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PRUNE is a member of the DHH (Asp-His-His) phosphoesterase protein superfamily of molecules important for cell motility, and

implicated in cancer progression. Here we investigated multiple families from Oman, India, Iran and Italy with individuals affected

by a new autosomal recessive neurodevelopmental and degenerative disorder in which the cardinal features include primary

microcephaly and profound global developmental delay. Our genetic studies identified biallelic mutations of PRUNE1 as respon-

sible. Our functional assays of disease-associated variant alleles revealed impaired microtubule polymerization, as well as cell

migration and proliferation properties, of mutant PRUNE. Additionally, our studies also highlight a potential new role for PRUNE

during microtubule polymerization, which is essential for the cytoskeletal rearrangements that occur during cellular division and

proliferation. Together these studies define PRUNE as a molecule fundamental for normal human cortical development and define

cellular and clinical consequences associated with PRUNE mutation.
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Introduction
PRUNE first identified in Drosophila through impairing the

formation of eye pigments (drosopterins), belongs to the

DHH family of phosphoesterases (Timmons et al., 1995).

Subsequent studies indicated that PRUNE cAMP-phospho-

diesterase activity is important for cell motility (D’Angelo

et al., 2004) with a prominent exopolyphosphatase activity,

and that PRUNE-interacts with glycogen synthase kinase-3

(GSK-3b), a negative regulator of canonical WNT/b-catenin

signalling (Diana et al., 2013; Carotenuto et al., 2014).

Consistent with this role PRUNE overexpression has also

been shown to correlate with the staging of colorectal

cancer liver metastases (Hashimoto et al., 2016), and

PRUNE expression is an independent predictor of survival

of patients with gastric cancer (Oue et al., 2007). While a

clear molecular role for PRUNE in brain development has

not been previously demonstrated, PRUNE’s binding
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partner GSK-3b is a crucial inhibitory regulator of many

neuronal functions including neurite outgrowth, synapse

formation, neurogenesis and survival, which may be

mediated via GSK-3b promotion of apoptotic signalling

in cultured neural precursor cells (Eom et al., 2007). In

addition, neuronal overexpression of GSK-3b has been

shown to result in delayed postnatal maturation and differ-

entiation of neurons in the mouse brain (Spittaels et al.,

2000, 2002). Further evidence for a role of PRUNE in

neurodevelopment is provided by studies of the temporo-

spatial expression pattern of Prune during mouse brain de-

velopment, which revealed strong expression in multiple

brain regions during early development indicative of a

role in neurogenesis and neuronal migration (Carotenuto

et al., 2006). Recently, Karaca and colleagues identified

biallelic mutations in PRUNE1 as a candidate genetic

cause of microcephaly, cortical atrophy, thin or hypoplastic

corpus callosum, cerebellar atrophy and global develop-

mental delay in five affected individuals (Karaca et al.,

2015). In the current study we confirm a key role for

PRUNE in human brain development by defining PRUNE

mutations in 13 individuals in extended families from

Oman and Iran, as well as two smaller families from

India and Italy, affected by overlapping clinical features.

Together with our functional assessments of these

PRUNE mutations, our data enable a more detailed clinical

comparison to be drawn between the patient cohort

described here with the five patients in whom candidate

PRUNE mutations were recently defined (Karaca et al.,

2015), permitting us to more precisely define the molecular

basis and clinical outcome arising from PRUNE mutation.

Materials and methods

Patient ascertainment and genetic
studies

The present studies were reviewed and approved by the local
authorities in the Sultanate of Oman, Iran, India and Italy and
all tissue samples were taken with informed consent and in
accordance with the local government guidelines on research
governance. DNA and RNA were extracted from blood or
buccal samples using standard techniques. Single nucleotide
polymorphism (SNP) genotyping was carried out using
Illumina Human CytoSNP-12v2.1 arrays. Multipoint linkage
analysis was performed with Simwalk (Sobel et al., 2001)
under a model of autosomal-recessive inheritance with full
penetrance. Unique primers for PCR and sequencing were de-
signed using online software Primer3web (Koressaar and
Remm, 2007; Untergasser et al., 2012) using sequences from
the UCSC Genome Browser. Bidirectional dideoxy DNA
sequencing was performed on an ABI3130 XLA capillary se-
quencer (Applied Biosystems) with analysis using Finch TV
1.4.0 (Geospiza Inc.) and Gene Tool 1.0.0.1 (Bio Tools Inc.).
Whole-exome sequence analysis (Family 1) was performed by
in-solution hybridization (Sure Select system, Agilent) on
Illumina GAIIx. Sequence reads were aligned with the

Novoalign software package (Novocraft Technologies Sdn
Bhd) and duplicate reads excluded from downstream analysis.
Depth and breadth of sequence coverage was calculated with
custom scripts and the BedTools package (Quinlan and Hall,
2010). Single nucleotide substitutions and small insertion dele-
tions were identified and quality filtered within the SamTools
software package (Li et al., 2009) and in-house software tools.
Variants were annotated with respect to genes and transcripts
with the Annovar tool (Wang et al., 2010).

Immunoprecipitation of FLAG-
PRUNE complexes

Complexes were purified by immunoprecipitation from total
extracts from breast carcinoma cells as described (Carotenuto
et al., 2006). Total extracts were pre-cleaned on mouse IgG
agarose beads (Sigma) for 2 h at 4�C to reduce non-specific
binding and then incubated with M2 anti-FLAG agarose-con-
jugated antibody (Sigma) for 4 h at 4�C. Elution of immuno-
precipitate was performed with 3� FLAG peptide in buffer A.
The eluted extracts were precipitated with methanol/chloro-
form before loading on 10% polyacrylamide SDS-PAGE. The
gel was stained with Coomassie colloidal blue (Pierce). Protein
bands were excised from the gel, reduced and carboxy-amido-
methylated with 10 mM DII and 55 mM iodoacetamide in
50 mM NH4HCO3 buffer pH 8 and in situ digested with
trypsin.

