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Abstract 380 

Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To 381 

identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction 382 

meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 383 

adults of European (n=180,423) or other ancestry (n=20,029). We standardized PA by categorizing it 384 

into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 385 

77% as physically active. While we replicate the interaction with PA for the strongest known obesity-386 

risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals 387 

compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In 388 

additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel 389 

adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to 390 

variation in adiposity may facilitate gene discovery. 391 

Author Summary 392 

Decline in daily physical activity is thought to be a key contributor to the global obesity epidemic. 393 

However, the impact of sedentariness on adiposity may be in part determined by a person’s genetic 394 

constitution. The specific genetic variants that are sensitive to physical activity and regulate adiposity 395 

remain largely unknown. Here, we aimed to identify genetic variants whose effects on adiposity are 396 

modified by physical activity by examining ~2.5 million genetic variants in up to 200,452 individuals. 397 

We also tested whether adjusting for physical activity as a covariate could lead to the identification 398 

of novel adiposity variants. We find robust evidence of interaction with physical activity for the 399 

strongest known obesity risk-locus in the FTO gene, of which the body mass index-increasing effect is 400 

attenuated by ~30% in physically active individuals compared to inactive individuals. Our analyses 401 

indicate that other similar gene-physical activity interactions may exist, but better measurement of 402 

physical activity, larger sample sizes, and/or improved analytical methods will be required to identify 403 
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them. Adjusting for physical activity, we identify 11 novel adiposity variants, suggesting that 404 

accounting for physical activity or other environmental factors that contribute to variation in 405 

adiposity may facilitate gene discovery. 406 

Introduction 407 

In recent decades, we have witnessed a global obesity epidemic that may be driven by changes in 408 

lifestyle such as easier access to energy-dense foods and decreased physical activity (PA) [1]. 409 

However, not everyone becomes obese in obesogenic environments. Twin studies suggest that 410 

changes in body weight in response to lifestyle interventions are in part determined by a person’s 411 

genetic constitution [2-4]. Nevertheless, the genes that are sensitive to environmental influences 412 

remain largely unknown.  413 

Previous studies suggest that genetic susceptibility to obesity, assessed by a genetic risk 414 

score for BMI, may be attenuated by PA [5, 6]. A large-scale meta-analysis of the FTO obesity locus in 415 

218,166 adults showed that being physically active attenuates the BMI-increasing effect of this locus 416 

by ~30% [7]. While these findings suggest that FTO, and potentially other previously established BMI 417 

loci, may interact with PA, it has been hypothesized that loci showing the strongest main effect 418 

associations in genome-wide association studies (GWAS) may be the least sensitive to environmental 419 

and lifestyle influences, and may therefore not make the best candidates for interactions [8]. Yet no 420 

genome-wide search for novel loci exhibiting SNP×PA interaction has been performed. A genome-421 

wide meta-analysis of genotype-dependent phenotypic variance of BMI, a marker of sensitivity to 422 

environmental exposures, in ~170,000 participants identified FTO, but did not show robust evidence 423 

of environmental sensitivity for other loci [9]. Recent genome-wide meta-analyses of adiposity traits 424 

in >320,000 individuals uncovered loci interacting with age and sex, but also suggested that very 425 

large sample sizes are required for interaction studies to be successful [10].  426 

Here, we report results from a large-scale genome-wide meta-analysis of SNP×PA 427 

interactions in adiposity in up to 200,452 adults. As part of these interaction analyses, we also 428 
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examine whether adjusting for PA or jointly testing for SNP’s main effect and interaction with PA may 429 

identify novel adiposity loci. 430 

Results 431 

Identification of loci interacting with PA 432 

We performed meta-analyses of results from 60 studies, including up to 180,423 adults of European 433 

descent and 20,029 adults of other ancestries to assess interactions between ~2.5 million genotyped 434 

or HapMap-imputed SNPs and PA on BMI and BMI-adjusted waist circumference (WCadjBMI) and 435 

waist-hip ratio (WHRadjBMI) (Tables S1-S5). Similar to a previous meta-analysis of the interaction 436 

between FTO and PA [7], we standardized PA by categorizing it into a dichotomous variable where on 437 

average ~23% of participants were categorized as inactive and ~77% as physically active (see 438 

Methods and Table S6). On average, inactive individuals had 0.99 kg/m2 higher BMI, 3.46 cm higher 439 

WC, and 0.018 higher WHR than active individuals (Tables S4 and S5).  440 

Each study first performed genome-wide association analyses for each SNP’s effect on BMI in 441 

the inactive and active groups separately. Corresponding summary statistics from each cohort were 442 

subsequently meta-analyzed, and the SNP×PA interaction effect was estimated by calculating the 443 

difference in the SNP’s effect between the inactive and active groups. To identify sex-specific SNP×PA 444 

interactions, we performed the meta-analyses separately in men and women, as well as in the 445 

combined sample. In addition, we carried out meta-analyses in European-ancestry studies only and 446 

in European and other-ancestry studies combined.  447 

We used two approaches to identify loci whose effects are modified by PA. In the first 448 

approach, we searched for genome-wide significant SNP×PA interaction effects (PINT<5x10-8). As 449 

shown in Figure 1, this approach yielded the highest power to identify cross-over interaction effects 450 

where the SNP’s effect is directionally opposite between the inactive and active groups. However, 451 

this approach has low power to identify interaction effects where the SNP’s effect is directionally 452 

concordant between the inactive and active groups (Figure 1). We identified a genome-wide 453 
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significant interaction between rs986732 in cadherin 12 (CDH12) and PA on BMI in European-454 

ancestry studies (betaINT=-0.076 SD/allele, PINT=3.1x10-8, n=134,767) (Table S7). The interaction effect 455 

was directionally consistent but did not replicate in an independent sample of 31,097 individuals 456 

(betaINT=-0.019 SD/allele, PINT=0.52), and the pooled association P value for the discovery and 457 

replication stages combined did not reach genome-wide significance (NTOTAL=165,864; PINT-TOTAL=3x10-458 

