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Abstract  

Chlamydia trachomatis (Ct) is the commonest cause of bacterial sexually transmitted infection 

and infectious cause of blindness (trachoma) worldwide. Understanding the spatial distribution 

of Ct infection may enable us to identify populations at risk and improve our understanding of Ct 

transmission. In this study we sought to investigate the spatial distribution of Ct infection and the 

clinical features associated with high Ct load in trachoma-endemic communities on the Bijagós 

Archipelago (Guinea Bissau). We collected 1507 conjunctival samples and corresponding 

detailed clinical data during a cross-sectional population-based geospatially-representative 

trachoma survey. We used droplet digital PCR to estimate Ct load on conjunctival swabs. 

Geostatistical tools were used to investigate clustering of ocular Ct infections. Spatial clusters 

(independent of age and gender) of individuals with high Ct loads were identified using local 



indicators of spatial association. We did not detect clustering of individuals with low load 

infections. These data suggest that infections with high bacterial load may be important in Ct 

transmission. These geospatial tools may be useful in the study of ocular Ct transmission 

dynamics and as part of trachoma surveillance post-treatment, to identify clusters of infection 

and thresholds of Ct load that may be important foci of re-emergent infection in communities.  

INTRODUCTION 

Chlamydia trachomatis is the leading infectious cause of blindness and the most common 

sexually transmitted bacterium. Trachoma is caused by infection with ocular strains of C. 

trachomatis and manifests as distinct clinical syndromes, beginning with an acute self-limiting 

kerato-conjunctivitis which may progress to chronic inflammatory disease with subsequent 

conjunctival scarring and blinding sequelae. A spectrum of disease severity exists, which can be 

graded objectively [1,2]. 

The World Health Organization (WHO) advocates the implementation of the SAFE 

strategy (Surgery for trichiasis, Antibiotics for active infection, Facial cleanliness to prevent 

disease transmission and Environmental improvement to increase access to water and sanitation) 

for trachoma elimination. Mass Drug Administration (MDA) of azithromycin aims to clear 

infection from communities such that trachoma ceases to be a public health concern [3].  

Understanding the spatial distribution of disease and infection in trachoma-endemic 

regions is increasingly recognized in national trachoma control programme planning, enabling 

the identification of at risk populations and prioritization of target areas for control and 

implementation and optimal scaling of SAFE [4-8]. It may also be important in understanding 

transmission, transmission thresholds and the dynamics of spread and recovery from infection 

following intervention. 

Spatial analysis provides powerful methods to study the relationship between active 

trachoma and ocular infection with C. trachomatis. The spatial relationship between disease and 

infection defined over space is termed spatial dependence. This is measured as the existence of 

statistical association (dependence) between disease and infection associated with location. To 

explore spatial dependence measures of spatial autocorrelation are used. Spatial autocorrelation 

assumes that near objects are more related than distant objects. In the context of infectious 



diseases, this concept may be applied to explore the relationship between infection and disease 

where the spatial distribution can be used to define underlying processes such as exposure or 

transmission. Spatial regression models can thus be used to understand the epidemiology of 

active trachoma and C. trachomatis infection.  

Global spatial autocorrelation statistics are used to describe the overall spatial patterns in 

the data. Local indicators of spatial association take actual values of observations in the context 

of adjacent values allowing mapping and definition of clusters at exact locations. This allows for 

the examination of small-scale heterogeneity and identification of statistically significant clusters 

and outliers of similar observations in space. In the context of global spatial patterns described 

above, this provides us with a greater understanding of the relationship between infection and 

disease.  

In this study we applied molecular and geostatistical tools to investigate the spatial 

epidemiology of C. trachomatis infection and active trachoma in a population-based study 

conducted in a trachoma-hyperendemic treatment-naïve population from the Bijagós 

Archipelago of Guinea Bissau in West Africa. This is the first study to use local indicators of 

spatial association using individual-level C. trachomatis load data in the context of spatial 

dependence to investigate the relationship between infection and disease. This is important in 

understanding the epidemiology of ocular C. trachomatis infection and may inform further 

studies on C. trachomatis transmission dynamics, which are fundamental to successful trachoma 

elimination and surveillance strategies. 

