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Abstract:

In this article, we show how to investigate the role of individual (personal) risk factors on

outcome prevalence in multicentre studies with multilevel modelling. The variation in

outcome prevalence is modelled by introducing a random intercept. In the next step, the

empty model is compared with the model containing the risk factor(s). Because the outcome

is dichotomous, this comparison can only carried out after having rescaled the models’

parameter values to the variance of an underlying continuous variable. We illustrate this

approach with data from Phase Two of the International Study of Asthma and Allergies in

Childhood (ISAAC) and provide a corresponding Stata do-file.
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Introduction:

Many diseases vary widely in prevalence worldwide and a most plausible explanation is the

influence of environmental risk factors. Environmental risk factors vary also widely in

prevalence over the world and often provide exposure contrasts between populations where

within population contrasts are low 1. Investigation of differences between diverse

populations has given important insights for instance regarding cardiovascular risk factors 2

and asthma and allergies in children 3.

However, simple ecological comparisons, using aggregated data only, do not take into

account associations at the individual level and are potentially prone to ecological fallacies. A

multilevel approach can take into account the contribution of individual risk factors on

disease prevalence in different locations (e.g. countries), thus shedding light on potential

ecological fallacies.

The more usual focus on the association between disease and risk factors within populations

ignores the broader issue of the importance of these factors in determining the burden of

disease in whole populations and therefore the potential for prevention at a community level.

The multilevel approach can be used to investigate both the variation between locations and

the determinants of this variation. These will be risk factors that have an association with the

disease at the individual level but also vary in their prevalence between locations or study

centres.

Although the multilevel framework has the potential of investigating both the individual and

population level determinants of disease variation it seems to have been used very little in

epidemiology. So far studies investigating the differences between locations come rather

from the social sciences such as the classic example by Lee & Bryk on mathematics

achievement in different schools 4 or newer work e.g. investigating children’s wellbeing using

indicators 5. In the health sector, Wainwright & Surtees 6 give an example of analysing

functional health scores.
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In these cases the outcome investigated is generally continuous and linear multilevel or

“hierarchical linear models” can be used. In such models the total variance can be easily

decomposed in three variance components: 1) the explained variance that can be attributed

by variation in a predictor variable (e.g. risk factor), 2) the unexplained variance (or residual

variance) at the individual level and 3) the unexplained variance at the centre level. The latter

is equivalent to the variation of the random intercept. The advantage of linear models is that

models with different number of risk factors can be easily compared regarding the change of

their parameters and therefore also of the variation between locations. Hence these models

allow a direct assessment of the change in variation when a risk factor is introduced into the

model.

In epidemiology, however, outcomes are very frequently binary and the corresponding

multilevel logistic regression models do not allow such a simple comparison between

models, although this sometimes seems to have been ignored (for example 7–9). For a binary

variable, the residual variance at the individual level is determined by the binomial

distribution and has a fixed value of 2/3 in case of the logit model. As a consequence of this

fixed individual residual variance, all the other parameters in the model (including the

variance of the random intercept) change to accommodate the change introduced by an

individual-level explanatory variable. To allow any meaningful interpretation the relative

changes of the parameters have to be assessed 10.

Bauer11 proposed a scaling procedure to achieve comparable estimates between different

probit or logistic regression models, based on the assumption of an underlying continuously

distributed variable. Fielding 12 had earlier introduced the same concept and a similar scaling

procedure for mutinomial regression. . A scaling procedure which is mathematically

equivalent to Bauer's, published later by Hox 13 has been implemented as a Stata ado file by

Enzmann and Kohler 14. This compares any model with risk factors to a null model without

individual level risk factors, whereas Bauer's method can compare different risk factor

models directly.
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The consequences of ignoring the scaling procedure are biased estimates of changes in

variance components, with bias possible in either direction. Fielding (12) used real data on

mathematical test scores in schoolchildren, modelled by multinomial regression, to

investigate changes in the variance of the underlying latent variable, representing test

performance, between 114 schools, after adjustment for a range of individual (child-level)

covariates. The change in school-level variance was overestimated by as much as 118% and

underestimated by as much as 74%, when different risk factor combinations were introduced

into the model.