7) (Figure S1). No loci showed genome-wide significant interactions with PA on WCadjBMI or WHRadjBMI. 459 

CDH12 encodes an integral membrane protein mediating calcium-dependent cell-cell adhesion in the 460 

brain, where it may play a role in neurogenesis [11]. While CDH12 rs4701252 and rs268972 SNPs 461 

have shown suggestive associations with waist circumference (P=2x10-6) and BMI (P=5x10-5) in 462 

previous GWAS [12, 13], the SNPs are not in LD with rs986732 (r2<0.1). 463 

In our second approach, we tested interaction for loci showing a genome-wide significant 464 

main effect on BMI, WCadjBMI or WHRadjBMI (Tables S7-S12). We adjusted the significance threshold for 465 

SNP×PA interaction by Bonferroni correction (P=0.05/number of SNPs tested). As shown in Figure 1, 466 

this approach enhanced our power to identify interaction effects where there is a difference in the 467 

magnitude of the SNP’s effect between inactive and active groups when the SNP’s effect is 468 

directionally concordant between the groups. We identified a significant SNP×PA interaction of the 469 

FTO rs9941349 SNP on BMI in the meta-analysis of European-ancestry individuals; the BMI-increasing 470 

effect was 33% smaller in active individuals (betaACTIVE=0.072 SD/allele) than in inactive individuals 471 

(betaINACTIVE=0.106 SD/allele, PINT=4x10-5). The rs9941349 SNP is in strong LD (r2 = 0.87) with FTO 472 

rs9939609 for which interaction with PA has been previously established in a meta-analysis of 473 

218,166 adults [7]. We identified no loci interacting with PA for WCadjBMI or WHRadjBMI. 474 

In a previously published meta-analysis [7], the FTO locus showed a geographic difference for 475 

the interaction effect where the interaction was more pronounced in studies from North America 476 

than in those from Europe. To test for geographic differences in the present study, we performed 477 

additional meta-analyses for the FTO rs9941349 SNP, stratified by geographic origin (North America 478 

vs. Europe). While the interaction effect was more pronounced in studies from North America 479 
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(betaINT=0.052 SD/allele, P=5x10-4, N=63,896) than in those from Europe (betaINT=0.028 SD/allele, 480 

P=0.006, N=109,806), we did not find a statistically significant difference between the regions 481 

(P=0.14). 482 

 483 

Explained phenotypic variance in inactive and active individuals 484 

We tested whether the variance explained by ~1.1 million common variants (MAF≥1%) differed 485 

between the inactive and active groups for BMI, WCadjBMI, and WHRadjBMI [14]. In the physically active 486 

individuals, the variants explained ~20% less of variance in BMI than in inactive individuals (12.4% vs. 487 

15.7%, respectively; Pdifference=0.046), suggesting that PA may reduce the impact of genetic 488 

predisposition to adiposity overall. There was no significant difference in the variance explained 489 

between active and inactive groups for WCadjBMI (8.6% for active, 9.3% for inactive; Pdifference=0.70) or 490 

WHRadjBMI (6.9% for active, 8.0% for inactive; Pdifference=0.59). 491 

To further investigate differences in explained variance between the inactive and active 492 

groups, we calculated variance explained by subsets of SNPs selected based on significance 493 

thresholds (ranging from P=5x10-8 to P=0.05) of PA-adjusted SNP association with BMI, WCadjBMI or 494 

WHRadjBMI [15] (Table S13). We found 17-26% smaller explained variance for BMI in the active group 495 

than in the inactive group at all P value thresholds (Table S13). 496 

 497 

Identification of novel loci when adjusting for PA or when jointly testing for SNP 498 

main effect and interaction with PA 499 

Physical activity contributes to variation in BMI, WCadjBMI, and WHRadjBMI, hence, adjusting for PA as a 500 

covariate may enhance power to identify novel adiposity loci. To that extent, each study performed 501 

genome-wide analyses for association with BMI, WCadjBMI, and WHRadjBMI while adjusting for PA. 502 

Subsequently, we performed meta-analyses of the study-specific results. We discovered 10 genome-503 

wide significant loci (2 for BMI, 1 for WCadjBMI, 7 for WHRadjBMI) that have not been reported in 504 

previous GWAS of adiposity traits (Table 1, Figures S2-S4). 505 
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To establish whether additionally accounting for SNP×PA interactions would identify novel 506 

loci, we calculated the joint significance of PA-adjusted SNP main effect and SNP×PA interaction 507 

using the method of Aschard et al [16]. As illustrated in Figure 1, the joint test enhanced our power 508 

to identify loci where the SNP shows simultaneously a main effect and an interaction effect. We 509 

identified a novel BMI locus near ELAVL2 in men (PJOINT=4x10-8), which also showed suggestive 510 

evidence of interaction with PA (PINT=9x10-4); the effect of the BMI-increasing allele was attenuated 511 

by 71% in active as compared to inactive individuals (betaINACTIVE=0.087 SD/allele, betaACTIVE=0.025 512 

SD/allele) (Table 1, Figures S2-S4). 513 

To evaluate the effect of PA adjustment on the results for the 11 novel loci, we performed a 514 

look-up in published GIANT consortium meta-analyses for BMI, WCadjBMI, and WHRadjBMI that did not 515 

adjust for PA [17, 18] (Table S22). All 11 loci showed a consistent direction of effect between the 516 

present PA-adjusted and the previously published PA-unadjusted results, but the PA-unadjusted 517 

associations were less pronounced despite up to 40% greater sample size, suggesting that 518 

adjustment for PA may have increased our power to identify these loci. 519 

The biological relevance of putative candidate genes in the novel loci, based on our thorough 520 

searches of the literature, GWAS catalog look-ups, and analyses of eQTL enrichment and overlap with 521 

functional regulatory elements, are described in Box 1 and Box 2. As the novel loci were identified in 522 

a PA-adjusted model, where adjusting for PA may have contributed to their identification, we 523 

examined whether the lead SNPs in these loci are associated with the level of PA. More specifically, 524 

we performed look-ups in GWAS analyses for the levels of moderate-to-vigorous intensity leisure-525 

time PA (n=80,035), TV-viewing time (n=28,752), and sedentary behavior at work (n=59,381) or 526 

during transportation (n=15,152) [personal communication with Marcel den Hoed, Marilyn Cornelis, 527 

and Ruth Loos]. However, we did not find significant associations when correcting for the number of 528 

loci that were examined (P>0.005) (Table S16). 529 

 530 

Identification of secondary signals 531 
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In addition to uncovering 11 novel adiposity loci, our PA-adjusted GWAS and the joint test of SNP 532 

main effect and SNP×PA interaction confirmed 148 genome-wide significant loci (50 for BMI, 58 for 533 

