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White matter lesions characterise brain
involvement in moderate to severe chronic
obstructive pulmonary disease, but cerebral
atrophy does not
Catherine A. Spilling1*, Paul W. Jones2, James W. Dodd3 and Thomas R. Barrick1

Abstract

Background: Brain pathology is relatively unexplored in chronic obstructive pulmonary disease (COPD). This study
is a comprehensive investigation of grey matter (GM) and white matter (WM) changes and how these relate to
disease severity and cognitive function.

Methods: T1-weighted and fluid-attenuated inversion recovery images were acquired for 31 stable COPD patients
(FEV1 52.1% pred., PaO2 10.1 kPa) and 24 age, gender-matched controls. T1-weighted images were segmented into
GM, WM and cerebrospinal fluid (CSF) tissue classes using a semi-automated procedure optimised for use with this
cohort. This procedure allows, cohort-specific anatomical features to be captured, white matter lesions (WMLs) to
be identified and includes a tissue repair step to correct for misclassification caused by WMLs. Tissue volumes and
cortical thickness were calculated from the resulting segmentations. Additionally, a fully-automated pipeline was
used to calculate localised cortical surface and gyrification. WM and GM tissue volumes, the tissue volume ratio
(indicator of atrophy), average cortical thickness, and the number, size, and volume of white matter lesions (WMLs)
were analysed across the whole-brain and regionally – for each anatomical lobe and the deep-GM. The hippocampus
was investigated as a region-of-interest. Localised (voxel-wise and vertex-wise) variations in cortical gyrification, GM
density and cortical thickness, were also investigated. Statistical models controlling for age and gender were used to
test for between-group differences and within-group correlations. Robust statistical approaches ensured the
family-wise error rate was controlled in regional and local analyses.

Results: There were no significant differences in global, regional, or local measures of GM between patients and
controls, however, patients had an increased volume (p = 0.02) and size (p = 0.04) of WMLs. In patients, greater
normalised hippocampal volume positively correlated with exacerbation frequency (p = 0.04), and greater WML
volume was associated with worse episodic memory (p = 0.05). A negative relationship between WML and FEV1
% pred. approached significance (p = 0.06).

Conclusions: There was no evidence of cerebral atrophy within this cohort of stable COPD patients, with moderate
airflow obstruction. However, there were indications of WM damage consistent with an ischaemic pathology. It cannot
be concluded whether this represents a specific COPD, or smoking-related, effect.

Keywords: Chronic obstructive pulmonary disease, Chronic lung disease, Magnetic resonance imaging, Cognition,
Cerebrovascular disorders

* Correspondence: p1306735@sgul.ac.uk
1Neurosciences Research Centre, Molecular and Clinical Sciences Research
Institute, St George’s University of London, Cranmer Terrace, Tooting, London
SW17 ORE, UK
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Spilling et al. BMC Pulmonary Medicine  (2017) 17:92 
DOI 10.1186/s12890-017-0435-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12890-017-0435-1&domain=pdf
mailto:p1306735@sgul.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Comorbidities are common in COPD; occurring at higher
frequency than would be predicted from aetiological
factors such as smoking, suggesting a possible causal
relationship with the disease [1]. One such comorbidity
is cognitive dysfunction, which is associated with
greater disability and an elevated risk of exacerbation
and mortality [2]. Executive function, memory, and at-
tention are the most common severe cognitive deficits
[3] however, patterns and extent of dysfunction are
highly variable with reported incidence ranging from
12% to 88% [4] and impairments identified in almost all
neuropsychological domains. Few studies have attempted
to use magnetic resonance imaging (MRI) to investigate
structural brain change in COPD, and those that have,
present conflicting results obtained from widely different
cohorts and methodologies.
Despite these limitations, there are consistent reports

of deterioration of the cerebral white matter (WM)
structure in COPD, but without concurrent volumetric
tissue loss. This is evidenced by widespread disruption
in the microstructural organisation of the tissue indicated
by changes in diffusion properties [5–8]; and greater
ischaemic leukoaraiosis [5, 9], detectable as bilateral,
typically symmetric areas of hyper-intense signal on
T2-weighted and fluid-attenuated inversion recovery
(FLAIR) imaging with iso-intense or hypo-intense sig-
nal on T1-weighted (T1W) imaging [10] (hereafter re-
ferred to as white matter lesions, WMLs) (see Fig. 1).
Previous grey matter (GM) MRI findings are equivocal

with no evidence for generalised, cerebral atrophy [5, 6,
11, 12] but mixed findings when considering local GM
differences with controls [6–8, 11–14]. The majority of

reports of local GM reductions are in COPD groups
with clinical cognitive impairment [7, 8, 11–13], however
recently, local GM density reductions have also been
found in a large COPD cohort with sub-clinical cognitive
impairment [14]. This latter finding contradicts an earlier
study that found no evidence of localised GM loss in a
smaller group of COPD subjects with sub-clinical cog-
nitive impairment [6]. Several of these studies reported
correlations between GM loss and reduced arterial oxygen
content (PaO2 [7, 8, 12] and SaO2 [12, 13]) suggesting that
decreased oxygen supply to the brain may be responsible
for atrophy in COPD.
There are, however, a number of specific concerns per-