MATERIALS AND METHODS 

Ethical Approval 

This study was conducted in accordance with the declaration of Helsinki. Ethical 

approval was obtained from the Comitê Nacional de Ética e Saúde (Guinea Bissau), the LSHTM 

Ethics Committee (UK) and The Gambia Government/MRC Joint Ethics Committee (The 

Gambia). Written informed consent was obtained from all study participants or their guardians 

on their behalf if they were children. A signature or thumbprint is considered an appropriate 

record of consent in this setting by the above ethical bodies. After survey completion all 



communities on the study islands were treated with a single height-based dose of oral 

azithromycin in accordance with WHO and national protocols. 

Study Area 

The Bijagós Archipelago has a total area of more than 10,000 km
2
 and lies between N 

11
0
38’19.68” and N 10

0
51’40.32”, W 16

0
29’38.40” and W 15

0
27’17.28”. The surface area 

covers approximately 900 km
2
, of which 350 km

2
 is mangrove forest [9]. Maximum altitude is 

50m. The climate is humid and tropical, with a rainy season from May-November, when average 

monthly rainfall is 400mm
3
 [10]. Mean monthly temperature is 27.3

0
C (25.1-29.2

0
C), with peak 

temperatures prior to the rainy season. There are 88 islands and islets of which approximately 20 

are permanently inhabited. The remainder are inhabited periodically for seasonal agriculture and 

traditional initiation ceremonies. The study was conducted on four islands of the archipelago 

(Figure 1). These four islands comprise a total rural population of 5,613 (National Population 

Census, 2010, Instituto Nacional de Estatística, Guiné-Bissau) and a total area of 215km
2
.  

Study Design and Study Population 

Trachoma survey methodology and this study population have been described previously 

[11,12-15]. To satisfy adequate geospatial representation at village-level, we included all 38 

villages on the four study islands and randomly sampled one in five households (with a 

minimum of five per village) from each. All were sampled if there were fewer than six 

households in the village. Small villages are thus over-represented by the minimum sampling 

criteria imposed. Data were geo-coded at household and village level using the Garmin eTrex H 

handheld Global Positioning Systems (GPS) unit (Garmin Ltd., UK). 

Clinical Examination and Conjunctival Sampling 

A single validated examiner assessed each participant using the WHO simplified and 

modified FPC grading systems [1,2]. In the modified FPC system, follicles (F), papillae (P) and 

conjunctival scarring (C) are each assigned a separate grade from 0-3. FPC grades of F2/3 or P3 

equate to a diagnosis of active trachoma (TF (follicular trachoma) or TI (inflammatory trachoma) 

by the WHO simplified system) and a grade of C2/3 (and in some cases C1) equates to a 

diagnosis of TS (trachomatous scarring). A trachoma grade was assigned to the upper tarsal 



conjunctivae of each consenting participant using adequate light and a 2.5x binocular magnifying 

loupe. Both methods were used in order that study data should be comparable to data used by 

trachoma control programmes and research studies requiring detailed information related to 

disease severity and have been used previously in similar settings [16,17].    

Samples were taken from the left upper tarsal conjunctiva of each participant with 

Dacron swabs (Fisher Scientific, UK) using a well-tolerated standardized procedure described in 

previous studies [11,12,13,18,19].  

Detection and Quantitation of C. trachomatis ocular infection 

DNA extraction and droplet digital PCR (ddPCR) (Bio-Rad Laboratories, Hemel 

Hempstead, UK) were conducted as described previously [11-13]. We used C. trachomatis 

plasmid-based ddPCR to diagnose infection and a single-copy pathogen chromosomal gene 

(omcB) to estimate pathogen load in each plasmid-positive sample [12,13]. The plasmid-based 

screening PCR included primers for human DNA (RPP30). A sample was deemed adequate if 

sufficient quantities of RPP30 DNA were present on PCR as defined previously [12,13].  

Estimated quantities of omcB (C. trachomatis load) and plasmid are expressed as 

copies/swab. This is a method that we have previously employed for similar analyses [11,16,20-

23]. Data reported by Solomon et al. (showing a clear reduction in C. trachomatis load and 

disease severity in a trachoma-endemic community in Tanzania following mass drug treatment 

with azithromycin (MDA) [24]), and Alexander et al. (showing a reduction in community C. 

trachomatis load (calculated using the same method) following MDA [25]), provide evidence 

that measuring C. trachomatis load as copies/swab in this context is appropriate.  We do not 

report C. trachomatis load per eukaryotic cell since inflammatory cells are attracted to the 

conjunctiva in the presence of ocular C. trachomatis infection which would be included amongst 

sampled cells and may artefactually decrease the C. trachomatis load. This is of particular 

concern in active trachoma, where inflammation can be intense and result in high loads of human 

cellular material on a swab. This phenomenon has also been noted in urogenital C. trachomatis 

infection [26].  