WCadjBMI, 40 for WHRadjBMI) that have been established in previous main effect GWAS for adiposity 534 

traits (Tables S7-S12, Figure S4). The lead SNPs in eight of the previously established loci (5 for BMI, 3 535 

for WCadjBMI), however, showed no LD or only weak LD (r2<0.3) with the published lead SNP, 536 

suggesting they could represent novel secondary signals in known loci (Table S17). To test whether 537 

these eight signals are independent of the previously published signals, we performed conditional 538 

analyses [19]. Three of the eight SNPs we examined, in/near NDUFS4, MEF2C-AS1 and CPA1, were 539 

associated with WCadjBMI with P<5x10-8 in our PA-adjusted GWAS even after conditioning on the 540 

published lead SNP, hence representing novel secondary signals in these loci (Table S17). 541 

 542 

Enrichment of the identified loci with functional regulatory elements 543 

Epigenetic variation may underlie gene-environment interactions observed in epidemiological 544 

studies [20] and PA has been shown to induce marked epigenetic changes in the genome [21]. We 545 

examined whether the BMI or WHRadjBMI loci reaching P<1x10-5 for interaction with PA (13 loci for 546 

BMI, 5 for WHRadjBMI) show overall enrichment with chromatin states in adipose, brain and muscle 547 

tissues available from the Roadmap Epigenomics Consortium [22]. However, we did not find 548 

significant enrichment (Tables S18 and S19), which may be due to the limited number of identified 549 

loci. The lack of significant findings may also be due to the assessment of chromatin states in the 550 

basal state, which may not reflect the dynamic changes that occur when cells are perturbed by PA 551 

[23]. 552 

We also tested whether the loci reaching P<5x10-8 in our PA-adjusted GWAS of BMI or 553 

WHRadjBMI show enrichment with chromatin states and found significant enrichment of the BMI loci 554 

with enhancer, weak transcription, and polycomb-repressive elements in several brain cell lines, and 555 

with enhancer elements in three muscle cell lines (Tables S20 and S21). We also found significant 556 

enrichment of the WHRadjBMI loci with enhancer elements in three adipose and six muscle cell lines, 557 
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with active transcription start sites in two adipose cell lines, and with polycomb-repressive elements 558 

in seven brain cell lines. The enrichment of our PA-adjusted main effect results with chromatin 559 

annotations in skeletal muscle in particular, the tissue most affected by PA, could highlight regulatory 560 

mechanisms that may be influenced by PA. 561 

 562 

Discussion 563 

In this genome-wide meta-analysis of more than 200,000 adults, we do not find evidence of 564 

interaction with PA for loci other than the established FTO locus. However, when adjusting for PA or 565 

jointly testing for SNP main effect and interaction with PA, we identify 11 novel adiposity loci, 566 

suggesting that accounting for PA or other environmental factors that contribute to variation in 567 

adiposity may increase power for gene discovery. 568 

Our results suggest that if SNP×PA interaction effects for common variants exist, they are 569 

unlikely to be of greater magnitude than observed for FTO, the BMI-increasing effect of which is 570 

attenuated by ~30% in physically active individuals. The fact that common SNPs explain less of the 571 

BMI variance among physically active compared to inactive individuals indicates that further 572 

interactions may exist, but larger meta-analyses, more accurate and precise measurement of PA, 573 

and/or improved analytical methods will be required to identify them. We found no difference 574 

between inactive and active individuals in variance explained by common SNPs in aggregate for 575 

WCadjBMI or WHRadjBMI, and no loci interacted with PA on WCadjBMI or WHRadjBMI. Therefore, PA may not 576 

modify genetic influences as strongly for body fat distribution as for overall adiposity. Furthermore, 577 

while differences in variance explained by common variants may be due to genetic effects being 578 

modified by PA, it is important to note that heritability can change in the absence of changes in 579 

genetic effects, if environmental variation differs between the inactive and active groups. Therefore, 580 

the lower BMI variance explained in the active group could be partly due to a potentially greater 581 

environmental variation in this group.  582 
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While we replicated the previously observed interaction between FTO and PA [7], it remains 583 

unclear what biological mechanisms underlie the attenuation in FTO’s effect in physically active 584 

individuals, and whether the interaction is due to PA or due to confounding by other environmental 585 

exposures. While some studies suggest that FTO may interact with diet [24-26], a recent meta-586 

analysis of 177,330 individuals did not find interaction between FTO and dietary intakes of total 587 

energy, protein, carbohydrate or fat [27]. The obesity-associated FTO variants are located in a super-588 

enhancer region [28] and have been associated with DNA methylation levels [29-31], suggesting that 589 

this region may be sensitive to epigenetic effects that could mediate the interaction between FTO 590 

and PA.  591 

In genome-wide analyses for SNP main effects adjusting for PA, or when testing for the joint 592 

significance of SNP main effect and SNPxPA interaction, we identify 11 novel adiposity loci, even 593 

though our sample size was up to 40% smaller than in the largest published main effect meta-594 

analyses [17, 18]. Our findings suggest that accounting for PA may facilitate the discovery of novel 595 

adiposity loci. Similarly, accounting for other environmental factors that contribute to variation in 596 

adiposity could lead to the discovery of additional loci. 597 

In the present meta-analyses, statistical power to identify SNPxPA interactions may have 598 

been limited due to challenges relating to the measurement and statistical modeling of PA [5]. Of the 599 