Cell culture

Cells were cultured in DMEM (HEK293 and HELA) or RPMI
(SHSY5Y) medium with 10% foetal bovine serum (FBS),
2 mM L-glutamine, and 1% penicillin/streptomycin. SHSY5Y
cells were transfected with the pcDNATM6/IR plasmid
(encoding the Iet repressor, IetR) using Lipofectamine

�
2000

(Invitrogen). Cellular clones were generated by selection with
blasticidin (5mg/ml) for 10 days. Positive clones were then
transfected with the episomal pT-REx-DEST30 vectors encod-
ing PRUNE wild-type, PRUNE-D30N, PRUNE-R297W or
empty vector as a control. Cellular clones were generated by
selection with Neomycin (500 mg/ml). Ir6/ pT-REx-DEST30
PRUNE-positive cells were determined by western blot analysis
24 h after the addition of doxycycline at a final concentration
of 2 mg/ml.

Cell index assay

Cell migration and proliferation were assessed using Roche
xCELLigence system. HEK293 cells transfected with wild-
type, D30N and R297W PRUNE expressing plasmids were
harvested and washed with phosphate-buffered saline (PBS)
and then resuspended in Dulbecco’s modified Eagle medium
(DMEM) with 0% FBS. Each cell suspension was then
added to a single well on the xCELLigence CIM-plate 16.
Migration was driven by a 10% FBS gradient (as oval
coloured) and 0% FBS gradient as control (as circle coloured),
and assessed at 5-min intervals by measuring impedance
changes across electrodes at the bottom of the wells. Cellular
proliferation assays were performed by adding SH-SY5Y indu-
cible clones (5 � 103) to single wells of the xCELLigence E-
plate 16. Adenovirus particles AdV-UNR (unrelated) and AdV-
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sh-PRUNE expressing sequences silencing endogenous PRUNE
translation were added to the cells and then expression of
wild-type, R297W and D30N mutated PRUNE proteins ex-
pression was induced adding doxycycline after 2 h of virus
infection. Proliferation rates were determined by measuring
electrical impedance changes in the electrodes at the bottom
of each well at 2-min intervals for 26 h (proliferation assay)
and 12 h (migration assay).

Microtubule nucleation assays and
immunofluorescence analyses

SH-SY5Y inducible clones were plated and grown for 24 h in
the presence of doxycycline. Then, inducible cells growing on
the coverslips were incubated on ice for 1 h and then at 30�C
for 2 min. Cells were fixed in 4% paraformaldehyde and per-
meabilized for 10 min in phosphate buffer containing 0.1%
Triton

TM

X-100, before incubation with 0.1% Triton
TM

X-
100, 10% pig serum and either anti-b-Tubulin (1 mg/ml;
Abcam, ab15568), anti-PRUNE (1 mg/ml; Abcam, ab88613)
antibodies. Confocal microscopy was carried out using a
laser scanning confocal microscope LSM 510 META, Zeiss,
with 40� /63� water immersion objectives.

In vitro microtubule polymerization
assay

Prune ability to promote microtubule assembly was determined
using the Tubulin polymerization assay kit according to the
manufacturer’s instructions (Cytoskeleton, #BK011P). Briefly,
the standard polymerization reaction containing 50 ml volume
of 2 mg/ml tubulin in 80 mM PIPES pH 6.9, 0.5 mM EGTA,
2 mM MgCl2, 1 mM GTP, 10% glycerol. Polymerization was
started by incubation at 37�C and followed by absorbance
readings at 360 nm. The standard polymerization reactions
were performed alone and in the presence of 3 mM paclitaxel,
3 mM nocodazole or of 800 ng wild-type, D30N or R297W
purified proteins. EnSpire software manager v.
4.13.3005.1482 was then used to calculate the kinetic slope
of the independent assays.

Differentiation assay

SH-SY5Y inducible clones were treated with doxycycline
(DOX) to induce expression of wild-type, R297W and
D30N mutated PRUNE proteins, and with all-trans retinoic
acid (ATRA, 20 mM) to induce neuronal differentiation, un-
treated clones were included as a control. Culture medium
was changed and differentiation assessed at Day 7 by real-
time polymerase chain reaction (PCR) measurement of levels
of TUJ1 expression as a marker of neuronal precursors
differentiation.

Real time PCR and western blotting

Total cellular RNA was extracted using TRIzol
�

(Invitrogen)
according to the manufacturer’s instructions. RT-PCR was car-
ried out using total RNA (1mg) and the iScriptTM cDNA
Synthesis kits (Bio-Rad). Transcripts were amplified by real-
time quantitative PCR using a 7900 Real-Time PCR System
(Applied Biosystems) with Power SYBR

�
green Master Mix

(Bio-Rad). Ct values were normalized to b-actin. Relative expres-
sion of TUBB3 (Tuj1) was determined by the 2–��Ct method.
Data are presented as mean � standard error of two replicate
experiments. Absence of endogenous expression of PRUNE in
HEK293 cells and reduction of levels of expression of PRUNE
after adenovirus infection of SHSY5Y cells was confirmed by
western blotting as described previously (Carotenuto et al.,
2014). Immunoblotting for the immunoprepicipitation and co-
sedimentation assays were performed using the following anti-
bodies: anti-b-Tubulin (1mg/ml; Abcam, ab15568), anti-alpha
Tubulin (1mg/ml; Abcam, ab15246), anti-Flag (1mg/ml; Sigma,
F3165), anti-Kinesin (1mg/ml; Abcam, ab62105) and anti-
GAPDH (1mg/ml; Abcam, ab37168).