 



Statistical Analysis 

C. trachomatis quantitation data were processed as described previously [12,13]. GPS 

data were downloaded into MapSource v16.16.3 (Garmin Ltd., UK). All data were double 

entered into a customised database (Microsoft Access 2007) and discrepancies resolved through 

reference to source documents. Data were cleaned and analysed in STATA 13 (Stata 

Corporation, College Station, Texas USA). Statistical significance was determined at the 5% 

level.  

Mixed effects linear regression models of C. trachomatis load and Clinical Phenotype 

C. trachomatis load data were log(e) transformed where indicated. The geometric mean 

of load, respective standard error (SE) and 95% confidence intervals (CI) were calculated. An 

analysis of variance (ANOVA) with pair-wise comparisons was used to compare load across 

detailed clinical phenotypes. Assessment of group differences and multiple comparisons were 

adjusted for using the Scheffé correction [27]. Associations between load and detailed clinical 

phenotype were examined using univariable and multivariable mixed effects linear and logistic 

regression models accounting for household-level clustering detected in previous studies [11].  

Geostatistical Analyses 

Geocoded data were projected into UTM Zone 28N. ArcGIS 10.1 (ESRI Inc., USA) and 

the R statistical package v3.0.2 (The R Foundation for Statistical Computing, http://www.r-

project.org using spdep, automap and nlme packages) were used for all geostatistical analyses 

[28-30]. In the following analyses, the zone of indifference is used to define adjacency. This 

method assumes that each observation has local influence that decreases with distance beyond a 

critical distance cut-off, resulting in an adapted model of impedance, or distance decay, such that 

all features have an impact on all other features, but this impact decreases with distance. The 

crucial cut-off used in this study is derived from the distance over which spatial autocorrelation 

occurs in these data and relates to the village boundaries, assuming impedance as described 

above. Previously we have shown that clustering exists at this level in these communities [11], 

which supports using this threshold. This method is appropriate for point data and takes into 

account the extent of spatial autocorrelation in selecting data-driven threshold cut-offs [31].  

 



Spatial Autocorrelation 

The Moran’s I statistic was used to evaluate global spatial autocorrelation in the 

distribution of the household-level prevalence of disease and infection. The values of Moran’s I 

range between -1 and +1. A value close to -1 indicates negative autocorrelation (complete 

dispersion) whilst a value close to +1 indicates positive autocorrelation (clustering) of features. A 

value close to 0 suggests random arrangement. Z-scores and p-values are assigned to ascertain 

whether spatial autocorrelation is statistically significant [32]. Since the Moran’s I statistic can 

be sensitive to skewed distributions, a permutation test was used to verify the results. This uses 

Monte Carlo simulations to generate a Moran’s I sampling distribution [33].  

Empirical semivariograms were used to obtain the distance range over which spatial 

autocorrelation occurs using the average squared distance between paired data values against the 

distance (or lag) separating the pairs to estimate the spatial covariance structure of the data to 

inform the geostatistical models [34].  

Linear and logistic mixed effects regression models were also applied to examine the 

effect of spatial autocorrelation on clustering. We used the covariance structure to compare 

models with and without a spatial component. The log likelihood, Akaike information criterion 

(AIC) and Bayesian information criterion (BIC) were used to compare models [35]. 

Local Indicators of Spatial Association: Cluster-Outlier Analyses 

Clustering and outlier analysis was applied using the local (Anselin) Moran’s I statistic in 

ArcGIS 10.1 Spatial Statistics Toolbox (ESRI Inc., USA). The zone of indifference was used to 

define adjacency and the Euclidean distance threshold was derived from empirical 

semivariograms as described above. The Euclidean distance threshold was thus the distance over 

which the highest positive spatial autocorrelation for Ct infection existed. Together these account 

for the geography (islands with populated (villages) and non-populated areas) [36]. Individuals’ 