60 participating studies, 56 assessed PA by self-report while 4 used wearable PA monitors. 600 

Measurement error and bias inherent in self-report estimates of PA [32] can attenuate effect sizes 601 

for SNP×PA interaction effects towards the null [33]. Measurement using PA monitors provides more 602 

consistent results, but the monitors are not able to cover all types of activities and the measurement 603 

covers a limited time span compared to questionnaires [34]. As sample size requirements increase 604 

nonlinearly when effect sizes decrease, any factor that leads to a deflation in the observed 605 

interaction effect estimates may make their detection very difficult, even when very large population 606 

samples are available for analysis. Finally, because of the wide differences in PA assessment tools 607 

used among the participating studies, we treated PA as a dichotomous variable, harmonizing PA into 608 
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inactive and active individuals. Considerable loss of power is anticipated when a continuous PA 609 

variable is dichotomized [35]. Our power could be enhanced by using a continuous PA variable if a 610 

few larger studies with equivalent, quantitative PA measurements were available.  611 

In summary, while our results suggest that adjusting for PA or other environmental factors 612 

that contribute to variation in adiposity may increase power for gene discovery, we do not find 613 

evidence of SNP×PA interaction effects stronger than that observed for FTO. While other SNP×PA 614 

interaction effects on adiposity are likely to exist, combining many small studies with varying 615 

characteristics and PA assessment tools may be inefficient for identifying such effects [5]. Access to 616 

large cohorts with quantitative, equivalent PA variables, measured with relatively high accuracy and 617 

precision, may be necessary to uncover novel SNP×PA interactions.  618 

 619 

Methods 620 

Main Analyses 621 

Outcome traits - BMI, WCadjBMI and WHRadjBMI 622 

We examined three anthropometric traits related to overall adiposity (BMI) or body fat distribution 623 

(WCadjBMI and WHRadjBMI) [36] that were available from a large number of studies. Before the 624 

association analyses, we calculated sex-specific residuals by adjusting for age, age², BMI (for WCadjBMI 625 

and WHRadjBMI traits only), and other necessary study-specific covariates, such as genotype-derived 626 

principal components. Subsequently, we normalized the distributions of sex-specific trait residuals 627 

using inverse normal transformation.  628 

 629 

Physical activity 630 

Physical activity was assessed and quantified in various ways in the participating studies of the meta-631 

analysis (Tables S1 and S6). Aiming to amass as large a sample size as possible, we harmonized PA by 632 

categorizing it into a simple dichotomous variable – physically inactive vs. active – that could be 633 
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derived in a relatively consistent way in all participating studies, and that would be consistent with 634 

previous findings on gene-physical activity interactions and the relationship between activity levels 635 

and health outcomes. In studies with categorical PA data, individuals were defined inactive if they 636 

reported having a sedentary occupation and being sedentary during transport and leisure-time (<1 h 637 

of moderate intensity leisure-time or commuting PA per week). All other individuals were defined 638 

physically active. Previous studies in large-scale individual cohorts have demonstrated that the 639 

interaction between FTO, or a BMI-increasing genetic risk score, with physical activity, is most 640 

pronounced approximately at this activity level [6, 37, 38]. In studies with continuous PA data, PA 641 

variables were standardized by defining individuals belonging to the lowest sex- and age-adjusted 642 

quintile of PA levels as inactive, and all other individuals as active. The study-specific coding of the 643 

dichotomous PA variable in each study is described in Table S6. 644 

 645 

Study-specific association analyses 646 

We included 42 studies with genome-wide data, 10 studies with Metabochip data, and eight studies 647 

with both genome-wide and Metabochip data. If both genome-wide and Metabochip data were 648 

available for the same individual, we only included the genome-wide data (Table S1). Studies with 649 

genome-wide genotyped data used either Affymetrix or Illumina arrays (Table S2). Following study-650 

specific quality control measures, the genotype data were imputed using the HapMap phase II 651 

reference panel (Table S2). Studies with Metabochip data used the custom Illumina HumanCardio-652 

Metabo BeadChip containing ~195K SNPs designed to support large-scale follow-up of known 653 

associations with metabolic and cardiovascular traits [39]. Each study ran autosomal SNP association 654 

analyses with BMI, WCadjBMI and WHRadjBMI across their array of genetic data using the following linear 655 

regression models in men and women separately: 1) active individuals only; 2) inactive individuals 656 

only; and 3) active and inactive individuals combined, adjusting for the PA stratum. In studies that 657 

included families or closely related individuals, regression coefficients were estimated using a 658 

variance component model that modeled relatedness in men and women combined, with sex as a 659 
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covariate, in addition to the sex-specific analyses. The additive genetic effect for each SNP and 660 

phenotype association was estimated using linear regression. For studies with a case-control design 661 

(Table S1), cases and controls were analyzed separately.  662 

All studies were conducted according to the Declaration of Helsinki. The studies were 663 

approved by the local ethical review boards and all study participants provided written informed 664 

consent for the collection of samples and subsequent analyses. 665 

 666 

Quality control of study-specific association results 667 

All study-specific files for the three regression models listed above were processed through a 668 

standardized quality control protocol using the EasyQC software [40]. The study-specific quality 669 

control measures included checks on file completeness, range of test statistics, allele frequencies, 670 

trait transformation, population stratification, and filtering out of low quality data. Checks on file 671 

completeness included screening for missing alleles, effect estimates, allele frequencies, and other 672 

missing data. Checks on range of test statistics included screening for invalid statistics such as P-673 

values >1 or <0, negative standard errors, or SNPs with low minor allele count (MAC, calculated as 674 

MAF*N, where MAF is the minor allele frequency and N is the sample size) and where SNPs with 675 