Cell-based microtubules-binding
proteins spin-down assay

Cell-based co-sedimentation assay was performed as previ-
ously described (Darshan et al., 2011; Sung and
Giannakakou, 2014; Friese et al., 2016). Briefly, SHSY5Y
inducible cell clones expressing Flag-tagged wild-type
PRUNE or empty vector were treated with doxycycline for
24 h. The cells were washed in cold PBS and lysed in cell lysis
buffer (50 mM TRIS-HCl pH 7.4, 5 mM MgCl2, 0.1 mM
EGTA, 0.5% Triton

TM

X-100 and cocktail protease inhibitors
from Roche). Lysates were cleared by centrifugation at
16 200g for 15 min at 4�C, and the supernatants were
removed and assayed for protein concentration using the
Protein Assay Dye Reagent (Bio-Rad). Twenty microlitres of
porcine brain tubulin (10 mg/ml; #T240-DX; Cytoskeleton)
was supplemented with 1 mM GTP, 1 mM EGTA, 1 mM
DTT and 80 ml of BRB80 buffer (#BP01; Cytoskeleton) con-
sisting of 80 mM PIPES, 2 mM MgCl2, 0.5 mM EGTA, pH
6.9 and allow to polymerize at 37�C for 30 min by adding
paclitaxel (#TXD01; Cytoskeleton) drop wise (starting from
0.02 mM up to 2 mM). Microtubules were kept at room tem-
perature. Fifty microlitres of polymerized microtubules were
incubated with fifty micrograms of whole protein extracts
from SHSY5Y cells expressing Flag-tagged wild-type
PRUNE or empty vector for 30 min at 30�C. Samples were
loaded into cushion buffer (1 M sucrose in 50 mM TRIS-HCl,
pH 6.9) and microtubules were pelleted by centrifugation at
100 000 g at room temperature in an ultracentrifuge
(Beckman Coulter, Inc.). The supernatant (S) was separated
and the pellet (P) was resuspended in an equal volume of
RIPA buffer consisting of [20 mM sodium phosphate, pH
7.4, 150 mM NaCl, 10% (v/v) glycerol, 1% (w/v) Na-deox-
ycholate, and 1% (v/v) Triton

TM

X-100] supplemented with
protease inhibitors (Roche). Protein concentration from both
supernatant and pellet was estimated with Bradford reagent
(Bio-Rad protein assay). Twenty micrograms from each frac-
tion (P and S) were loaded in a 10% SDS-PAGE and im-
munoblotting was done with antibodies anti-Flag (1 mg/ml;
Sigma, F3165), anti-Kinesin (1 mg/ml; Abcam, ab62105) and
anti-b-Tubulin (1 mg/ml; Abcam, ab15568).

Cloning of PRUNE1 and variants for
Escherichia coli protein expression

Wild-type PRUNE1 construct (amino acid residues 1–393)
was cloned using TOPO technology into pET151/D-TOPO
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(Invitrogen), resulting in a construct with a His-tag fused to
the N-terminus of PRUNE via a linker consisting of a TEV
(tobacco etch virus) protease cleavage site. The mutations
(D30N and R297W) were introduced via site-directed muta-
genesis using mutagenic primers designed with a mismatch in
the centre of the oligonucleotide, and sequencing verified. His-
tagged wild-type and variant PRUNE1 pET151 constructs
were then transformed into E. coli Rosetta 2 strain.

Expression and purification of
PRUNE and mutant proteins from
Escherichia coli

E. coli transformed cells were grown in LB medium at 37�C
with 50 mg/ml ampicillin to an optical density of �0.6 OD at
600 nm when 1 mM isopropyl-beta-D-thiogalactopyranoside
(IPTG) was added. The culture was grown over night at
22�C for PRUNE production. Cells were harvested by centri-
fugation at 1000 rpm for 20 min at 4�C. The cellular pellet was
resuspended in equilibration buffer (20 mM Na2HPO4, pH
7.4, 500 mM NaCl, 20 mM imidazole) containing 1 mM
PMSF and disrupted by French Press. The cell extract was
centrifuged at 13 000 rpm for 20 min at 4�C and the super-
natant was filtered with a syringe-driven filter (0.22 mm)
before protein purification. Soluble cell extract was loaded
onto a HIS-Select� Nickel Affinity Gel equilibrated with equili-
bration buffer and the bound protein was eluted by a 12 ml
linear gradient from 20 to 500 mM imidazole. Protein concen-
tration was estimated with Bradford reagent (Bio-Rad protein
assay), protein purity was assessed by SDS-PAGE.

Enzymatic activity of PRUNE

The activity of PRUNE on P4 substrate was determined with a
fixed-time assay using BIOMOL� Green phosphate reagent
(Biomol). The reaction was performed for 60 s in 50 ml of
0.1 M Tris-HCl pH 7.2, containing 50 mM EGTA, 10 mM
Mg ions at a substrate concentration ranging from 0mM to
250mM on a microtitre plate. The reaction was stopped by
addition of 100ml BIOMOL� Green reagent and the increase
in absorbance at 620 nm was measured following 25 min
incubation. Kinetic parameters were fitted by non-linear regres-
sion with GraphPad Prism 4Project.

Statistical analyses

All of the data are presented as mean � standard error.
Statistical significance was calculated using the Mann-
Whitney U-test. The difference was considered statistically sig-
nificant at P50.05. All statistical analyses were performed
using the SPSS 16 statistical package for Windows.

Results

Prune syndrome phenotype

Supplementary Table 1 summarizes the core phenotypic

features of 13 individuals, not previously reported, aged

between 3 months and 21 years. Additional clinical details

are provided on two Turkish patients (Patients BAB3500

and BAB3737) previously described (Karaca et al., 2015).