taining to the statistical approaches used in many of these
previous GM studies. These include use of lenient mul-
tiple comparisons correction to control Type-1 error-rate
[15]; examples include the use of voxel or vertex-wise false
discovery rate (FDR) for statistical inference with sub-
sequent cluster-extent correction [6–8, 13], small-
volume analyses without correction for numbers of
statistical comparisons [11] and post-hoc correlation
analyses for regions identified to have between-group
differences [7, 8, 11, 14]. Most studies have used fully
automated image analysis techniques to quantify tissue
volumes across the whole-brain [5, 6, 11, 14] to esti-
mate GM density, cortical thickness and surface area.
These techniques rely on accurate brain tissue segmen-
tation using a priori knowledge of the expected spatial
distribution of MRI intensities. Consequently, segmen-
tation accuracy in clinical cohorts with pathology such
as WMLs and brain atrophy may be affected by the
use of information obtained from healthy individuals.
In such circumstances, the pathology can erroneously

Fig. 1 Grey matter and white matter pathology on T1-weighted and fluid-attenuated inversion recovery imaging. Evidence of grey matter and
white matter pathology in a chronic obstructive pulmonary disease subject seen on T1-weighted (T1W) and Fluid-attenuated inversion recovery
(FLAIR) imaging. An example of the white matter lesion (WML) segmentation produced by our technique is also shown. All images are illustrated
using the radiological convention. Red arrows indicate: a areas of hypo-intense signal on T1W and hyper-intense signal on FLAIR imaging that are
characteristic of white matter lesions, b enlargement of lateral ventricles indicative of brain tissue atrophy, and c larger cerebrospinal fluid filled
spaces between gyri indicative of cortical atrophy
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appear to be another tissue type, causing incorrect tissue
segmentation and inaccurate tissue volume estimates [16].
Tissue misclassification errors can also cause misalign-
ment of subject MRI data upon transformation to a stand-
ard anatomical space for voxel-wise statistical analysis
[17]. It is therefore important to ensure that statistical and
image analysis techniques are as rigorous as possible to re-
duce error.
The present study was designed as a comprehensive

case–control study of macroscopic GM and WM differ-
ences in a well-defined cohort of stable COPD patients
with sub-clinical cognitive impairment. We have previously
published evidence from the same cohort [5] of greater
WML volume in COPD patients but no evidence of cere-
bral GM atrophy. Here we add to this report by application
of techniques that more accurately capture cohort-specific
structural features. These include investigation of tissue
volumes at local (voxel-wise), regional (lobe and regions of
interest) and whole-brain levels. Robust statistical ap-
proaches were adopted throughout to control Type-1 error
rates. Potential Type-2 errors in voxel-wise results were
mitigated by investigation of gross anatomical structures in
lobe and region of interest analyses. We hypothesise that
the brains of COPD patients will show localised GM loss
and greater volumes of WMLs and predict that these
changes will relate to impairments in cognitive function
and increased disease severity.

Methods
Subjects
Data were obtained from 31 COPD patients recruited as
part of a previous study [5]. Data from six patients were
not available at the time of our previous report [5] and
have since been included in the dataset. All participants
were outpatients recruited from St George’s University
Hospital and Royal Brompton Hospital between 2010
and 2011. Seventeen had not been hospitalised within
the preceding 12 months. The remaining 14 had previ-
ously been inpatients admitted to St. George’s Hospital
NHS Trust with a primary diagnosis of COPD exacerba-
tion from whom data were obtained within 12 months
of discharge. All participants were assessed whilst in a
stable condition. Additionally, 26 controls were recruited
from the local community; two of whom were later ex-
cluded, one due to a scanner fault and one due to the
presence of additional neuropathology (Additional file 1:
Table S1, for a complete list of exclusion criteria). Pa-
tients were age and gender-matched with controls. They
were on average normocapnic at the point of assess-
ment, mildly hypoxaemic and significantly more anxious
and depressed than controls. They also had greater pack
years smoked, more comorbidities, and lower cognitive
function, but did not meet the criteria for dementia
(see Table 1).

This study was approved by Wandsworth and East
Central London Research Ethics Committees (Ref: 10/
H0721/16) and by St George’s University of London,
Joint Research Office (Ref: 090147). All subjects gave
written informed consent for participation in the study.

Cognition and disease severity measures
Post-bronchodilator spirometry, arterial blood gas analysis,
Framingham Stroke Risk Profile (FRSP) [18], Charlson
Co-morbidity Index [19], St. George’s Respiratory
Questionnaire (SGRQ) [20], and the Hospital Anxiety
and Depression scale (HADs) [21] were administered to
the patient group. All participants underwent neuro-
psychological assessment including the Mini Mental State