Ct loads were used as the variable of interest. Since these populations and areas are small with 

little ecological variation, this single threshold value is sufficient. A positive value for I indicates 

that a feature has adjacent features with similarly high or low attributable values (a cluster). A 

negative value for I indicates that adjacent features have dissimilar values and that this feature is 

an outlier. Cluster-Outlier analysis identifies spatial clusters of features with high or low values 

and spatial outliers by calculating Moran’s I, Z-scores, p-values and a code to represent the 

cluster type. Cluster types are defined as clusters of high values (HH, High-High), clusters of low 



values (defined as above) (LL, Low-Low), a high value outlier surrounded by predominantly low 

values (HL, High-Low) and a low value outlier surrounded by predominantly high values (LH, 

Low-High). A group of geospatially proximal infections where the bacterial load values are not 

statistically similar is defined as a non-significant cluster.  

In this analysis ‘low’ values include both low values related to low load infections and 

null (zero) values related to uninfected individuals. To explore this, these analyses were 

conducted first on the whole data set, including uninfected individuals with a ‘zero’ value for 

infectious load, and then on infected individuals only.  

 

RESULTS 

Trachoma and C. trachomatis infection prevalence is hyperendemic in this population and is 

described elsewhere in detail [11-13]. All swab samples in the study were positive for the 

presence of the human DNA target RPP30. C. trachomatis load was skewed, with the majority of 

cases having low copy numbers (<1000 copies/swab). Log-(e) transformation removed the skew 

(skewness -0.106, p=0.5454) in these analyses.   

 

C. trachomatis bacterial load and clinical disease severity in individuals with C. trachomatis 

infection 

The geometric mean of estimated omcB copies/swab present in clinically normal 

conjunctivae (F0/P0/C0) was 294 copies/swab (95% C.I. 165-524). In clinically active trachoma 

it was 8562 copies/swab (95% C.I. 5412-13546). Significantly higher loads were detected in 

individuals with increasing F and P scores (Table 1). C. trachomatis load by age and clinical 

phenotype is shown in Figure 2. The majority of infections with high loads were in children 

under 10 years of age with active trachoma. 

Spatial structure of active trachoma and C. trachomatis infection 

Significant positive spatial autocorrelation was evident for C. trachomatis infection 

(Moran’s I=0.19, p<0.0001) but not active trachoma (Moran’s I=0.07, p=0.0659). Semi-

variograms demonstrate that autocorrelation in infection is negligible in distances greater than 



1719m (Figure 3). We found no evidence of spatial autocorrelation in the distribution of C. 

trachomatis load (Moran’s I=0.05, p=0.4464).  

C. trachomatis load was the strongest predictor of clinically active trachoma. In 

accordance with the semi-variograms, including spatial structure in multivariable mixed effects 

regression analyses for active trachoma and C. trachomatis infection improves the fit of the 

models (Table 2).  

Inflammatory and follicle scores were strongly associated with bacterial load. Inclusion 

of the spatial structure in models predicting C. trachomatis load improved the fit, but the effect 

of spatial dependence becomes undetectable when age and disease severity scores are included, 

thus resolving residual spatial variation (Table 3).  

 

Cluster and outlier analysis of C. trachomatis infection 

High load infections were clustered with other high load infections (HH clusters) (Figure 

4). Outliers where there was a single low load infection amidst predominantly high load 

infections (HL) were also demonstrated. There was no clustering of low load infections (or zero-

values from uninfected individuals) (LL clusters) and there were no statistically significant 

outlying high loads surrounded by predominantly low loads (LH). Analyses were conducted on 

the whole data set and infections only as described above. There were no individuals with 

infections below 10,000 omcB copies/swab noted within a HH cluster or as a HL outlier. 

 

DISCUSSION 

The majority of ocular C. trachomatis infections occur in children, who have the highest 

loads and most severe active trachoma. However, infection predominantly occurs at low bacterial 

loads in the population overall. Similar findings have been observed in other studies [17,20,22], 

though we found a greater prevalence of infection across all age groups typical of hyperendemic 

settings. Almost half the individuals with quantifiable infection had a normal clinical phenotype, 

though the mean C. trachomatis load was significantly lower than in those with active trachoma, 

which is consistent with other studies in meso and hyperendemic settings [22,37].  