Supplementary Fig. 1 illustrates the clinical features and

MRI scans of affected individuals from each family.

Reduced foetal movements compared to healthy siblings

was a prenatal sign reported by some mothers of Prune

syndrome children. Microcephaly was progressive and psy-

chomotor development was severely delayed in all domains.

Affected individuals did not communicate, and none

achieved purposeful hand movements or independent am-

bulation. Central hypotonia and in some cases bilateral

talipes were present at birth. Peripheral spasticity, clonus,

muscle wasting and multiple joint contractures developed

with advancing age. Slowing of the peripheral nerve con-

duction velocity at the neurophysiological investigations

performed at 2 years of age was seen in the Italian boy.

A history of generalized tonic clonic seizures from early

infancy was reported in four of the affected children. The

oldest of the two Italian children developed infantile

spasms at 4 months of age and the younger myoclonic

seizures at a similar age. Neuroimaging revealed focal

white matter changes, delayed myelination, cortical atro-

phy, thin or hypoplastic corpus callosum, and cerebellar

atrophy. Serial MRI scans in the Italian boy showed

severe progression of the disease with increasing age, with

delayed myelination reported at 6 months of life and

follow-up MRI at the age of 18 months showing diffuse

abnormalities of the white matter, progressive brain atro-

phy involving the cerebral cortex and most strikingly the

cerebellum. Craniofacial features included a sloping fore-

head and large prominent ears and eyes consistent with

microcephaly. The Italian girl was reported to have inter-

mittent facial swelling and pedal oedema. Plagiocephaly, a

narrow palate, scoliosis and a narrow chest were frequently

observed across the studied families and most likely attrib-

utable to the severe central hypotonia. The two Italian chil-

dren were both found to have optic atrophy, documented

in both by the age of 2 years. Congenital cataract was an

additional feature seen in one of the Iranian children and

both of the affected Indian siblings. More detailed ocular

phenotyping in a larger series of Prune syndrome patients is

required to evaluate if these are real associations with the

condition or coincidental and the result of a second auto-

somal recessive condition in these families. The cause of

death in the affected children was respiratory failure, pre-

sumed secondary to aspiration.

Genetic studies

To map the chromosomal location of the causative gene,

we performed high density genome-wide SNP mapping

assuming that a founder mutation was responsible for the

disease in Families A, B and D. This identified a single

notable homozygous region of 10.1 Mb of chromosome

1q21.3 in Family A demarcated by rs12033302 and

rs11264516, considered likely to correspond to the disease

locus. Multipoint linkage analysis was performed on
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Family A (Sobel et al., 2001), under a model of autosomal-

recessive inheritance with full penetrance, producing a

highly significant logarithm of the odds (LOD) score

across chromosome 1q21.3 (LODmax = 6.07). This region

overlapped one of only two notable regions of homozygos-

ity identified in Family B (102.1 Mb demarcated by

rs3855975 and rs2274316), as well as one of the two

small regions of homozygosity identified in Family D,

which spans 3.7 Mb (demarcated by SNPs rs7513205 and

rs11265303; Fig. 1 and Supplementary Fig. 2). To identify

the causative mutation, we performed whole exome sequen-

cing of a single affected individual from each of Families

A and B. After filtering the identified variants for call qual-

ity, potential pathogenicity, population frequency and

localization within the candidate interval, we identified

only a single likely deleterious variant in Family A,

a c.88G4A (p.Asp30Asn) alteration in PRUNE1

(NM_021222.2), as the primary candidate mutation.

Additionally, exome sequencing identified a c.160C4A

(p.Pro54Thr) PRUNE1 sequence variant in Family B and

a c.316G4A (p.Asp106Asn) in Family C. A c.889C4T

(p.Arg297Trp) alteration in PRUNE1 was subsequently

identified in Family D following dideoxy sequencing of all

coding exons of this gene (Fig. 1A–D).

Each variant affects a stringently conserved amino acid

residue (Asp30, Pro54, Asp106 and Arg297) located

within the two motifs DHH and DHHA2, which are

adjacently located inside the predicted enzymatic pocket

(Fig. 1E and F). Each mutation was found to co-segregate

in each appropriate family consistent with the mode of

inheritance, and showed high damage prediction using

in silico prediction programs [PROVEAN (Choi et al.,

2012), PolyPhen-2 (Majava et al., 2007), and SIFT

(Ng and Henikoff, 2001)]. The c.88G4A (p.Asp30Asn)

and c.160C4A (p.Pro54Thr) alterations were absent

from online genomic databases [1000 Genomes (The

Genomes Project, 2015), National Heart, Lung, and

Blood Institute Exome Sequencing Project database

ESP6500SI-V2 release, Exome Aggregation Consortium

(ExAC) (Lek et al., 2016)]. The c.316A4G variant was

identified in only five heterozygotes in the ExAC database

and the c.889C4T (p.Arg297Trp) alteration was

reported as a single somatic nucleotide variant

(COSM462922) and one heterozygote (South Asian) is

listed on the ExAC database. Additionally, the

c.88G4A (p.Asp30Asn) mutation of Family A and

the c.316G4A (p.Asp106Asn) mutation of Family C

have been both previously identified by Karaca et al.,

Figure 1 Family pedigrees, genotype and PRUNE mutation. Mutations in PRUNE1 detected in Omani (A); Iranian (B); Italian (C) and

Indian (D) families. (E) Alignment of PRUNE amino acid sequence showing stringent conservation of the Asp30; Pro54; Asp106 and Arg297

residues. (F) 3D model of PRUNE showing the location and close proximity of the Asp30 and Arg297 amino acid residues.
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(2015) in affected consanguineous families from

Saudi Arabia and Turkey, respectively.