Not taking into account the scaling effect leads to incorrect values not only of the level-two

variance but also of the regression coefficients. E.g. Bauer11 reports in his simulated data a

marked increase in the beta coefficient of the level-1 variable after introduction of an

additional level-1 variable (from 1.51 to 2.65) which after scaling of the results turns out to be

no change (from 1.01 to 1.02). In the same example, the variance of the random intercept

showed no change when not scaled, in contrast to a decrease from 0.16 to 0.06 when

scaled.

While the estimates of the random intercept variance are routinely reported with their

variance, up to date no routine exists to estimate the uncertainty in the estimated changes of

the random intercept variance. According to a suggestion by Bauer 11, we apply, to our

knowledge for the first time, bootstrap methods to estimate the related confidence intervals.

In summary, without a scaling procedure it is not possible to quantify the variance in the

random intercept that reflects the prevalence variation of any binary outcome, and therefore

not possible to assess the influence of any risk factor on this prevalence variation. Therefore,

in this tutorial we show how to apply this approach to the investigation of variation in disease

prevalence across locations using the data of the Phase Two of the International Study of

Asthma and Allergies in Childhood (ISAAC). A corresponding Stata Macro allowing the direct

comparison of several different multivariate models with different risk factors has been

developed based on a SAS-Macro developed by Bauer (personal communication).
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The use of multilevel models for modelling prevalence variation

In an ordinary one-level regression model the assumption is that all individuals, even if from

different centres, belong to one common population. In a multi-level model, we consider that

there may be genuine differences between centre populations, which are themselves a

sample from a superpopulation. The corresponding variation in the outcome is accounted for

by the random intercept in the multilevel model and therefore is equivalent to modelling the

prevalence of centres – indeed in logistic regression the intercepts are the centre-level

prevalence logodds.

To model the random intercept, we introduce a random effect term at the centre level (level

2). Note that in contrast to a linear model, the formula for the logistic model, does not contain

a random effect term (i.e. error term) at the individual level (level 1) because this error term is

determined by the binomial distribution, in the case of a logit link it is
� �

�
.

Therefore, instead of the usual equation for single-level logistic regression models

Logit(pi) = b0 + bXi

where Xi is (are) the independent variable(s) (e.g. risk factor(s)) of individual i

the corresponding equation for a two level model writes

Logit(pij) = γ00 + bXij + uj

where Xij is (are) the independent variable(s) (e.g. risk factor(s)) of individual i in centre j and

uj denotes the level 2 (i.e. centre-level) random intercept.

uj follows a random distribution which has a variance denoted here as tau2. This variance is

equivalent to the variance between centres in the random intercept and therefore to the

variance around the grand mean of the prevalence logodds (γ00 ) as reflected in the full

dataset.

Here we deal with models where the centres have the same slope (representing a fixed

effect of the risk factor on disease logodds) and vary only in the intercept (Figure 1). Thus,

we use a multilevel model with a random intercept i.e. there is only a second level variation
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term (error term) for the intercept. Multilevel models can also incorporate random variation of

the slope which, however, is beyond the scope of the current article. Introduction of random

slopes poses additional problems of analysis and interpretation of the distribution of random

intercepts, because the variance of these intercepts will vary according to the choice of origin

(zero exposure) for the explanatory variables with non-fixed slopes.

As in other regression models explanatory variables can be introduced which will lead to a

change in the variance explained by the model. In the case of a continuous outcome

measure, and a multi-level linear regression, we have two model terms for the variation, one

for level 1 (individual subjects) and one for level 2 (study centres or locations) and therefore

we can investigate specifically the change of the residual variance between individuals and

the change of the residual variance between centres directly from the model output. This

means, if we want to assess the amount of between centre variance that can be explained by

a risk factor, we can look directly at the change in the variance of the centre-level random

intercepts uj after introduction of an explanatory variable.

This is because the residual (unexplained) variances at both the centre level and the

individual level are reduced by introducing explanatory factors to a linear model.