In this population C. trachomatis load increases with disease severity (for both follicular 

(F) and inflammatory (P) scores), the strongest association being with increasing P-scores. The 



association between ocular C. trachomatis load and disease severity in trachoma is supported by 

findings from other studies [16,17,22,38]. The association between C. trachomatis load and high 

F-scores is in part due to collinearity between F and P, where with high F-scores there is likely to 

be inflammation present. Inflammation has previously been found to be associated with high C. 

trachomatis loads and persistence of infection in children [39].  This is consistent with the high 

prevalence of infection and the spectrum of load and phenotype observed in this age group but 

may also be associated with pathogen virulence if there are different C. trachomatis strains in 

circulation. Further analysis is underway to investigate associations between pathogen genotype, 

clinical phenotype and geospatial clustering of strains. 

There is spatial dependence in the distribution of C. trachomatis infection, demonstrated 

by positive spatial autocorrelation. The distance over which this occurs (1719m) equates to that 

of village boundaries. We used this data-driven threshold in our geostatistical models to account 

for the difficulties in performing this type of analysis in small island populations.  

Our data show that the highest burden of infection (and load) is in children under ten 

years of age. There are usually only one or two children of this age group within a household in 

these communities [11]. The high load clusters (HH) and high load outliers (HL) are 

geographically close to the non-significant clusters and both exist within the village boundaries 

in this study (less than 200m apart). These data support the hypothesis that transmission occurs at 

village level in this population. Spread from an individual within an HH cluster to an individual 

in a non-significant cluster is also possible and requires further investigation in longitudinal and 

mathematical modelling studies.  

Although household and village-level clustering is evident in active trachoma and ocular 

C. trachomatis infection [11,40-42], the inclusion of this spatial structure in regression models 

for active trachoma and C. trachomatis infection further improves model fit and demonstrates 

underlying spatial processes in the relationship between infection and disease, such that cases of 

active trachoma may represent recent exposure to C. trachomatis infection. The effect of spatial 

dependence in infection is greater than in active trachoma, perhaps reflecting the complexity of 

the disease process, where host-pathogen interactions contribute.  



There was no global spatial autocorrelation evident for C. trachomatis bacterial load, 

likely reflecting the stronger influence of underlying social and biological rather than spatial 

processes. However, we were able to use local indicators of spatial association to examine fine-

scale spatial clustering to identify clustering of high load infections. Spatial clusters, independent 

of age and gender, of individual infections with high bacterial loads (HH) and high load outliers 

that cluster with other low loads (HL) exist. Furthermore, there was no evidence of clustering of 

low load infections (LL), suggesting that high load infections may be important in transmission 

of chlamydial infection. There appears to be a threshold of C. trachomatis load below which HH 

clustering (and being a HL outlier) does not occur. The same phenomena were observed in data 

including infected and uninfected individuals and data with infected individuals only suggesting 

that low load infection may represent a negligible risk of transmission. This supports the 

described Allee effect, which hypothesizes that a reduction in chlamydial fitness due to reduced 

pathogen population size or density results in its disappearance from a population [43].  

There are a limited number of studies that have assessed the spatial distribution of 

trachoma [5,7,44] and ocular C. trachomatis infection [45,46]. Broman et al. did not find 

clustering of active trachoma in children under the age of 10 years, but found clusters of 

households with high bacterial loads (defined as the household mean load) in treatment-naïve 

communities, supporting the findings in this study [45]. Yohannan et al. examined binary 

household-level data using a K-function nearest neighbours analysis [46]. The methodology for 

cluster detection in these studies was heterogeneous and measures of spatial dependence were 

not included in these analyses.  

This cross-sectional study is limited in the assumption of load and clinical disease 

severity as a steady state. There are few data addressing stability of C. trachomatis load and 

disease phenotype (39). Bobo et al. conducted weekly surveys for three months in hyperendemic 

communities, finding that 62% of children had at least one infection during that time and of 

those 64% were persistently infected and had higher mean C. trachomatis loads and more severe 

disease than those who were sporadically infected [39]. Additionally, host conjunctival immune 

response and duration of infection add complexity to the interaction between C. trachomatis 

infection and disease severity [20,47]. C. trachomatis strain diversity may also be associated 



with bacterial load, the spectrum of disease severity and the clustering of high load infections 

within these communities. 