PRUNE mutation impairs cell differ-
entiation, proliferation and migration
properties

PRUNE1 encodes a 453 amino acid protein that is highly

conserved across many species and shares functional prop-

erties with the phosphoesterases and the exopolyphospha-

tase family of proteins due to the presence of the DHH

motif (D’Angelo et al., 2004; Tammenkoski et al., 2008).

To determine the molecular mechanism by which PRUNE

may regulate neurogenesis, we investigated the outcome of

PRUNE mutation on its’ previously documented functional

roles in cell migration, proliferation and differentiation

(D’Angelo et al., 2004; Carotenuto et al., 2006). We inves-

tigated two of the mutations identified located in distinct

regions of PRUNE, affecting amino acid residues located in

separate functional domains so as to define and compare

functional outcomes on molecular function; p.D30N iden-

tified in this study and the study by Karaca et al. (2015)

(located in the DHH motif), as well as p.R297W identified

in this study (located in the DHHA2 domain). As has been

shown previously, our studies here determined that PRUNE

silencing profoundly decreased cell proliferation (Fig. 2A

and Supplementary Fig. 3D). However, while treatment

Figure 2 Impact of PRUNE mutations on known PRUNE functions. (A) Graphs showing normalized cell index as a measure of

proliferation of AdV-sh-Prune treated, PRUNE FLAG, PRUNE D30N-FLAG and PRUNE R297W-FLAG cells, stimulated with doxycycline (DOX).

Proliferation of Ad-sh-UNR treated PRUNE-FLAG cells was followed as control (light blue circle). Cell proliferation is shown as cell index after

normalization to the last cell index recorded before the addition of doxycycline. Data are expressed as mean � SD of samples assayed in

triplicate. (B) Graphs showing cell index as a measure of migration of HEK293 cells transfected with plasmids encoding wild-type D30N or

R297W PRUNE generated by xCELLigence RICA. Migration kinetics, shown as cell index, were monitored in response to 10% FBS (oval colours)

and to 0% FBS (circle colours) as negative control. Data are expressed as mean � SD of samples assayed in triplicate. (C) mRNA expression levels

of TUBB3 (TuJ1) in SH-SY5Y PRUNE-wild-type, PRUNE-D30N and PRUNE-R297W cells treated with doxycycline and all-trans retinoic acid

(ATRA) for 7 days as determined by RT-PCR. The levels of mRNA expression are represented as fold-multiples of 2�dCt values relative to

untreated expression. Data are means (mRNA expression 2�dCt) � SD (n = 3) (��P5 0.005). EV = empty vector; NT = not treated; TET =

tetracycline (or DOX); AR = all Trans retinoic acid. (D) The biochemical activity of both wild-type and mutated (D30N and R297W) PRUNE on

tetraphosphates (P4) substrate was determined with a fixed-time assay using BIOMOL
�

Green phosphate reagent. The increase in the absorbance

at 620 nm was measured. Kinetic parameters were fitted by non-linear regression with GraphPad Prism 4Project. Both D30N (orange curve) and

R297W (green curve) PRUNE proteins show a higher biochemical activity compared to that of wild-type PRUNE (black curve). WT = wild-type.
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with wild-type PRUNE returned cellular proliferation rates

to normal, treatment with either p.D30N or p.R297W

mutant proteins did not (Fig. 2A). In parallel with this

we also assessed another known property of PRUNE in

enhancing cell migration using HEK293 cells, which dis-

play negligible levels of endogenous PRUNE expression

(Carotenuto et al., 2014), with expression levels assessed

by western blotting (Supplementary Fig. 3E). Unlike wild-

type PRUNE, which as expected was found to substantially

promote cellular migration, both p.D30N and p.R297W

mutants displayed negligible migration promoting activity

and were comparable to empty vector controls (Fig. 2B).

Next, we also examined the effect of both mutations on cell

differentiation in SH-SY5Y cells by measuring the expres-

sion level of TuJ1 after treatment with retinoic acid. While

wild-type PRUNE promoted a 2-fold increase in neuronal

cell differentiation levels, no cellular differentiation was

promoted by the PRUNE mutants (Fig. 2C). Finally, the

exopolyphosphatase activity assay (Tammenkoski et al.,

2008) measuring Kcat/Km ratios versus P4-tetraphosphates

substrates, show that both mutant PRUNE (p.D30N and

p.R297W) proteins retain a higher exopolyphosphatase ac-

tivity compared to the wild-type protein (Kcat/Km values

wild-type: 0.014mM/s; D30N: 0.312 mM/s; R297W:

0 064mM s�1; Fig. 2D and Supplementary Table 2).

PRUNE interacts with b-tubulin, and
PRUNE mutation impairs microtu-
bule polymerization activity

To gain further insight into the molecular mechanism by

which PRUNE may regulate neurogenesis, we performed a

mass-spectrometry-based interaction screen of proteins co-

immunoprecipitated by wild-type PRUNE. This identified a

number of different proteins involved in cytoskeleton organ-

ization as likely binding partners (data not shown). Among

these, a putative interaction between PRUNE and tubulin,

in particular b-tubulin, was most notable given previous

studies highlighting the critical role of tubulins and micro-

tubule-associated proteins during brain development, which

may be mutated in autosomal recessive primary microceph-

aly (MCPH) (Woods et al., 2005; Bahi-Buisson et al., 2014;

Sun and Hevner, 2014). We performed a cell-based micro-

tubule-binding proteins spin-down assay (Darshan et al.,

2011) with genetically modified SHSY5Y neuroblastoma

cells to result in inducible clones overexpressing PRUNE

wild-type or mutants, under a tetracycline inducible pro-

moter (see ‘Material and methods’ section and

Supplementary Fig. 3C). Upon induction with doxycycline

we saw interaction of PRUNE with microtubules (Fig. 3A),

which was not observed in the empty vector clone (kinesin

V, a microtubules-associated protein, used as control; Fig.