Table 1 Demographic and clinical characteristics of copd patients
and controls

Controls Patients p

Age 65.9 (7.4) 67.6 (8.4) 0.44661

Males (%) 45.8 58.1 0.42242

Height (m) 1.7 (0.1) 1.7 (0.1) 0.73581

Body mass index 26.8 (4.6) 26.2 (4.6) 0.67831

Smoking (pack years 0.0 (3.0) 54.0 (28.0) <0.00013****

Cardiovascular risk (FRSP) 6.2 (3.2) 7.4 (4.1) 0.24881

Exacerbations in last 12 months - 1.0 (3.0) -

Health status (SGRQ) - 54.3 (30.3) -

Co-morbidity Index 0 (0) 0 (1) 0.00393**

HADs – Anxiety 4.0 (2.8) 7.3 (4.5) 0.00311a**

HADs – Depression 2.9 (2.8) 5.5 (3.7) 0.00681**

HADs – Total 7.0 (5.0) 11.5 (16.0) 0.01281a*

Cognitive Function

Estimated pre-morbid IQ 110.0 (15.5) 103.0 (16.0) 0.00613**

Executive Function 12.2 (2.6) 9.3 (2.5) <0.00011****

Episodic Memory 10.9 (3.1) 9.1 (2.5) 0.02261*

Processing Speed 108.0 (19.5) 88.0 (24.0) 0.00083***

Working memory 107.0 (15.3) 94.1 (12.3) 0.00111**

MMSE 29.5 (1.0) 28.0 (2.0) 0.00023***

Lung Function

FEV1 (% pred.) - 52.1 (20.9) -

FVC (% pred.) - 84.8 (32.1) -

FEV1/FVC (%) - 49.2 (30.0) -

Arterial blood gases

PaO2 (kPa) - 10.1 (2.2) -

PaCO2 (kPa) - 5.0 (0.7) -

pH - 7.4 (0.0) -

Group comparison of demographic and clinical characteristics. 1independent
t-tests, group means, standard deviations (SDs) and p-values (p) are reported.
2chi-squared tests, group percentages and p-statistics (p) are reported.
3Mann-Whitney U tests, group medians, interquartile ranges (IQR) and exact
probabilities (p) are reported. aCorrection for unequal variances. Significant
at *p < 0.05, **p < 0.01, ***p < 0.005 and ****p < 0.001
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Examination (MMSE), Wechsler Test of Adult Reading
(WTAR) (providing an estimate for pre-morbid IQ), and
specific sub-scales from the Wechsler Adult Intelligence
Scale –III (WAIS-III), Wechsler Memory Scale – III
(WMS-III), Delis-Kaplan Executive Function System (D-
KEFS), and Rey-Complex Figure Test and Recognition
Trial (RCFT) (see [5] for the specific subtests used).
Composite scores were calculated assessing the follow-
ing cognitive domains: Executive Function (average of
D-KEFS scaled scores), Episodic Memory (combined
average of WMS-III and RCFT scaled scores), Process-
ing Speed (Processing Speed Index from the WAIS-III),
and Working Memory (Working Memory Index from
the WAIS-III) [5].

Image acquisition
Anatomical brain magnetic resonance images were obtained
as part of a larger imaging protocol using a 3-Tesla Philips
Achieva Dual TX scanner equipped with a 32-channel head
coil and gradients up to a maximum of 80 mT/m. Sagittal
T1-weighted 3D volume (T1W) images were acquired using
a Turbo Field Echo sequence (TE = 3700 ms, TR = 8200 ms,
flip angle = 8°, 160 contiguous sagittal slices with an isotropic
voxel dimension of 1 mm3 and field-of-view (FOV) of 230 ×
182 × 180 mm3). Axial fluid Attenuation Inversion Re-
covery (FLAIR) images were acquired using a standard
inversion recovery sequence (TE = 125 ms, TR = 11000 ms,
TI = 2800 ms with 60 contiguous axial slices of 3 mm slice
thickness, FOV = 240 × 240 mm2 and voxel dimension
0.962x3mm3).

Image analysis
In view of the need to demonstrate the robust method-
ology used for this analysis, detailed description of the
image analysis procedure is provided.

Tissue segmentation
The conventional Statistical Parametric Mapping (SPM
Version 12) [22], geodesic shooting segmentation and nor-
malisation procedure was adapted for use with the present
cohort. This pipeline consists of five steps and is described
in full in [23, 24]. This technique provides GM, WM, CSF
and WML tissue segmentations for each participant.

Generation of group average space
T1W images were segmented into GM, WM and CSF
tissue probability maps (TPMs) and a group average
template image generated from these maps using the
SPM12 geodesic shooting toolbox (SPM Version 12)
[22]. All T1W and FLAIR images were diffeomorphically
transformed to this template. The skull was removed
from these images by thresholding the group average tis-
sue probability maps at a combined tissue probability of
0.1.

Computation of population-specific tissue probability maps
Population-specific TPMs representing GM, WM and
CSF were generated from the skull-stripped T1W images
in group average space using the one–channel Modified
Mixture of Gaussians method described by Lambert et
al. [23, 24] (see [25], for full technical details). This
method allows population-specific anatomical features to
be captured e.g. enlarged sulci and ventricles, and enables
superior delineation of deep-GM structures, frequently
misclassified by the standard procedure (due to their re-
duced image contrast with respect to WM). The skull-
stripped FLAIR and T1W images in group average space
were used to generate a population-specific white matter
lesion TPM using the two-channel variant of the Modified
Multivariate Mixture of Gaussians method [23, 24].

Re-segmentation of the native-space images
The population-specific TPMs were used to replace the
default prior tissue probability maps in the Statistical
Parametric Mapping toolbox and were used to re-segment
the native space structural images into GM, WM, CSF
and WML tissue classes. White matter lesion segmenta-
tion maps were converted to binary lesion maps by a sin-
gle trained rater thresholding the lesion segmentation
maps at the appropriate manually determined tissue prob-
ability threshold for each participant.