The role and importance of HH clusters and HL outliers in C. trachomatis transmission is 

speculative, but their presence, and the absence of low load clusters (LL) and low load outliers 

(LH), suggest that C. trachomatis load may have a role in transmission, and that these clusters 

may represent a source for spread of ocular C. trachomatis infection. Studies in trachoma and C. 

trachomatis infection in mouse models have suggested that C. trachomatis load is associated 

with transmission [37,48]. There is also some evidence from studies of urogenital C. trachomatis 

infection in humans that individuals with asymptomatic infection have lower C. trachomatis 

loads than individuals with symptomatic infections [49] and that the chance of sexual 

transmission of C. trachomatis per sexual act may be influenced by load [50]. However, the 

determinants of C. trachomatis load and its role in transmission and the development of sequelae 

are not well understood [51]. Further longitudinal data in the context of trachoma endemicity and 

mass drug treatment are required to fully address these questions and investigate the dynamics of 

C. trachomatis load in transmission. 

Conclusion 

This is the first study to use individual-level quantifiable C. trachomatis infections from a 

geospatially representative population-based sample to investigate spatial clustering of C. 

trachomatis infection. These data show that increasing C. trachomatis load is related to 

increasing disease severity in active trachoma, particularly with respect to inflammation. We 

have provided a global statistical measure for spatial autocorrelation in infection and disease and 

used local indicators of spatial association to describe the location and nature of the clusters in 

relation to C. trachomatis load. 

These data suggest that high load C. trachomatis infections cluster spatially and may be 

important in transmission, although further longitudinal study is required. Further 

epidemiological and in vitro studies are required to provide a more complete picture of the 

relationship between disease severity and chlamydial load. 

These geospatial tools may be useful as tools in trachoma surveillance to identify clusters 

of infection and thresholds of C. trachomatis bacterial load that may be important foci of 

transmission. Using these methods in conjunction with novel molecular tools to better define C. 



trachomatis strains and ‘virulence’ may also improve our understanding of C. trachomatis 

pathogenesis and transmission.  
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Figure 1. The Bijagós Archipelago, Guinea Bissau (© Ezilon 2009). The islands of Bubaque, Canhabaque, Rubane and Soga (circled in red) 

were included in the current study. 

 



 

Figure 2. Chlamydia trachomatis load by age and clinical phenotype in infected individuals. The y axis shows the natural logarithmic scale of C. 

trachomatis bacterial load (omcB copies/swab). 

 



 

Figure 3. Empirical semivariograms and fitted models for household prevalence of (a) ocular C. trachomatis infection (b) active trachoma and 

the distribution of  (c) ocular C. trachomatis bacterial load.  

(a) Unadjusted household prevalence of C. trachomatis infection 

(b) Household prevalence of active trachoma in 1-9 year olds 

(c) Ocular C. trachomatis bacterial load 

Prevalence data were log transformed (ln(ln+1)) due to significant negative skew. Active trachoma is defined by TF/TI by the WHO Simplified 

Grading System [2] (F2/F3 or P3 by the Modified FPC Grading System [1]). Distance is indicated in metres. Model fit with the smallest residual 

sum of squares (Matern, M. Stein’s Parameterization (Ste)). All values of Kappa (smoothing parameter of the Matern model) tested. Nugget, sill, 

range and Kappa are all estimated from the data. 

 



 

Figure 4. Clusters and outliers of high load ocular Chlamydia trachomatis infections. C trachomatis load log transformed (ln(ln+1)) due to 

significant negative skew. Statistically significant positive values for the Local Moran’s I statistic indicate clustering with similarly high (H-H) 

or low (L-L) values. Negative values indicate that neighbouring observations have dissimilar values and that this observation is an outlier (H-L 

or L-H). H-H clusters and H-L outliers are observed. There are no L-L clusters. Observation values represent C. trachomatis load. Adjacency is 

defined by the zone of indifference.  

 

 

 

 

 

 

 

 

 

 

 



Table 1. Estimated Chlamydia trachomatis load (omcB copies/swab) and analysis of variance (ANOVA
a
) by detailed clinical phenotype in 

infected individuals  

 

Clinical Phenotype n
b 

omcB 

copies/swab 

(Geometric 

Mean) 

95% C.I. 