3A). Next, co-immunoprecitation assays were performed in

which endogenous tubulins, in particular b-and �-tubulin,

were readily able to immunoprecipitate Flag-tagged full-

length PRUNEFLAG (Fig. 3A). This interaction was found

to be conserved with both PRUNE incorporating p.D30N

and p.R297W mutations (PRUNED30N-FLAG, PRUNER297W-

FLAG), although PRUNER297W-FLAG displayed less efficient

binding (Supplementary Fig. 3A and B). Endogenous wild-

type PRUNE protein subcellular localization was further

evaluated by immunofluorescence analyses in HeLa cells

during cell division, demonstrating overlap between

PRUNE and of b-tubulin on astral and interpolar microtu-

bules (prometaphase, metaphases, anaphase, and cytokin-

esis; Supplementary Fig. 4), indicative of a potentially

important role in cellular division processes. To further in-

vestigate this role, we next explored a role of PRUNE in

microtubule polymerization assay using GTP as substrate.

Polymerization assays demonstrated that wild-type PRUNE

as expressed in E. coli significantly enhances microtubule

polymerization in nucleation, growth and steady-state

(phase I-II-III; Fig. 3C and Supplementary Fig. 3F), and re-

vealed a delay in microtubule formation affecting mainly

growth phase associated with mutant PRUNE p.D30N pro-

tein, while PRUNE p.R297W negatively influences the early

growth rate of microtubule polymerization processes, re-

vealing distinct functional outcomes of each PRUNE muta-

tion (Fig. 3C). Further, in studies in SH-SY5Y inducible

clones expressing either wild-type or mutant (p.Asp30Asn

and p.Arg297Trp) protein, mutant PRUNE-expressing cells

were found to contain shortened microtubules compared

with wild-type PRUNE, with aster diameter size measuring

below 5mm (Fig. 3B and Supplementary Table 3).

Discussion
A great deal remains to be learned about the precise mo-

lecular mechanisms orchestrating normal cortical develop-

ment and brain growth. However, significant advancements

in this field have been made through genetic studies of in-

herited forms of primary microcephaly and malformations

of cortical development.

Previous investigations show that PRUNE exhibits both

exopolyphosphatase and phosphodiesterase activity, which

has been suggested to enhance cellular proliferation and

motility of breast cancer cells in the presence of its protein

partner nucleoside diphosphate kinase 1 (NM23-H1)

(Bilitou et al., 2012).

Similarly, a correlation between PRUNE and metastasis

formation in liver, gastric and oesophageal cancer with

poor prognosis has been suggested (Oue et al., 2007;

Noguchi et al., 2009; Hashimoto et al., 2016). In previous

studies, we demonstrated that silencing of the human

PRUNE1 gene in lung and breast cancer inhibits metastasis

formation and cellular migration. The effect of this

silencing was shown to primarily be mediated through in-

hibition of b-catenin phosphorylation, which in turn has

a negative effect on the WNT signalling cascade

(Carotenuto et al., 2014; Freeman et al., 2015). The protein

structure of human PRUNE is thought to be similar to that

of yeast PPASE. Single orthophosphates (Pi) are recognized
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as an important cellular energy source linked to phospho-

lipid signalling and are generated through PPASE PRUNE

activity utilizing polyphosphate (poly-P) substrates.

Alteration of PPASE activity has never been linked to

cancer progression (Tammenkoski et al., 2008).

Studies of murine Prune and its binding partner metasta-

sis suppressor NM23-M1, have suggested that they are

likely to have an important role during early embryonic

stages and in neuronal tissues actively undergoing prolifer-

ation, migration and differentiation (Carotenuto et al.,

Figure 3 PRUNE and tubulin. (A) Top: Cell-based microtubules co-sedimentation assay and SDS/PAGE analysis showing the binding of FLAG-

tagged PRUNE to microtubule polymers (MT) using in vitro whole protein extracts from SHSY5Y clones overexpressing wild-type FLAG-tagged

PRUNE or empty vector (as negative control), with immunoblotting with antibodies against anti-FLAG, anti-b-tubulin and anti-kinesin V (as a

positive control due to its known binding to microtubule polymers). Wild-type FLAG-tagged PRUNE was found in the pellet (P) fraction in the

presence of microtubule polymers, while it was found only in the supernatant (S) fraction in the absence of microtubule polymers, indicating

microtubule binding. Bottom: Co-immunoprecipitation assay using Flag-tagged wild-type, D30N and R297W PRUNE protein expression in SHSY5Y

inducible cell clones. The whole protein extract from empty vector (EV, as negative control), wild-type, D30N and R297W PRUNE-overex-

pressing cells incubated with antibodies against b-tubulin or �-tubulin to immunoprecipitate (IP), endogenous b-tubulin (left) or �-tubulin (right). A

band of the expected size (60 kDa) was detected by western blotting using an anti-Flag antibody in the immunoprecipitate fraction from wild-type

and D30N-overexpressing clones, indicating binding of PRUNE wild-type and D30N with both b- and �-tubulin. Flag-tagged R297W PRUNE was

detected with a long exposure (Supplementary Fig. 2A and 2B). (B) Microtubule nucleation assay. SHSY5Y-inducible cells overexpressing wild-

type, D30N, R297W PRUNE proteins were treated with doxycycline followed by immunofluorescence staining with b-tubulin antibody (red), and