Tissue repair
The binary lesion maps were used to repair the GM and
WM native space segmentations, as follows. Any voxel
located within the lesion mask that had been errone-
ously classified as GM, was reclassified by zeroing the
voxel value within the corresponding GM and CSF seg-
mentation and assigning a voxel value of one to the WM
segmentation. These repaired segmentations were used
in all subsequent analyses.

Generation of an optimised group average space
The SPM12 geodesic shooting toolbox (SPM Version 12)
[22] was used to generate an optimised 1 mm isotropic
resolution group average template from the repaired tissue
segmentations. This process has the benefit of providing
transformations to group average space that are robust to
the presence of WMLs, without which, misclassified vox-
els would be likely to distort the deformation fields on
transformation to group average space. This allows more
accurate tissue specific voxel-wise statistical analysis.

Cortical thickness
The voxel-based cortical thickness (VBCT) toolbox in
SPM (SPM, Version 12) [22] was used to calculate cortical
thickness using the repaired segmentations described
above. This procedure is fully described elsewhere [26, 27].
Additionally, the automatic surface-based FreeSurfer
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pipeline (Freesurfer, Version 5.3.0) [28] was implemented
and used to compute vertex-wise pial surface area maps
[29] from the T1W images. This was subsequently used to
calculate the local gyrification index, defined as the ratio
of the pial surface area to that of the perimeter of the
brain [30].

Regions of interest
In the whole-brain, the GM, WM and CSF segmentations
were thresholded at a tissue probability greater than 0.2 and
supratentorial cerebral regions were manually extracted.
Supratentorial segmentations were summed across all voxels
to provide total GM, WM and CSF volumes. Total intracra-
nial volume (TIV) was calculated as the sum of GM, WM
and CSF volumes, and the tissue volume ratio was calcu-
lated as the sum of GM and WM volume divided by total
intracranial volume. Average cortical thickness was com-
puted across the whole-brain. The total number, volume,
and average size of WMLs were calculated from the binary
WML maps. GM, WM and WMLs volumes were subse-
quently normalised with respect to head size (calculated as a
percentage of total intracranial volume).
The hippocampi were automatically extracted from the

T1W images using the standard FreeSurfer ‘recon-all’
pipeline (FreeSurfer, Version 5.3.0) [28, 31, 32]. Segmenta-
tion errors were manually corrected using ITK-SNAP
(ITK-SNAP, Version 3.2) [33]. Hippocampal volume was
calculated for left and right hippocampi separately and
normalised with respect to head size as above.
For regional measurements, lobe and deep-GM atlas

labels distributed within the ‘Minc Tool Kit’ (Minc Tool
Kit, Version 2.2.0) [34] were aligned with the T1W and
FLAIR images using Advanced Normalization Tools
(ANTs) [35]. The deep-GM atlas label is a composite re-
gion comprising the thalamus, caudate nucleus (head
and body), putamen and globus pallidus. This was per-
formed by co-registering the FLAIR image to the T1W
using a rigid transformation and non-linearly warping
each subject’s T1W image to the 1 mm isotropic ICBM
2009c Nonlinear Symmetric T1W standard-space tem-
plate [36]. The inverse of the transformation was applied
to the lobe atlas to bring it into alignment with each
subject’s T1W and FLAIR image. WMLs were assigned
to the lobe that they maximally overlapped. WM and
GM volumes, average cortical thickness, tissue volume
ratio and WML, volume, number and average size were
calculated for each lobe and deep-GM region.

Regions of interest statistical analysis
Whole-brain, lobe and hippocampal statistical analyses
were performed using SPSS (IBM Statistical Package for
the Social Sciences, Version 24) [37] and FSL’s ’random-
ise’ (FSL, Version 5.0.6) [38]. Whole-brain and lobe

measures were compared between subject groups using
ANCOVA models (for Gaussian data and data that
could be log10 transformed to Gaussian distributions)
or purmutation general linear models (for non-
Gaussian data that could not be log10 transformed to a
Gaussian distribution). Results from the analysis of
lobes were subsequently Bonferroni corrected for mul-
tiple comparisons. Between-group differences in hippo-
campal volume and the interaction with hippocampal
hemisphere were tested using a two-way repeated mea-
sures design with hemisphere entered as a within-subject
effect. Within-group correlations with cognitive and dis-
ease severity indices were performed for all whole-brain
and hippocampal measures, using partial Spearman’s rank
correlations. Correlation results were Bonferroni corrected
for the number of statistical tests made for each cognitive
or disease severity measure.
All whole-brain, lobe and hippocampal between-group

difference and within-group correlative models included
age and gender entered as covariates of no interest,
hereafter known as confounders. Total intracranial vol-
ume was also included as a confounder in any model in-
volving cortical thickness. Estimated premorbid IQ was
included as a confounder in any correlative model that
tested relationships with cognition. Further within-group
correlative models were tested, with pack years smoked
and total HADs score entered as additional confounders
- in order to determine whether smoking, or depression
and anxiety could account for correlation results. Pack
years smoked and total HADs score were strongly
dependent on subject group and therefore were not suit-
able to use as confounders in between-group analyses.