MAC<5 in the inactive or the active group were removed. The correctness of trait transformation to 676 

inverse normal was examined by plotting 2/median of the standard error with the square root of the 677 

sample size. Population stratification was examined by calculating the study specific genomic control 678 

inflation factor (λGC) [41]. If a study had λGC>1.1, the study analyst was contacted and asked to revise 679 

the analyses by adjusting for principal components. The allele frequencies in each study were 680 

examined for strand issues and miscoded alleles by plotting effect allele frequencies against the 681 

corresponding allele frequencies from the HapMap2 reference panel. Finally, low quality data were 682 

filtered out by removing monomorphic SNPs, imputed SNPs with poor imputation quality (r2_hat 683 

<0.3 in MACH [42], observed/expected dosage variance <0.3 in BIMBAM [43], proper_info <0.4 in 684 

IMPUTE [44]), and genotyped SNPs with a low call-rate (<95 %) or that were out of Hardy-Weinberg 685 
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equilibrium (P<10-6). 686 

 687 

Meta-analyses 688 

Beta-coefficients and standard errors were combined by an inverse-variance weighted fixed effect 689 

method, implemented using the METAL software [45]. We performed meta-analyses for each of the 690 

three models (active, inactive, active + inactive adjusted for PA) in men only, in women only, and in 691 

men and women combined. Study-specific GWAS results were corrected for genomic control using all 692 

SNPs. Study-specific Metabochip results as well as the meta-analysis results for GWAS and 693 

Metabochip combined were corrected for genomic control using 4,425 SNPs included on the 694 

Metabochip for replication of associations with QT-interval, a phenotype not correlated with BMI, 695 

WCadjBMI or WHRadjBMI, after pruning of SNPs within 500 kb of an anthropometry replication SNP. We 696 

excluded SNPs that 1) were not available in at least half of the maximum sample size in each stratum; 697 

2) had a heterogeneity I2 >75%, or 3) were missing chromosomal and base position annotation in 698 

dbSNP. 699 

 700 

Calculation of the significance of SNP×PA interaction and of the joint significance of SNP main 701 

effect and SNP×PA interaction 702 

To identify SNP×PA interactions, we used the EasyStrata R package [46] to test for the difference in 703 

meta-analyzed beta-coefficients between the active and inactive groups for the association of each 704 

SNP with BMI, WCadjBMI and WHRadjBMI. Easystrata tests for differences in effect estimates between 705 

the active and inactive strata by subtracting one beta from the other (βactive – βinactive,) and dividing by 706 

the overall standard error of the difference as follows: 707 

      
                   

√         
             

               
             

 

 

where r is the Spearman rank correlation coefficient between βactive and βinactive for all genome-wide 708 

SNPs.  The joint significance of the SNP main and SNP×PA interaction effects was estimated using the 709 
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method by Aschard et al. [16] which is a joint test for genetic main effects and gene-environment 710 

interaction effects where gene-environment interaction is calculated as the difference in effect 711 

estimates between two exposure strata, accounting for 2 degrees of freedom.  712 

 713 

Testing for secondary signals 714 

Approximate conditional analyses were conducted using GCTA version 1.24 [19]. In the analyses for 715 

SNPs identified in our meta-analyses of European-ancestry individuals only, LD correlations between 716 

SNPs were estimated using a reference sample comprised of European-ancestry participants of the 717 

Atherosclerosis Risk in Communities (ARIC) study. In the analyses for SNPs identified in our meta-718 

analyses of all ancestries combined, the reference sample comprised 93% of European-ancestry 719 

individuals and 6% of African ancestry participants from ARIC, as well as 1% of CHB and JPT samples 720 

from the HapMap2 panel, to approximate the ancestry mixture in our all ancestry meta-analyses. To 721 

test if our identified SNPs were independent secondary signals that fell within 1 Mbp of a previously 722 

established signal, we used the GCTA --cojo-cond command to condition our lead SNPs on each 723 

previously established SNP in the same locus. 724 

 725 

Replication analysis for the CDH12 locus 726 

The replication analysis for the CDH12 locus included participants from the EPIC-Norfolk 727 

(NINACTIVE=4,755, NACTIVE=11,526) and Fenland studies (NINACTIVE=1,213, NACTIVE=4,817), and from the 728 

random subcohort of the EPIC-InterAct Consortium (NINACTIVE=2,154, NACTIVE=6,632). PA stratum-729 

specific estimates of the association of CDH12 with BMI were assessed and meta-analyzed by fixed 730 

effects meta-analyses, and the differences between the PA-strata were determined as described 731 

above. 732 

 733 

Examining the influence of BMI, WCadjBMI and WHRadjBMI-associated loci on other 734 

complex traits and their potential functional roles 735 
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NHGRI-EBI GWAS Catalog Lookups 736 

To identify associations of the novel BMI, WCadjBMI or WHRadjBMI loci with other complex traits in 737 

published GWAS, we extracted previously reported GWAS associations within 500 kb and r2>0.6 with 738 

any of the lead SNPs, from the GWAS Catalog of the National Human Genome Research Institute and 739 

European Bioinformatics Institute [47] (Table S8). 740 

 741 

eQTLs 742 

We examined the cis-associations of the novel BMI, WCadjBMI or WHRadjBMI loci with the expression of 743 

nearby genes from various tissues by performing a look-up in a library of >100 published expression 744 

datasets, as described previously by Zhang et al [48]. In addition, we examined cis-associations using 745 

gene expression data derived from fasting peripheral whole blood in the Framingham Heart 746 

Study[49] (n=5,206), adjusting for PA, age, age2, sex and cohort. For each novel locus, we evaluated 747 

the association of all transcripts ±1 Mb from the lead SNP. To minimize the potential for false 748 

positives, we only considered associations where our lead SNP or its proxy (r2>0.8) was either the 749 

peak SNP associated with the expression of a gene transcript in the region, or in strong LD (r2>0.8) 750 

with the peak SNP. 751 

 752 

Overlap with functional regulatory elements 753 

We used the Uncovering Enrichment Through Simulation method to combine the genetic association 754 

data with the Roadmap Epigenomics Project segmentation data [22]. First, 10,000 sets of random 755 

