evaluated in terms of the Euclidean distance between the
redicted and GT centre points of the fetal heart. As can be seen, in

2% of the cases, the distance between the GT and predicted centre

oint is less than the diameter of the detected fetal heart. This is

he maximum permitted distance for an approximate localization

f the fetal heart. Moreover, in more than 55% of the sequences

he fetal heart has been localized almost perfectly, where the dis-

ance between the predicted and GT is less than half the radius of

he fetal heart. 

.3. Analysing the fetal heartbeat 

136 sequences of the fetal heart were used as positive fetal

eartbeat examples. In addition, another 136 short sequences of

he same duration were extracted randomly from dataset, where

o fetal heart was present. This formed the negative samples.

he dataset was split such that 70% was used for training and

he remaining sequences were used for evaluating the accuracy

f the system. Two experiments were conducted to analyse the

ynamics of these subsequences, using the method described in

ection 2.4 to identify whether a fetal heartbeat could be detected.

he first experiment used the entire ultrasound image, whereas in

he second experiment the fetal heart was initially localized fol-

owing the method described in Section 2.3 and the video frames
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Fig. 10. Cropping around the detected fetal heart. Fetal heart dynamics are anal- 

ysed once using the original ultrasound sequence (left) and once on the cropped 

sequence around the detected fetal heart (right).(For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this ar- 

ticle.) 

Table 5 

Classification results for detecting the fetal heartbeat without 

localising the fetal heart (Step B). The sequence dimensions 

are 240 × 320 × 30. Here n indicates the number of KDT 

model states and σ signifies the filter’s centre-wavelength. 

Model Model Model Model Model 

n = 3 n = 4 n = 5 n = 6 n = 7 

σ = 30 80 .46 81 .61 83 .91 83 .91 79 .31 

σ = 35 80 .46 81 .61 83 .91 83 .91 83 .91 

σ = 40 52 .87 82 .76 51 .72 52 .87 45 .98 

σ = 45 83 .91 88 .51 85 .06 57 .47 68 .97 

σ = 50 88 .51 86 .21 86 .21 83 .91 52 .87 

σ = 55 55 .17 52 .87 57 .47 52 .87 55 .17 

σ = 60 85 .06 56 .32 56 .32 62 .07 52 .87 

Table 6 

Classification results for detecting the fetal heartbeat after 

cropping the frames around the localized fetal heart (Step 

B). The sequence dimensions are 120 × 120 × 30, cropped 

around the detected fetal heart. Here n indicates the num- 

ber of KDT model states and σ signifies the filter’s centre- 

wavelength. 

Model Model Model Model Model 

n = 3 n = 4 n = 5 n = 6 n = 7 

σ = 30 81 .61 80 .46 80 .46 83 .91 54 .02 

σ = 35 87 .36 88 .51 63 .22 87 .36 86 .21 

σ = 40 49 .43 52 .87 79 .31 78 .16 52 .87 

σ = 45 89 .66 85 .06 52 .87 52 .87 64 .37 

σ = 50 93 .10 50 .57 89 .66 70 .11 54 .02 

σ = 55 78 .16 51 .72 52 .87 51 .72 74 .71 

σ = 60 63 .22 57 .47 55 .17 64 .37 42 .53 
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were cropped around the detected fetal heart as illustrated in

Fig. 10 . 

Recall that this algorithm is only run on frames that have been

classified as fetal heart. Fig. 10 shows the heart detection boundary

using a green circle. Moreover, as the main application is not ac-

curate heart segmentation, a rectangular area defined by twice the

radius of the detection circle plus an offset is empirically set to be

the potential area of interest that would contain fetal heart motion.

The accuracy values presented in Table 5 are for heartbeat detec-

tion without localizing the fetal heart and the accuracy values pre-

sented in Table 6 are for the combined localization and heartbeat

detection pipeline. The purpose of this step is to assess the accu-

racy of the motion classification. To elaborate, a dedicated classi-

fier for detecting the fetal hearts was not specifically trained using

the sweep data. Instead the best trained model from Bridge and
oble (2015) was applied to the short sequence that have been

hort-listed in Step A of Fig. 4 . 

As shown in Table 5 without fetal heart detection, the best re-

ults were achieved with a 3-state model and σ f eat.symm 

= 50 for

he signed feature symmetry filter (detection accuracy of 88.5%).

n general, the classification accuracy was higher when the heart

as first localized and cropped out of the video sequence. This re-

ects the fact that the full image contains a lot of irrelevant in-

ormation and motion due to probe movements and fetal move-

ent that can confound the heartbeat detection. When the frames

re cropped around the detected fetal heart, a 3-state model and

f eat.symm 

= 50 for the signed feature symmetry filter (detection

ccuracy of 93.1%) produced the highest results. In general, increas-

ng the number of states leads to a decrease in performance. This

an be explained by the fact that when KPCA is used, the main

ynamics of the video are best described using the first 3 or 4

igenvalues. Additional eigenvalues capture a very small portion

f the variation in the feature space, thus resulting in noisier KDT

odel parameter estimates. Moreover, the duration of the heart se-

uences in this experiment are considerably short, thus larger in-

rease in the number of states beyond reported does not improve

he results. 

One of the main challenges in modelling the dynamics of the

etal heart is the quality of the positive and negative samples used

o train the dynamical model. Although the positive examples con-

ain motions of beating fetal hearts, our negative dataset does not

ontain any examples of non-viable (non-beating) fetal heart. In-

tead the negative dataset consists of short sequences of anything

ut a fetal heart motion. 