Voxel-wise and vertex-wise statistical analysis
To enable voxel-wise statistical analysis the repaired GM
segmentations, cortical thickness maps and binary WML
maps were warped to the optimised group average tem-
plate using the deformation fields created previously.
The vertex-wise local gyrification index and surface
area maps were inflated and registered to the FreeSur-
fer spherical atlas [32] (FreeSurfer, Version 5.3.0) [28].
Voxel-wise analysis of GM was performed using voxel-

based morphometry (VBM) [39]. The standard-space
repaired GM segmentations produced previously were
modulated by the Jacobian determinant and smoothed
using a 6 mm full-width half maximum (FWHM)
Gaussian kernel. Smoothed (6 mm FWHM) warped
weighted cortical thickness maps were produced using
the voxel-based quantification (VBQ) approach de-
scribed by Draganski et al. [40] and Hutton et al. [27].
Vertex-wise surface area and local gyrification index
maps were smoothed using a 6 mm FWHM kernel.
WML maps were downsampled by a factor of two in
the axial plane to decrease image resolution and

Spilling et al. BMC Pulmonary Medicine  (2017) 17:92 Page 5 of 12



increase voxel-wise WML overlap between subjects
prior to statistical analysis.
Voxel-wise GM maps were analysed using SPM (SPM,

Version 12) [22] and WML maps using the non-
parametric mapping (NPM) toolbox distributed within
MRIcron (MRIcron, Version 6) [41]. Vertex-wise statis-
tical analyses of cortical thickness and local gyrification
index data were performed in FreeSurfer (FreeSurfer,
Version 5.3.0) [28]. Group differences and within-group
correlations with cognitive and disease severity measures
were tested for GM, cortical thickness, surface area and
local gyrification index using general linear models.
Group differences in WML density were assessed in vox-
els where WMLs were present in at least 10% of subjects
using the liebermeister test [42]. Statistical inference for
all voxel-wise and vertex-wise analyses was performed
using random-field familywise error (FWE) at p < 0.05.
This was implemented using SPM (SPM, Version 12)
[22] for GM and cortical thickness analyses, FSL (FSL,
Version 5.0.6) for WML and the SurfStat toolbox [43]
for surface area and local gyrification.
All voxel-wise and vertex-wise between-group and

within-group correlative models included age, gender
and total intracranial volume as confounders, except for
the voxel-wise WML analysis. Estimated pre-morbid IQ
was entered as a confounder in correlative models test-
ing volumetric relationships with cognition. Additional
within-group correlative models were tested with pack
years smoked and total HADs score included as
confounders.

Results
Whole-brain
There were no significant differences between patient
and control groups in total intracranial volume, tissue
volume ratio, whole-brain normalised GM volume, nor-
malised WM volume, average cortical thickness or WML
number (Tables 2 and 3). However, COPD patients had
significantly greater normalised volume and average size
of WMLs than controls (Table 3 and Fig. 2).

Hippocampus
Two-way repeated measures ANCOVA of normalised
hippocampal volume indicated no significant main effects
of hemisphere (F(1,51) = 0.84, p = 0.37) or subject group
(F(1,51) = 3.39, p = 0.07), or interaction between group
and hemisphere (F(1,51) = 0.11, p = 0.74).

Regional
There were no significant differences between patient and
control groups for any of the lobe or deep-GM measures
(Additional file 2: Table S2).

Voxel and vertex-wise analysis
All voxel-wise and vertex-wise GM measures showed no
significant differences between patient and control groups.
No significant differences were found between patient

and control groups in WML density although there was
a trend for COPD patients to have greater WML density
in 88.2% of analysed voxels. The spatial distribution of
WMLs was qualitatively similar between patients and
controls, with WMLs situated predominantly periventri-
cularly, forming ’caps’ over the anterior and posterior
horns, and ’bands’ stretching superior to the body of the
lateral ventricles (see Fig. 3 for average WML maps).

Correlation with cognition
There was a significant negative association between
patient WML volume and episodic memory, (rs =−0.51,
p = 0.045) such that patients with greater volumes of
WMLs had worse cognitive function (Additional file 2:
Table S3). However, inclusion of pack years smoked or
total HADs score as confounders in the statistical
model removed this association (rs =−0.51, p = 0.055,
and rs =−0.51, p = 0.06, respectively). For patients and
controls, there were no further correlations between
whole-brain measures and cognitive function that were
significant following Bonferroni correction for multiple
comparisons (Table 4 and Additional file 2: Table S3).

Table 2 Group differences in whole-brain measures

Controls (N = 24) Patients (N = 31) Difference

Mean (median) SD (IQR) Mean (Median) SD (IQR) Statistic p

Grey Matter Volume (% TIV) (25.20) (2.20) (25.01) (1.45) −0.12062 0.90302

White Matter Volume (% TIV) 27.07 2.26 27.35 1.50 0.97571 0.32791

Total Intracranial Volume (cm3) 1427 81 1400 99 2.61891 0.11181

Tissue Volume Ratio 0.52 0.03 0.53 0.02 0.78841 0.37881

Average Cortical Thickness (mm) (2.21) (1.38) (2.28) (0.26) −0.11412 0.90602

Group comparisons of normalised whole-brain measures. Age and gender were included as covariates in all models; total intracranial volume was also included
for the average cortical thickness model. For Gaussian data, group means and standard deviations (SD) are presented. For non-Gaussian data (brackets), group
medians and interquartile ranges (IQR), are presented. Statistical tests include 1ANCOVAs of showing F-statistics and p-values and 2permutation general linear
models (10000 permutations) for which t-statistics and p-values (p) are displayed