DAPI for DNA staining (blue). Cells containing microtubule asters with a diameter longer than 5mm were scored and the results from a

representative experiment in triplicate are shown. Left: The immunofluorescence analysis performed on the inducible clones after 2 min at 37�C

showing some representative asters (in red) for each clone (Scale bars = 5mm). The chart on the right indicates the percentage of cells with aster

diameters longer than 5 mm. Wild-type PRUNE expressing clones show a higher percentage of cells containing asters longer than 5 mm, compared

to those expressing D30N and R297W PRUNE (�160 nuclei per clone were counted; Supplementary Table 3). (C) In vitro microtubule poly-

merization assay performed using wild-type (black), D30N (orange) and R297W (green) PRUNE purified from E. coli. The standard polymerization

reaction, alone or in presence of the purified wild-type or mutated (D30N and R297W) PRUNE protein, incubated with tubulin and followed by

absorbance readings at 360 nm (excitation at 360 nm, and emission at 420 nm; EnSpire manager software) to evaluate the maximum absolute

curve slope. Polymerization curves are shown for the three phases of polymerization; I (nucleation), II (growth), III (steady state). The poly-

merization rate is enhanced (�2-fold) in presence of wild-type PRUNE (black) in comparison with microtubules alone (blue). Polymerization in

the presence of D30N PRUNE (orange) is unaffected, while it is unregulated by R297W PRUNE (green). Both mutations result in a notable delay

of microtubule polymerization rate, which is particularly evident during the nucleation phase (phase I). The curves shown represent the average of

n = 3 independent experiments, expressed as mean � SD of samples assayed in triplicate. See Supplementary Fig. 3F for standard polymerization

alone, and in the presence of 3 mM paclitaxel or 3 mM nocodazole, used as positive and negative controls, respectively.
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2006). Here we identify proliferation and migration indu-

cing activities for PRUNE in neuronal SH-SY5Y cells,

which are significantly diminished by sequence alterations

affecting amino acids p.Asp30 and p.Arg297 located in the

Asp-His-His (DHH1 and DHH2) domains, likely to be fun-

damental for enzymatic activity. Consistent with this we

previously demonstrated that substitution of amino acid

Arg28, which is co-located with Asp30 in the DHH1

domain, significantly inhibits PRUNE enzymatic activity

(Tammenkoski et al., 2008). Asp30 and Arg297 are closely

aligned (�15 Å separation) alongside one another inside

the predicted enzymatic pocket (Ahn et al., 2001;

Merckel et al., 2001; Ugochukwu et al., 2007;

Carotenuto et al., 2013) (Fig. 1E). Therefore p.Asp30Asn

seems likely to modify DHH1 tertiary structure, while

p.Arg297Trp may enhance DHH1-DHH2 domain inter-

action, and both alterations are likely to interfere with

PRUNE functionality by augmenting catalytic pocket sub-

strate binding and/or enzymatic activity (see Kcat/Km

values in Supplementary Table 2). Given these findings,

other factors such as PRUNE-interacting proteins (for ex-

ample NME-NDPK or other partners) (Galasso and Zollo,

2009) may also regulate the rate of microtubule polymer-

ization, with PRUNE acting as an enhancer of this activity.

The identification of PRUNE1 mutations in the sizeable

and diverse patient cohorts described here, together with

confirmatory functional assays demonstrating a deleterious

effect of gene mutation on PRUNE function, have enabled

us to determine the core clinical phenotype associated with

Prune syndrome and implicate altered tubulin dynamics as

a credible mechanism by which loss of PRUNE function

may result in the microcephaly, additional cortical and sub-

cortical abnormalities and the neurological phenotype

observed.

Previous studies have shown that primary microcephaly

may result from mutations in genes that disrupt neurogen-

esis by a number of mechanisms. However, the protein

products of most of these genes have related functions

and play a crucial role in the formation and behaviour of

the microtubule cytoskeleton and mitotic phase of the cell

cycle, including transcription regulation, cell cycle progres-

sion, and centrosome maturation (MCPH1, CENPJ,

CDK5RAP2); dynein binding and centrosome duplication

(NDE1); neuronal progenitor proliferation (ASPM and

STIL) and mitotic spindle formation (WDR62). (Woods

et al., 2005; Francis et al., 2006; Barkovich et al., 2012).

These fundamental cellular processes are of particular im-

portance during the development of the human cortex,

where disruption results in abnormalities of neuronal pro-

liferation and migration.

Elucidation of the molecular causes of primary micro-

cephaly has also revealed a wide spectrum of phenotypes

associated with the causative genes. Mutation of WDR62,

for example, also results in a variety of structural brain

disorders including lissencephaly, cerebellar hypoplasia

and hypoplasia of the corpus callosum (Yu et al., 2010).

Interestingly, two genes associated with primary

microcephaly, CEP152 (Guernsey et al., 2010; Kalay

et al., 2011) and CENPJ (Bond et al., 2005) have also

been associated with the microcephalic primordial dwarf-

ism family of disorders, a group of conditions with global

growth failure. Other genes associated with microcephalic

primordial dwarfism shown to cause defects in centrosomal

and spindle microtubule function include: PCNT, CENPE

and POC1A (Griffith et al., 2008; Shaheen et al., 2012;