SNPs were selected among HapMap2 SNPs with a MAF >0.05 that matched the original input SNPs 756 

based on proximity to a transcription start site and the number of LD partners (r2>0.8 in individuals of 757 

European ancestry in the 1000 Genomes Project). The LD partners were combined with their original 758 

lead SNPs to create 10,000 sets of matched random SNPs and their respective LD partners. These 759 

sets were intersected with the 15-state ChromHMM data from the Roadmap Epigenomics Project 760 

and resultant co-localizations were collapsed from total SNPs down to loci, which were then used to 761 
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calculate an empirical P value when comparing the original SNPs to the random sets. We examined 762 

the enrichment for all loci reaching P<10-5 for SNP×PA interaction combined, and for all loci reaching 763 

P<5x10-8 in the PA-adjusted SNP main effect model combined. In addition, we examined the variant-764 

specific overlap with regulatory elements for each of the index SNPs of the novel BMI, WCadjBMI and 765 

WHRadjBMI loci and variants in strong LD (r2>0.8). 766 

 767 

Estimation of variance explained in inactive and active groups 768 

We compared variance explained for BMI, WCadjBMI and WHRadjBMI between the active and inactive 769 

groups using two approaches. First, we used a method previously reported by Kutalik et al [15], and 770 

selected subsets of SNPs based on varying P value thresholds (ranging from 5x10-8 to 0.05) from the 771 

SNP main effect model adjusted for PA. Each subset of SNPs was clumped into independent regions 772 

using a physical distance criterion of <500kb, and the most significant lead SNP within the respective 773 

region was selected. For each lead SNP, the explained variance was calculated as: 774 

                                                775 
in the active and inactive groups separately, where N is the sample size and P is the P value for SNP 776 

main effect in active or inactive strata. Finally, the variance explained by each subset of SNPs in the 777 

active and inactive strata was estimated by summing up the variance explained by the SNPs.  778 

Second, we applied the LD Score regression tool developed by Bulik-Sullivan et al [14] to 779 

quantify the proportion of inflation due to polygenicity (heritability) rather than confounding (cryptic 780 

relatedness or population stratification) using meta-analysis summary results. LD Score regression 781 

leverages LD between causal and index variants to distinguish true signals by regressing meta-782 

analysis summary results on an ‘LD Score’, i.e. the cumulative genetic variation that an index SNP 783 

tags. To obtain heritability estimates by PA strata, we regressed our summary results from the 784 

genome-wide meta-analyses of BMI, WCadjBMI and WHRadjBMI, stratified by PA status (active and 785 
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inactive), on pre-calculated LD Scores available in HapMap3 reference samples of up to 1,061,094 786 

variants with MAF≥1% and N>10th percentile of the total sample size. 787 
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Figures 1248 

 1249 
 1250 
Figure 1. Power to identify PA-adjusted main, joint or GxPA interaction effects in 200,000 individuals 1251 

(45,000 inactive, 155,000 active). The plots compare power to identify genome-wide significant main 1252 

effects (PadjPA<5x10-8, dashed black), joint effects (PJOINT<5x10-8, dotted green) or GxPA interaction  1253 

effects (PINT<5x10-8, solid magenta) as well as the power to identify Bonferroni-corrected interaction 1254 

effects (PINT<0.05/number of loci, solid orange) for the SNPs that reached a genome-wide significant 1255 

PA-adjusted main effect association (PadjPA<5x10-8). The power computations were based on 1256 

analytical power formulae provided elsewhere [50] and were conducted a-priori based on various 1257 

types of known realistic BMI effect sizes [51]. A, C, E: Assuming an effect in inactive individuals similar 1258 

to a small (      
 =0.01%, comparable to the known BMI effect of the NUDT3 region), medium 1259 

(      
 =0.07%, comparable to the known BMI effect of the BDNF region) and large (      

 =0.34%, 1260 

comparable to the known BMI effect of the FTO region) realistic effect on BMI and for various effects 1261 

in physically active individuals (varied on the x axis); B,D,F: Assuming an effect in physically active 1262 

individuals similar to the small, medium and large realistic effects of the NUDT3 , BDNF and FTO 1263 

regions on BMI and for various effects in inactive individuals (varied on x axis).  1264 
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Tables 1265 

Table 1. Novel loci achieving genome-wide significance (P<5x10-8) in meta-analyses for PA-adjusted SNP main effect (PadjPA) or the joint test of SNP main 1266 

effect and SNP-PA interaction (Pjoint). 1267 

Trait Marker 
Nearest 

Gene 
Chr Pos (hg19) 

Trait 
increasing/ 
decreasing 

allele 

Trait 
increasing 

allele’s 
frequency 

Analysis NadjPA BetaadjPA SEadjPA PadjPA Pint Pjoint 

Novel loci achieving genome-wide significance in European-ancestry meta-analyses           

BMI rs1720825 MRAS 3 138,108,083 A/G 0.20 

Overall 178833 0.026 0.0047 2.98E-08 1.62E-01 3.67E-08 

Women 102854 0.0281 0.006 2.84E-06 7.27E-02 3.35E-06 

Men 47544 0.024 0.0069 4.91E-04 9.95E-01 1.30E-02 

BMI rs1934100 ELAVL2 9 23,234,308 A/T 0.68 
Overall 140811 0.0179 0.0049 2.43E-04 3.99E-02 2.15E-04 

Women 85142 0.0048 0.006 4.18E-01 9.89E-01 7.37E-01 

Men 41958 0.0377 0.0074 3.18E-07 8.84E-04 3.70E-08 

WCadjBMI rs7176527 ZSCAN2 15 85,140,794 C/T 0.81 
Overall 130413 0.0317 0.0054 5.98E-09 1.79E-01 2.80E-08 

Women 77349 0.0303 0.007 1.37E-05 9.36E-01 1.28E-04 

Men 52918 0.0342 0.0084 4.55E-05 3.23E-02 7.50E-06 

WHRadjBMI rs4650943 PAPPA2 1 176,414,781 A/G 0.53 
Overall 113963 0.0267 0.0048 2.34E-08 1.77E-01 5.76E-08 