Spilling et al. BMC Pulmonary Medicine  (2017) 17:92 Page 6 of 12



Correlations with disease severity
With respect to COPD severity, the only correlation that
survived Bonferroni correction was that between patient
total normalised hippocampal volume, and self-reported
exacerbation frequency (rs =−0.51, p = 0.04) (Table 4).
Counterintuitively, it was found that patients who re-
ported having a greater number of exacerbations within
the preceding year had larger hippocampi. However, this
unlikely result may reflect an inaccuracy of patient self-
reporting of exacerbation frequency [44]. The relation-
ship between WML number and FEV1 % pred. also
approached significance such that patients with worse

lung function had greater numbers of WMLs (rs = 0.50,
p = 0.06).
There were no other significant correlations between

disease severity indices and any other measures, includ-
ing the voxel-wise and vertex-wise measures. All find-
ings were unaffected by inclusion of pack years smoked
or total HADs score as confounders in the statistical
models.

Discussion
This study is a comprehensive case–control analysis of
macroscopic brain tissue abnormalities in a cohort of

Table 3 Group differences in white matter lesion characteristics

Controls (N = 24) Patients (N = 31) Difference

Volume of White Matter Lesions (% TIV) Median IQR Median IQR Statistic p

Frontal Lobe 0.07 0.10 0.09 0.42 1.75431 0.76541b

Temporal Lobe 0.01 0.01 0.01 0.02 1.01981 1.00001b

Parietal Lobe 0.06 0.23 0.13 0.68 −0.37072 1.00002b

Occipital Lobe 0.05 0.12 0.02 0.09 0.47172 1.00002b

Whole-Brain 0.40 0.43 0.85 1.41 5.34151 0.02491*

Number of White Matter Lesions

Frontal Lobe 15 17 20 24 1.38971 0.97611b

Temporal Lobe 8 10 12 10 1.89661 0.69791b

Parietal Lobe 10 11 9 11 0.13931 1.00001b

Occipital Lobe 3 3 2 2 0.57371 1.00002b

Whole-Brain 51 35 59 45 0.76881 0.38471

Average Size of White Lesions (mm3)

Frontal Lobe 55 107 61 135 0.53601 1.00001b

Temporal Lobe 8 11 10 150 −0.39892 1.00002b

Parietal Lobe 39 277 156 788 0.04991 1.00001b

Occipital Lobe 298 777 146 558 0.13111 1.00001b

Whole-Brain 91 163 192 232 4.25772 0.04421*

Group comparisons of white matter lesion, size, number and volume across the whole-brain and for each lobe. Age and gender were entered as covariates in all
models. Medians and interquartile ranges (IQR) are presented. Statistical tests include 1ANCOVAs of log10-transformed data showing F-statistics and p-values and
2permutation general linear models (10000 permutations) for which t-statistics (t) and p-values (p) are displayed. bBonferroni corrected p-values. *significant at p < 0.05

Fig. 2 Histograms of group differences in white matter lesion characteristics. Histograms of (a) normalised white matter lesion volume, (b) white
matter lesion number, and (c) average white matter lesion size are displayed. Controls = blue, Patients = red. Data are presented on a log10 scale
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stable COPD patients with moderate airflow limitation
and sub-clinical cognitive impairment. Sophisticated
neuroimaging techniques were applied and these were
optimised to improve the capture of cohort-specific fea-
tures to provide robust results with respect to the pres-
ence of pathology detected by anatomical imaging in this

cohort. Recommended standards for statistical analysis in
neuroimaging research were adhered to [15] thereby redu-
cing the risk of obtaining false-positives. No evidence was
found for cerebral atrophy occurring in these patients, ir-
respective of measurement type (GM volume or density,
cortical thickness, surface area or cerebral gyrification) or

Fig. 3 Voxel-wise white matter lesion density maps. Average WML maps for patients and controls, are overlaid over a group average T1-weighted
image. The colour scale indicates the percentage (%) of subjects with a WML at that voxel. Montreal Neurological Institute slice coordinates are
presented in mm. RH = right hemisphere, LH = left hemisphere

Table 4 Within-group correlations between whole-brain and hippocampal measures, and cognitive and disease severity indices

Controls (N = 24) Normalised Grey
Matter Volume

Normalised White
Matter Volume

Tissue Volume
Ratio

Average Cortical
Thickness

Total Normalised
Hippocampal Volume

rs p rs p rs p rs p rs p

Executive Function −0.4693 0.2547b 0.3229 1.0000b −0.0977 1.0000b −0.4149 0.5513b −0.2539 1.0000b

Episodic Memory −0.1129 1.0000b −0.0970 1.0000b −0.0937 1.0000b 0.0196 1.0000b 0.0279 1.0000b

Processing Speed −0.0805 1.0000b −0.0330 1.0000b −0.0574 1.0000b 0.1668 1.0000b −0.0307 1.0000b

Working memory −0.3878 0.6591b −0.1026 1.0000b −0.2782 1.0000b −0.2139 1.0000b −0.1739 1.0000b

MMSE −0.3250 1.0000b 0.0473 1.0000b −0.0298 1.0000b 0.1738 1.0000b −0.1146 1.0000b

Patients (N = 31)

Executive Function 0.1546 1.0000b 0.0120 1.0000b 0.0353 1.0000b −0.0718 1.0000b −0.1532 1.0000b