Mirzaa et al., 2014). Notably, mutations in tubulin genes

encoding different �- and b-tubulin isotypes (TUBA1A,

TUBA8 and TUBB2B, TUBB3, TUBB5 and TUBG1),

have previously been shown to be involved in a large spec-

trum of developmental brain disorders collectively referred

to as tubulinopathies (Keays et al., 2007; Abdollahi et al.,

2009; Jaglin et al., 2009; Tischfield et al., 2010; Breuss

et al., 2012; Poirier et al., 2013; Bahi-Buisson et al.,

2014), further highlighting the critical role of the microtu-

bule cytoskeleton in normal human nervous system devel-

opment (Jaglin and Chelly, 2009; Tian et al., 2010). The

mutant proteins underlying these tubulinopathy disorders

result in abnormal microtubule formation that affect mul-

tiple aspects of brain development mediated through im-

paired mitosis, neuronal migration and axonal

pathfinding. A comparison of MRI neuroimaging from pa-

tients with TUBA1A-, TUBB2B- and TUBB3-associated dis-

ease revealed some consistent phenotypical outcomes with

a combination of microcephaly, ventriculomegaly, abnor-

mal gyral and sulcal patterns (including microlissencephaly,

lissencephaly and pachygyria), cerebellar vermis hypoplasia,

small or absent corpus callosum and small pons being

highly suggestive of an underlying tubulin mutation

(Mutch et al., 2016). In the present study we have identi-

fied an interaction between PRUNE and b-tubulin, and im-

pairment of microtubule polymerization in the presence of

mutant PRUNE. It is perhaps therefore unsurprising that

the intracranial abnormalities associated with abnormal

neurodevelopment seen in Prune syndrome patients show

some overlap with those seen in association with mutant

tubulin subtypes and are consistent with mitotic and axonal

pathfinding abnormalities, most notably microcephaly,

white matter changes, thin or hypoplastic corpus callosum,

and cerebellar involvement.

More recently, homozygous mutations in TBCD, a gene

encoding one of the five tubulin-specific chaperones that are

required for �/b-tubulin de novo heterodimer formation,

have been described in association with an infantile onset

neurodegenerative disorder characterized by developmental

regression, seizures, optic atrophy and secondary microceph-

aly, cortical atrophy with delayed myelination, cerebellar at-

rophy and thinned corpus callosum. Although patients with

Prune syndrome manifest abnormal neurology from birth,

the neurological impairment, microcephaly and cortical in-

volvement appears to be progressive and there are some

striking similarities in the neurodegenerative pattern and in

white matter abnormalities seen on neuroimaging of these

patients and that of patients harbouring recessive TBCD

mutations and also some overlapping ophthalmological
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features such as the optic atrophy documented in the Italian

family. Notably, reduced soluble �/b-tubulin levels and accel-

erated microtubule polymerization has been reported in

fibroblasts derived from patients with biallelic TBCD muta-

tions, while cellular proliferation was not markedly reduced.

While more work is required to investigate this, the reduced

rate of microtubule polymerization and cellular proliferation

associated with the PRUNE mutations described here may in

part provide an explanation for the more marked neurode-

velopmental impairment seen in Prune syndrome patients

(Edvardson et al., 2016; Flex et al., 2016; Miyake et al.,

2016; Pode-Shakked et al., 2016).

Interestingly the clinical presentation in the Italian children,

which included central hypotonia, profound global develop-

mental delay, progressive microcephaly, cerebellar atrophy

and epileptic encephalopathy with hypsarrhythmia and

optic atrophy, fulfils the diagnostic criteria for PEHO (pro-

gressive encephalopathy with pedal oedema, hypsarrhythmia

and optic atrophy) syndrome (Somer, 1993). Since the ori-

ginal clinical description of this condition in 1991, a number

of different genes and modes of inheritance have been asso-

ciated with clinical presentations said to be consistent with

PEHO, or thought to be PEHO-like in nature, including de

novo dominant variants in CDKL5 and KIF1A and biallelic

mutations in CCDC8A (Gawlinski et al., 2016; Langlois

et al., 2016; Nahorski et al., 2016). The phenotype in the

Italian family, as well as consistent overlapping clinical as-

pects present in the other families described here, provides

cause to consider that PRUNE1 should now also be added

to the list of genes in which mutations may present in chil-

dren with epileptic encephalopathy and PEHO-like features.

Given the similarity and overlapping nature of the pheno-

types associated with mutation of tubulin isotypes and

regulators, it has been proposed that they may function

as part of the same subcellular protein complex or molecu-

lar pathway to regulate neuronal progenitor proliferation

and migration where demand for tubulin is high. The over-

lapping clinical, molecular and genetic data presented here

indicate that PRUNE may also play a role in this pathway,

and lead us to suggest that Prune syndrome is a novel

tubulinopathy disorder with both neurodevelopmental and

degenerative components. This potential new role for

PRUNE during microtubule polymerization and cytoskel-

etal rearrangements occurring during cellular division and

proliferation therefore entails an important area for more

in-depth future investigation.

Web resources
The URLs for data presented herein are as follows:

GATK; http://www.broadinstitute.org/gatk/about/citing-gatk

VEP; http://www.ensembl.org/info/docs/variation/vep/index.

html

SAMTOOLS; http://samtools.sourceforge.net

NHLBI Exome Sequencing Project (ESP); http://evs.gs.

washington.edu/EVS/

Online Mendelian Inheritance in Man; http://www.ncbi.

nlm.nih.gov/Omim

Pubmed; http://www.ncbi.nlm.nih.gov/pubmed/

Gene; http://www.ncbi.nlm.nih.gov/gene

ClustalW2; http://www.ebi.ac.uk/Tools/msa/clustalw2/

PolyPhen-2; http://genetics.bwh.harvard.edu/pph2/

SIFT; http://sift.jcvi.org/

PROVEAN; http://provean.jcvi.org/seqsubmit.php

GeneCards; http://www.genecards.org/

The 1000 Genomes Browser; http://browser.1000genomes.

org/index.html

The Ensembl Project; http://www.ensembl.org/index.html

The National Center for Biotechnology; http://www.ncbi.
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UCSC Human Genome Database; http://www.genome.ucsc.
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