(SE  

geometric mean) 

p-Value 

(ANOVA) 

  Median Min Max 

Normal (F0P0C0) 71 294 165, 524 Baseline   176 15 96333 

Active Trachoma  

(TF and/or TI) 

92 8562 5412, 13546 p<0.00001   14236 17 274835 

Scarring Trachoma 

(TS) 

19 928 280, 3074 p=0.4069   2142 17 49125 

Follicular Score  

(F) 

         

0 91 438 251, 762 Baseline   227 15 202632 

1 20 1288 448, 3697 p=0.324 Baseline  1710 34 96333 

2 27 3212 1264, 8165 p=0.002 p=0.624 Baseline 3203 27 140693 

3 46 19870 2832, 25927 p<0.0001 p<0.0001 p=0.018 22767 323 274835 

Inflammatory Score 

(P) 

         

0 46 122 68, 218 Baseline   67 15 41059 

1 70 1534 871, 2702 p<0.0001 Baseline  1469 16 202632 

2 46 10413 5461, 19857 p<0.0001 p<0.0001 Baseline 18569 17 274835 

3 22 14053 5550, 35581 p<0.0001 p<0.0001 p=0.964 21864 34 158548 

Scarring Score  

(C) 

         

0 155 1902 1207, 2996 Baseline   2095 15 274835 

1 11 449 111, 1816 p=0.438 Baseline  204 34 11556 

2 9 990 192, 5111 p=0.927 p=0.941 Baseline 589 76 54651 

3 9 2475 253, 24192 p=0.995 p=0.608 p=0.923 7023 17 49125 
a
Scheffé correction used for multiple comparisons 

b
n=number of individuals with quantifiable C. trachomatis bacterial load 

 

 

 

Table 2. Multivariable mixed effects logistic regression analysis showing the effect of spatial dependence on clinically active trachoma
 
and 

ocular Chlamydia trachomatis infection  

Model Predictor Variables n AIC
a
 

C. trachomatis infection
 

   

No spatial
b 

Spatial
c 

age 1426 854.8 

801.8 

No spatial 

 

Spatial 

age  

active trachoma
d 

1426 

163 

546.4 

 

495.6 

    

Active trachoma    

No Spatial 

Spatial 

age 1426 697.9 

659.0 

No Spatial 

 

Spatial 

age 

C. trachomatis infection 

1426 

224 

389.5 

 

362.3 

No Spatial 

 

Spatial 

age 

C. trachomatis load
e 

1426 

180 

251.2 

 

232.7 

 

a
AIC=Akaike information criterion

 b
With household or village as cluster variables 

c
Including of spatial structure 

d
defined as TF/TI using the 

WHO simplified grading system (2)  
e
defined as log-(e) omcB copies/swab. 

 

 

 



Table 3. Multivariable mixed effects linear regression analysis of factors predictive of Chlamydia trachomatis load (omcB copies/swab) in 

infected individuals 

Model Variable n OR
a 

95% C.I. p-Value AIC
b
 BIC

c
 loglik

d
 

Null
e 

        

      884.8 894.3 -439.4 

Clustering         

Household
f 

Village
f 

Spatial
g 

     884.3 

882.1 

799.7 

893.8 

892.0 

834.8 

-439.1 

-438.2 

-388.8 

Final
h 

Including age and disease severity 

        

Spatial 

No spatial 

     802.6 

797.7 

844.1 

829.6 

-388.3 

-388.8 

Age 0-5 years 87 2.60 0.99, 6.87 0.052    

 6-10 years 45 0.70 0.24, 2.05 0.509    

 11-15 years 15 1.77 0.43, 7.20 0.427    

 >15 years 37 1.00 -- --    

Disease Severity Inflammatory Grade (P)        

 0 46 1.00 -- --    

 1 70 7.54 3.12, 18.20 <0.0001    

 2 46 22.8 8.15, 63.9 <0.0001    

 3 22 30.9 9.39, 101.50 <0.0001    

 Follicular Grade  (F)        

 0 91 1.00 -- --    

 1 20 1.29 0.43, 3.84 0.649    

 2 27 2.20 0.82, 5.88 0.114    

 3 46 7.78 3.16, 19.15 <0.0001    
C. trachomatis load is defined as log-(e) omcB copies/swab. There was no evidence of heteroscedasticity of residuals (Breusch-Pagan/Cook Weisberg test for 

heteroscedasticity in the final model. (Chi2 = 0.44, p=0.5079)) 
a
Exponentiated coefficient 

b
AIC=Akaike information criterion 

c
BIC=Bayesian information criterion 

d
loglik=Log likelihoood 

e
Null model with dummy cluster variable 

f
Including household or village as cluster variables on outcome  

g
Including spatial structure 

h
Final model 

including covariates with and without adjustment for spatial structure 

 