Women 69016 0.0301 0.006 4.66E-07 7.79E-03 1.57E-07 

Men 44430 0.0212 0.0073 3.55E-03 2.73E-01 5.64E-03 

WHRadjBMI rs2300481 MEIS1 2 66,782,467 T/C 0.39 
Overall 110881 0.0267 0.0048 2.41E-08 5.80E-01 3.93E-08 

Women 66519 0.0288 0.0059 1.19E-06 4.71E-01 1.47E-06 

Men 43845 0.0258 0.0073 4.14E-04 1.00E+00 2.82E-03 

WHRadjBMI rs167025 ARHGEF28 5 73,433,308 A/G 0.33 
Overall 117603 0.0179 0.0048 2.13E-04 8.01E-01 4.64E-04 

Women 70494 0.0023 0.006 7.01E-01 4.50E-01 7.32E-01 

Men 46591 0.0427 0.0074 6.24E-09 1.34E-01 3.73E-09 

WHRadjBMI rs3094013 HCP5 6 31,434,366 G/A 0.87 
Overall 149338 0.0269 0.0061 1.06E-05 4.98E-01 6.93E-05 

Women 84538 0.0104 0.0078 1.82E-01 4.50E-01 3.78E-01 

Men 64138 0.0494 0.009 4.51E-08 8.91E-01 7.87E-07 

WHRadjBMI rs6976930 BAZ1B 7 72,885,810 G/A 0.81 Overall 145913 0.0294 0.0051 1.03E-08 5.28E-01 1.87E-08 
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Women 83184 0.0326 0.0066 7.70E-07 7.00E-01 2.02E-06 

Men 62149 0.0254 0.0075 7.69E-04 5.93E-01 3.10E-03 

WHRadjBMI rs10786152 PLCE1 10 95,893,514 A/G 0.52 

Overall 147123 0.0224 0.004 1.79E-08 8.76E-02 1.44E-08 

Women 83884 0.0192 0.0051 1.56E-04 5.81E-02 1.41E-04 

Men 62722 0.0255 0.0058 1.32E-05 6.38E-01 5.89E-05 

WHRadjBMI rs889512 CTRB2 16 75,242,012 C/G 0.88 
Overall 117417 0.031 0.0074 2.70E-05 4.26E-01 1.13E-04 

Women 70315 0.0506 0.0091 2.87E-08 9.96E-02 1.09E-07 

Men 46440 -0.0022 0.0114 8.50E-01 5.06E-01 7.80E-01 

Novel loci achieving genome-wide significance in all-ancestry meta-analyses     

BMI rs754635 CCK  3 42,305,131 G/C 0.87 

Overall 151282 0.0356 0.0062 1.07E-08 1.21E-01 3.28E-07 

Women 91241 0.026 0.0079 9.66E-04 1.25E-01 8.69E-04 

Men 62741 0.0486 0.0093 1.61E-07 2.98E-01 3.68E-06 

Chr: chromosome; Pos(hg19): position based on human assembly 19; NadjPA, BetaadjPA, SEadjPA, or PadjPA: sample size, effect size, standard error, or P value, respectively, in the physical activity 1268 
adjusted SNP main effect model; PA: physical activity; WCadjBMI: BMI-adjusted waist circumference; WHRadjBMI: BMI-adjusted waist-hip ratio; Pint: P value for SNP-PA interaction; Pjoint: P value 1269 
for the joint test of SNP main effect and SNP-PA interaction. 1270 
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Box 1  Genes of biological interest within 500 kb of lead SNPs associated with BMI 

 
CCK (rs754635): The lead SNP is located in intron 1 of the CCK gene that encodes cholecystokinin, a 
gastrointestinal peptide that stimulates the digestion of fat and protein in the small intestine by inhibiting 
gastric emptying, inducing the release of pancreatic enzymes, increasing production of hepatic bile, and 
causing contraction of the gallbladder. Cholecystokinin induces satiety and reduces the amount of food 
consumed when administered prior to a meal [52, 53]. In a candidate gene study, four common variants in CCK 
were associated with increased meal size [54], but the variants are not in LD with rs754635 (r

2
<0.1). A GWAS of 

BMI in 62,246 individuals of East Asian ancestry showed a suggestive association (P=2x10
-7

) for the rs4377469 
SNP in high LD with our lead SNP (r

2
=0.7) [55]. 

 
ELAVL2 (rs1934100): The lead SNP showed an association with BMI only in men (Table 1). The only nearby 
gene ELAVL2 (455 kb away) is a conserved neuron-specific RNA-binding protein involved in stabilization or 
enhanced translation of specific mRNAs with AU-rich elements in the 3’-untranslated region [56]. While ELAVL2 
is implicated in neuronal differentiation [56], potential mechanisms linking this function to obesity remain 
unclear. 
 
MRAS (rs1720825): The lead SNP is an intronic variant in MRAS. The MRAS rs1199333 SNP, in high LD with 
rs1720825 (r

2
=0.85), has shown suggestive association with typical sporadic amyotrophic lateral sclerosis in a 

Chinese Han population (P=4x10
-6

, Supplementary Table 14). Other MRAS SNPs have been associated with risk 
of coronary artery disease [57] but they are not in LD with rs1720825 (r

2
<0.06). MRAS encodes a member of 

the membrane-associated Ras small GTPase protein family that function as signal transducers in multiple 
processes of cell growth and differentiation and are involved in energy expenditure, adipogenesis, muscle 
differentiation, insulin signaling and glucose metabolism [58-60]. Mice with Mras knockout develop a severe 
obesity phenotype [61]. The SNP rs1199334, in high LD with our lead SNP rs1720825 (r

2
=0.90), has been 

identified as the SNP most strongly associated with the cis-expression of centrosomal protein 70kDa (CEP70) in 
subcutaneous adipose tissue (P=2x10

-7
) (Supplementary Table 15). CEP70 encodes a centrosomal protein that 

is critical for the regulation of mitotic spindle assembly, playing an essential role in cell cycle progression [62]. 