Episodic Memory 0.0016 1.0000b 0.0900 1.0000b 0.0206 1.0000b −0.2820 1.0000b 0.4397 0.1537b

Processing Speed 0.0630 1.0000b 0.1093 1.0000b 0.0854 1.0000b −0.1720 1.0000b −0.0054 1.0000b

Working memory 0.1646 1.0000b 0.2304 1.0000b 0.2191 1.0000b −0.1680 1.0000b 0.0197 1.0000b

MMSE −0.1320 1.0000b 0.2896 1.0000b 0.1503 1.0000b −0.4139 0.2550b 0.0034 1.0000b

Pack Years 0.1648 1.0000b −0.0098 1.0000b 0.0962 1.0000b 0.0236 1.0000b −0.1153 1.0000b

Exacerbation
Frequency

0.0211 1.0000b −0.0929 1.0000b 0.0491 1.0000b 0.0695 1.0000b 0.5089 0.0385b*

FEV1 (% pred.) −0.2432 1.0000b −0.2142 1.0000b −0.3895 0.3240b −0.1661 1.0000b 0.1928 1.0000b

FVC (% pred.) −0.0939 1.0000b 0.0331 1.0000b −0.0031 1.0000b −0.2095 1.0000b 0.2213 1.0000b

PaO2 (KPa) 0.1599 1.0000b −0.1375 1.0000b −0.1249 1.0000b 0.0497 1.0000b −0.0963 1.0000b

PaCO2 (Kpa) −0.0397 1.0000b 0.3203 0.7722b 0.2792 1.0000b −0.1540 1.0000b −0.0804 1.0000b

SGRQ 0.1961 1.0000b −0.1271 1.0000b 0.0454 1.0000b 0.2410 1.0000b −0.1185 1.0000b

Within-group partial Spearman’s rank correlations between whole-brain and hippocampal measures, and indicators of cognitive function and disease severity. Age
and gender were entered as covariates in all models. Additionally, estimated pre-morbid IQ was included in correlations involving cognitive function, and total
intracranial volume for those involving average cortical thickness. Correlation coefficients (rs), and p-values (p) are displayed. bBonferroni corrected p-values.
*significant at p < 0.05
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measurement scale (whole-brain, regional or local). In
contrast there was evidence of WM damage with COPD
patients having greater volumes and average size of
WMLs compared to control subjects.

Grey matter
Consistent with the previous literature, we found no evi-
dence of generalised cerebral atrophy occurring in
COPD [5, 6, 11, 14]. The lack of voxel-wise and vertex-
wise group differences in GM measures is in keeping
with the results of Ryu et al. [6] who also reported no
localised GM density differences in a small group of
COPD patients (19 COPD subjects) with sub-clinical
cognitive impairment compared to controls. However,
they do not support reports of local GM density reduc-
tions in a large COPD cohort (60 COPD subjects) with
sub-clinical cognitive impairment [14]. Our findings are
also not consistent with evidence for localised GM loss
in COPD cohorts with clinical cognitive impairment, for
example, in reports of hippocampal atrophy [11, 12], re-
duction of cortical surface area [13], widespread cortical
thinning [13], and localised GM density reductions, pre-
dominantly in frontal, limbic and paralimbic structures
[7, 8, 11]. This discrepancy in GM findings may relate to
cohort differences in severity of cognitive impairment.
Any GM reductions in sub-clinical cognitive cohorts are
likely to be subtle and consequently the effect sizes may
be weaker and group differences less readily detectable.
We found no associations between disease severity

and GM measures, however, several studies that re-
ported local GM differences also found associations, par-
ticularly that reduced GM volume was correlated with
lowered arterial blood oxygenation (indicated by PaO2

[7, 8, 12] and SaO2 [12, 13]). Additionally, multiple stud-
ies have reported relationships between resting hypox-
aemia and lowered neuropsychological performance in
COPD e.g. [45–48]. Most of those studies included pa-
tients with moderate-severe hypoxia, so the absence of a
significant relationship between GM measures and PaO2

may be due to our cohort being mildly hypoxaemic.

White matter
Our finding of greater volumes and average size of
WMLs in patients compared to controls is consistent
with previous WML results in COPD [5, 9]. Lobe ana-
lyses did not reveal regionally specific differences in
WM or WML measures, indicating that greater whole-
brain WML volumes are a composite result of small in-
creases in average WML number and size across the
lobes. The spatial distribution of WMLs followed a simi-
lar pattern in patients and controls, but qualitatively ex-
tended further into the WM than controls. The general
similarity between WML location in COPD patients and
controls suggests a similar aetiology, but with COPD

representing a more severe case. WMLs are common
within healthy elderly populations with a prevalence of
11–21% in adults aged around 64, increasing to 94% in
those aged 82 [49]. However, they can also be indicative
of pathological conditions such as cerebral small-vessel
disease [50]. Histologically, WMLs represent a heterogenous
mixture of diffuse myelin rarefaction with relative sparing of
the subcortical U fibres, axonal loss, astrogliosis, spongiosis
and widening of perivascular spaces [51]. Their exact patho-
genesis remains uncertain, however, it is widely presumed to
be ischaemic [50] as they are typically situated along arterial
border zones [52], their growth can be predicted by blood
flow in surrounding tissue [53] and they are commonly as-
sociated with vascular risk factors such as hypertension [54],
hyperlipidemia [54], smoking [55], and impaired lung func-
tion [54]. Evidence of hypoperfusion [56, 57] and anaerobic
glycolysis [58] in the brains of COPD patients, coupled with
presence of cerebral microbleeds (another feature of cerebral
small-vessel disease) [59] suggest that ischaemic processes
are occurring in COPD, potentially secondary to the nar-
rowing or occlusion of the small perforating arterioles at the
end of the cerebrovascular tree [50]. The high frequency of
concomitant vascular risk-factors in COPD, particularly
smoking [55] hypertension [46], and reduced lung function
[54] likely contribute to the relatively severe WML-burden
in this population.