. Conclusions 

In this study we have looked at the problem of automatically

ocating anatomical features in fetal ultrasound video specifically

otivated by a real world global health application of low-cost ul-

rasound for identification of breech presentation and fetal viabil-

ty. Breech delivery can significantly increase the risk for neonates

 Hannah et al., 20 0 0 ). However, planned vaginal breech deliveries

here antenatal ultrasound is available can be associated with a

etter outcome than reported in randomized trials ( Goffinet et al.,

006 ). 

Ultrasound requires a high degree of skill to perform well, and

here is a lack of experienced sonographers in many developing

orld healthcare settings. The image analysis framework we have

eveloped was directly developed to address the need to empower

ess experienced or well-trained users of ultrasound, or users new

o ultrasound to effectively identify structures of interest and inter-

ret the images with high confidence. Further, computer memory

equirements for analysis are not large. The solution is amenable

o use within a low-cost free-hand ultrasound system platform

where today USB and wireless transducers are of the order of $7k

r less). 

The implementation reported in the paper was for proof-of-

rinciple and not optimized for real-time use. We have added the

rocessing times but as no attempt was made to optimize them

hey are not really meaningful from which to infer potential real-

ime performance. Computation time are shown in Table 7 . The ex-

eriment was carried out using Matlab2016a on a PC with 32GB of

AM, restricting the machine to use only a single core. 

This framework assumes that a consecutive sequence of fetal

kulls and abdomens are present in any given sweep, in order to

dentify the fetal presentation. From a total of 129 unseen videos

n the test dataset, 41 videos did not contain either the skull or ab-

omen structures, which are necessary for automatic detection of

etal presentation. From the remaining 88 videos, the presentation

as correctly identified in 76 videos sweeps (83.4%). Furthermore,
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Table 7 

Computation time for encoding SIFT, 

rootSIFT, and SURF fea- tures using 

BoVW, VLAD, and FV encoding. The du- 

ration for encoding the features for one 

image, in seconds. 

BoVW VLAD FV 

SIFT 1 .452 0 .297 0 .165 

rootSIFT 1 .218 0 .286 0 .184 

SURF 0 .267 0 .085 0 .051 
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or the detection of the heartbeat an overall classification accuracy

f 93.1% was achieved. In the 12 videos where the presentation

as not identified correctly, although the fetal and abdomen were

resent in the ultrasound video sweep, these structures were not

aptured fully and visually looked different to the majority of those

n the training set. 

On our choice of classifier, SVM is a classical learning algorithm,

hich has demonstrated excellent performance in many applica-

ions, including our previous work and work of others. For exam-

le Lei et al. (2015) recently proposed the use of root-SIFT fea-

ures with an SVM classification framework for detecting fetal faces

n ultrasound scans. We found it gave good results (as evidenced

n the article) and did not see the value to move on to consider

ore sophisticated hand-crafted feature classifiers (for instance,

andom forests). Convolutional neural networks (CNNs) have very

ecently become popular in medical image analysis. Popularity of

NNs coincided with the later stages of the work reported here.

urrent CNN architectures generally require larger datasets than

ere available for this research, and work best with balanced label

atasets (ours is unbalanced). You can use CNNs to partition ul-

rasound video, as described in recent preliminary research of our

roup ( Gao et al., 2016 ), and other on-going research in our labora-

ory. The accuracy is slightly better. Going forward, it will be inter-

sting to investigate whether CNN architectures can be designed

o offer significant advantages over other methods for ultrasound

ideo analysis. 

In practice obstetricians may repeat an acquisition multiple

imes before they obtain satisfactory results. In this study, we have

sed only a single sweep. Initially the aim was to analyse what can

e achieved from analysis of an extremely simple linear sweep (a
Fig. A.11. Mean classification accuracies for SIFT feature descriptors
inimal sweep). Given that the results are so promising, a logical

ext step is to extend the analysis to multiple sweeps which poses

nteresting research questions about how to fuse information ob-

ained from multiple sweeps for clinical decision-making. This is

he subject of some of our on-going work that we hope to report

n in a future publication. 

The data used in this study was obtained from the

NTERGROWTH-21 ST project ( Sarris et al., 2013; Papageorghiou

t al., 2014 ), which contains mothers at different gestational

ges and with diverse body mass indices. Therefore the positive

ub-sequences extracted from this data include a variety of rep-

esentations of the fetal skull with different sizes and shadowing.

his provides a set of rich features for the dataset of the positive

equences however a larger dataset of ultrasound sweeps might be

equired to build a robust classifier for more general populations. 
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ppendix A. Breakdown of results 
. Feature encoding is carried out using the FV, VLAD, BoVW. 
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Fig. A.12. Mean classification accuracies for rootSIFT feature descriptors. Feature encoding is carried out using the FV, VLAD, BoVW. 

Fig. A.13. Mean classification accuracies for SURF feature descriptors. Feature encoding is carried out using the FV, VLAD, BoVW. 

Fig. A.14. Mean average precision for SIFT feature descriptors. Feature encoding is carried out using the FV, VLAD, BoVW. 
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Fig. A.15. Mean average precision for rootSIFT feature descriptors. Feature encoding is carried out using the FV, VLAD, BoVW. 

Fig. A.16. Mean average precision for rootSIFT feature descriptors. Feature encoding is carried out using the FV, VLAD, BoVW. 
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