 
  1271 
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Box 2 Genes of biological interest within 500 kb of lead SNPs associated with WCadjBMI or 
WHRadjBMI 
 
ZSCAN2 (rs7176527): Twenty two genes lie within 500kb of the WCadjBMI-associated lead SNP (Supplementary 
Fig. 3). The nearest gene, ZSCAN2, contains several copies of a zinc finger motif commonly found in 
transcriptional regulatory proteins. The rs7176527 SNP is in LD (r

2
>0.80) with five SNPs (rs3762168, rs2762169, 

rs12594450, rs72630460, and rs16974951) that are enhancers in multiple tissues in the data from Roadmap 
Epigenomics Consortium [22]. The rs7176527 SNP is a cis-eQTL for the putative transcriptional regulator 
SCAND2 [63] in the intestine, prefrontal cortex, and lymphocytes (Supplementary Table 15). 
 
PAPPA2 (rs4650943): Seven genes lie within 500kb of the lead SNP (Supplementary Fig. 3). The nearest gene, 
PAPPA2, is 18 kb upstream of rs4650943 and codes for a protease that locally regulates insulin-like growth 
factor availability through cleavage of IGF binding protein 5, most commonly found in bone tissue. In murine 
models, the PAPP-A2 protein has been shown to influence overall body size and bone growth, but not glucose 
metabolism or adiposity [64-66]. 
  
MEIS1 (rs2300481): The only gene within 500 kb of the lead SNP is MEIS1 encoding a homeobox protein that 
plays an important role in normal organismal growth and development. Two variants in high LD with the lead 
SNP (r

2
=0.95) have been identified for association with PR interval of the heart (Supplementary Table 14). 

Another variant, in low LD with rs2300481 (r
2
=0.25), has been associated with restless leg syndrome [67] – a 

sleeping disorder that may cause weight gain [68]. 
 
ARHGEF28 (rs167025): The lead SNP showed an association with WHRadjBMI in men only (Table 1). There are 
two protein-coding genes within 500kb of rs167025. The nearest gene is ARHGEF28, 195 kb downstream, 
encoding Rho guanine nucleotide exchange factor 28. This exchange factor has been shown to destabilize low 
molecular weight neurofilament mRNAs in patients with amyotrophic lateral sclerosis, leading to degeneration 
and death of motor neurons controlling voluntary muscle movement [69, 70]. The ENC1 gene, 490 kb away, 
encodes Ectoderm-neural cortex protein 1, an actin-binding protein required for adipocyte differentiation [71]  
 
HCP5 (rs3094013): The lead SNP showed an association with WHRadjBMI in men only (Table 1). The rs3094013 
SNP is located in the MHC complex on chromosome 6, and the region within 500kb contains 124 genes 
(Supplementary Fig. 3). The known WHRadjBMI-increasing allele rs3099844, in strong LD with our lead SNP 
(r

2
≥0.8), has previously been associated with increased HDL-cholesterol levels [72]. Candidate gene studies 

suggest that rs1800629 in tumor necrosis factor (TNF), which is 109 kb upstream and in moderate LD (r
2
=0.64) 

with the lead SNP, may interact with physical activity to decrease serum CRP levels [73, 74].  We did not, 
however, find an interaction between rs1800629 and physical activity on WHRadjBMI (P=0.3). 
 
BAZ1B (rs6976930): There are 31 genes within 500kb the lead SNP rs6976930 (Supplementary Fig. 3) which is 
in high LD (r

2
>0.8) with GWAS hits associated with protein C levels, triglycerides, serum urate levels, lipid 

metabolism, metabolic syndrome, and gamma-glutamyl transferase levels (Supplementary Table 14). The 
rs6976930 SNP shows an eQTL association with MLXIPL expression in omental (P=7x10

-22
) and subcutaneous 

adipose tissue (P=4x10
-14

). MLXIPL is 122 kb downstream of rs6976930 and codes for a transcription factor that 
binds carbohydrate response motifs, increasing transcription of genes involved in glycolysis, lipogenesis, and 
triglyceride synthesis [75, 76]. 
 
PLCE1 (rs10786152): There are 8 genes within 500 kb of the lead SNP (Supplementary Fig. 3). The lead SNP lies 
within the intron of PLCE1 encoding a phospholipase involved in cellular growth and differentiation and gene 
expression among many other biological processes involving phospholipids [77]. Variants in this gene have 
been shown to cause nephrotic syndrome, type 3 [78]. Nearby variants rs9663362 and rs932764 (r

2
=1.0 and 

0.85, respectively) have been previously associated with systolic and diastolic blood pressure (Supplementary 
Table 14). 
 
CTRB2 (rs889512): The lead SNP showed an association with WHRadjBMI in women only (Table 1). There are 17 
genes within 500 kb (Supplementary Fig. 3). The nearby rs4888378 SNP has been associated with carotid 
intima-media thickness in women but not in men, and BCAR1 (breast cancer anti-estrogen resistance protein 1) 
has been implicated as the causal gene [79]. There rs488378 SNP is not, however, in LD with our lead SNP 
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(r
2
<0.1). The SNP rs7202877, in moderate LD with rs889512 (r

2
=0.6), is a risk variant for type 1 diabetes 

(Supplementary Table 14). The data from Roadmap Epigenomics Consortium [22] suggest that five variants in 
strong LD (r

2
>0.8) with our lead SNP rest in known regulatory regions, including rs9936550 within an active 

enhancer region and rs72802352 in a DNAse hypersensitive region for human skeletal muscle cells and 
myoblasts; and rs147630228 and rs111869668 within active enhancer regions for the pancreas. Additionally, 
rs111869668 rests within binding motifs for CEBPB and CEBPD (CCAAT enhancer-binding protein-Beta and 
Delta) which are enhancer proteins involved in adipogenesis [80, 81]. 
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