Methodological concerns
There are several statistical and methodological con-
cerns, particularly for local GM analyses that potentially
limit the reliability of previous neuroimaging findings in
COPD. Our study adhered to the recommended mini-
mum standards for statistical analysis in neuroimaging
studies [15], so our results are unlikely to represent
false-positives. This is in comparison to previous studies
that provided statistical inference using the voxel-wise
false discovery rate (FDR) (e.g. [6–8, 13]), performed
small-volume analyses without multiple comparisons
correction (e.g. [11]) and post-hoc regional analyses (e.g.
[7, 8, 11, 14]. Each of these techniques potentially inflate
Type-1 error rates due to violations of the assumption of
statistical independence. However, by applying rigour in
our statistical inference we may have potentially inflated
the risk of type-2 error.
Tissue segmentation techniques used in the present

study were carefully chosen to provide accurate results.
Tissue misclassification can occur when pathology is
present, particularly when tissue segmentation is performed
from a single MRI modality such as T1W images. This has
been demonstrated by Levy-Cooperman et al. [16] in a
group of healthy elderly adults such that the presence of
WMLs erroneously increased whole-brain GM volumes by
up to six percent due to misclassification of WMLs as GM.
They also found that this effect was sufficient to disguise
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group differences in GM between individuals with severe
WMLs and patients with Alzheimer’s disease. To avoid
these problems we applied the tissue segmentation
technique of Lambert et al. [23, 24]. This technique
uses multimodal MRI data (i.e. T1W and FLAIR). It
provides GM, WM, CSF and WML tissue probability
maps and takes advantage of the difference in signal in-
tensity in regions of WM pathology between T1W and
FLAIR, to ensure that the WMLs are well defined. A
further effect of this technique is that the WML tissue
probability maps may be used to repair the GM, WM
and CSF tissue probability maps for any tissue mis-
classification caused by the presence of WMLs [22, 24].
This latter step also increases that accuracy of image
coregistration to standard space for voxel-wise analysis
of local GM differences. Presence of misclassified re-
gions of tissue can lead to distortions and errors in
computed transformations to standard space resulting
in misalignment with respect to the template image and
error in the results [17] but is overcome by the current
method.
The WML segmentation technique used in the present

study represents a considerable improvement in object-
ivity for lesion identification in COPD studies when
compared to WML severity visual rating scales [9, 60]
and manual segmentation [5], despite requiring a rater
to determine WML tissue probability thresholds for each
individual. Alternative semi-automatic or fully-automatic
techniques are available (see [61] for a review). A recently
reported WML segmentation technique is the Brain In-
tensity AbNormality Classification Algorithm (BIANCA)
[62] which has the advantage over our approach in that it
that it is fully-automated, however it does require a
manually-segmented training set. Our approach does not
require a manually segmented training set, instead, a
WML prior tissue probability map is automatically gener-
ated from T1W and FLAIR images. It remains an open
question as to which WML segmentation techniques are
the most accurate.

Limitations
The sample size in the present study is relatively small,
although comparable to other studies that have found
GM reductions in COPD [7, 8, 11, 13]. As a result some
analyses, in particular, the voxel-wise and vertex-wise
analyses may be underpowered for detecting small dif-
ferences and may be vulnerable to outliers. This latter
possibility was mitigated by using robust statistical tech-
niques. Additionally, there were substantial differences
between groups in terms of pack years smoked and
HADs scores, meaning correction for these variables in
between group analyses was not possible. The inability
to adequately control for differences in smoking history
represents a study limitation as smoking is a known

risk-factor for developing WMLs [55]. This limitation
will be addressed in future studies through direct com-
parison of COPD patients with smoking controls in our
laboratory. Presently, it is unknown how well the semi-
automatic method of WML segmentation used in this
study, will generalise to use with other patient popula-
tions, although it has been successfully applied to a
large cerebral small-vessel disease cohort [23, 24]; or to
other MRI sequences and scanners.

Conclusions
This study represents a comprehensive case–control in-
vestigation of macroscopic GM and WM differences in
stable COPD subjects. In contrast to previous work, we
used a stable patient cohort that were, on average, sub-
clinically cognitively impaired and had moderate airflow
limitation with only mild hypoxaemia. No indication was
found of substantial loss, or marked disturbance of GM.
In contrast we found clear evidence of WM damage,
with greater volume and average size of WMLs. This
may be due to hypo-perfusion secondary to narrowing
or occlusion of cerebral small-vessels, with potential
contributions from comorbid factors such as hyperten-
sion, smoking and impaired lung function. However, the
possibility that smoking is directly responsible for these
WML finding (rather than COPD) cannot be excluded.
Further research is required to fully understand the
mechanisms and relationship between WM damage and
cognitive impairment in COPD.
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