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A dysfunctional blood–brain barrier and
cerebral small vessel disease

In molecular terms, the blood–brain barrier (BBB)
indicates tight junction complexes between adjacent
endothelial cells that, combined with endothelial
transporters (both influx and efflux), make brain
endothelia different from other endothelia. While
highly advantageous as a protective barrier against
cerebrovascular permeability, shielding sensitive brain
elements from blood-borne agents, it also poses
a problem for those who seek to develop brain ther-
apeutics such as designer antibodies targeted to amy-
loid deposits or tau protein derivatives.

Recent evidence from human studies indicates var-
iation in barrier efficacy among patient populations. In
this issue ofNeurology®, Zhang et al.1 used quantitative
MRI measures (dynamic contrast-enhanced [DCE]–
MRI) to study cerebrovascular barrier function. They
studied 116 older people, either with clinical and MRI
evidence of cerebral small vessel disease or with no
overt cerebrovascular disease. They used DCE-MRI to
follow the time course of injected gadolinium-based
contrast agent in each voxel of a brain MRI scan. They
then used a standard analysis to derive 2 measures
related to BBB function. These are the rate constant
for gadolinium (Gd) transfer from blood to brain (var-
iously called Ki or Ktrans) and the extent of brain tissue
containing contrast agent (vL, the so-called fractional
volume of leaky brain tissue), each derived for areas of
white matter hyperintensity, for nonhyperintense
white matter, for cortical gray matter, and for deep
gray nuclei. They observed modest permeability, re-
flected in the Ki and vL values, in all brain regions
(highest in cortical gray matter) and across both par-
ticipant groups. They found that older people with
small vessel disease had a greater fraction of Gd-
positive tissue (observed as greater vL) relative to con-
trol individuals without small vessel disease.1 This held
true within white matter hyperintensities, neighboring
nonhyperintense white matter, and cortical gray matter
(1.2- to 1.4-fold difference, depending on the tissue
type). This picture agrees—broadly—with previous
studies of older people with manifestations of small
vessel disease (lacunar stroke, white matter hyperinten-
sities, or vascular cognitive impairment).2–4

It may be a mistake to assume that a dysfunctional
cerebrovascular barrier indicates breach of the tight
junctions between endothelial cells. For many years,
we have known about the trafficking of plasma sub-
strates across the endothelial cytoplasm, known as
transcytosis. Traditional emphasis on efflux transport-
ers, which limit CNS concentration of penetrating
drugs, has shifted to include analyses of influx mecha-
nisms capable of enhancing drug delivery.5 Interest has
recently increased with discovery of Mfsd2a, a 60 KDa
transmembrane protein greatly enriched in brain endo-
thelium (.70-fold relative to peripheral endothelia).6

Mice genetically engineered to have no Mfsd2a gene
exhibit increased BBB permeability due to increased
transcytosis in brain endothelia.6 This pathway may be
an entry route for therapeutic antibodies recently
shown to reduce brain amyloid load.7 The current
study1 leaves unclear the relative roles of paracellular
vs transcellular barrier dysfunction.

Then again, is the demonstrated dysfunctional
cerebrovascular barrier really an indication of endo-
thelial disturbances at all? The ongoing assumption
is that the barrier changes occur at the capillary level,
but this remains an assumption. Arterioles, the vessels
immediately upstream from capillaries, have layers of
smooth muscle cells that normally provide barrier
protection in addition to other arteriolar constituents.
But small vessel disease, either hereditary or sporadic,
is typically characterized by substantial loss of smooth
muscle cells.8 Given that smooth muscle cells of arte-
rioles may be no more than one layer thick,9 some
arterioles in small vessel disease could contribute to
loss of cerebrovascular barrier protection, a subject for
further investigation.

The nature of the relationship between a dysfunc-
tional cerebrovascular barrier and the pathogenesis of
cerebral small vessel disease remains the critical ques-
tion. The possible relationships, especially cause vs
consequence, are complex and largely speculative at
this point. Any unified model or fully developed theory
linking white matter hyperintensities, microinfarcts,
and cerebral microbleeds10 will need to incorporate
conceptually a dysfunctional BBB.
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