In contrast, in a multilevel logistic model the variance at the individual level is defined by the

distribution of the binary variable and remains therefore constant (e.g. at
�

�

�
in case of the

logit link function) in all models. Introduction of any risk factor into the model can therefore

not change the constant unexplained residual variance at the individual level. Instead, all the

beta-coefficients and the variance components in the model change reflecting the change of

the residual variance by the newly introduced variable.. In case of the investigation of the

variance between centres we are interested in the change in tau2 in relation to the total

variance that consists of the explained variance and the residual variance at individual level

and the residual variance at the centre level tau2. Snijders and Bosker 10 therefore propose a

formula which allows a quantification of the proportion of the respective variance component
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relative to the total variance (decomposition of the total variance into the three components:

explained variance, residual variance at level 2 and residual variance at level 1).

In a further step Bauer 11 developed a scaling procedure based on the concept of an

underlying continuous latent variable. Here the binary variable is defined by an underlying

latent continuous variable y*. The binary outcome y=0 if y* is below a threshold value T and

y=1 if the value is equal or above T. The approach proposed by Bauer 11 rescales all model

parameters to the constant total variance of this underlying continuous latent variable y*.

In the specific case of a model with a random intercept but fixed slopes, his general formula

reduces to

� = 	� / (� � ∑ � 	� + 	 � � � � + 	 � �
� 	) (equation (eq.) 1) where

s is the scaling factor,

a is the specific value of the variance of the underlying response variable,

� is the vector of the regression coefficients of the fixed effects, and � � its transpose

∑ � the covariance matrix of the risk factors enhanced by additional 0-cells to match

in dimension b and b’,

	� �
� 	 is the variance of the individual level random effect.

Note that a and 	� �
� 	 are identical, e.g.

�

�

�
for logistic regression, or 1 for a probit regression.

Thus conceptually the scaling factor is the ratio of the individual-level residual (binomial

sampling) variance (
�

�

�
for logistic regression) to the sum of the variance explained at the

individual level ( � � ∑ � 	� ), the unexplained centre-level variation (tau2) and the unexplained

(sampling) variation at the individual level (
�

�

�
for logistic regression).

In the case of a model without risk factors, the formula for the scaling factor reduces further

to 	� = 	� 	/ (� � � � + 	 � �
� 	) (eq. 2).

Only parameters rescaled with this scaling factor can be compared directly between models.

Therefore, this scaling procedure is necessary when assessing the reduction in between-
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centre variance after introducing an individual-level risk factor. Note that the scaling factor for

the effect estimates ( � ) is the square root of the above scaling factor for the variance.

Introduction into the worked example: The ISAAC Phase Two data set

The data set used in this example comes from the Phase Two of ISAAC which is a

multicentre cross-sectional study that was carried out in 30 centres in 21 countries and

investigated children on average 9-11 years old 15. Outcome data derive from standardized

questionnaires on symptoms of asthma and from the results of skin prick tests to six

aeroallergens 16.

The main symptom of asthma used in analysis is “wheeze in the past year” which is a binary

variable “yes”-“no”. A skin prick test was rated as positive if the wheal size in response to any

of the six allergens was greater than 3 mm, after subtraction of the negative control. The

variables from the risk factor questionnaire we use in this example are mostly dichotomous,

but also categorical or continuous variables may be introduced into the model. All

questionnaires were filled in by the care taker, usually parents. The detailed questionnaires

are available on http://isaac.auckland.ac.nz/phases/phasetwo/phasetwomodules.pdf.

In this article we use a subset of centres that had investigated risk factors in the full sample

(as opposed to a subsample stratified by wheeze) and information on the respective risk

factor and outcome. Only children with information on the risk factors used in the examples

are included in these restricted data sets: 27 719 children from 24 centres contribute to the

example examining skin prick test positivity and number of siblings, and 34 809 children from

24 centres and contribute to the example investigating wheeze and four selected risk factors.

These four selected risk factors were: Mother smoked during the first year of life of the child

(yes/no), the child has had a whooping cough infection (yes/no), the child had been breastfed

(yes/no) and fish consumption at least once a week (yes/no).
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Examples of analyses on the Phase Two data

We explore two examples, the numbers of siblings in relation to atopy and the influence of

four risk factors on asthma. The number of siblings has been shown to be an important factor

influencing the occurrence of allergic disease17 and we chose therefore to investigate its

relation with an objective marker of allergy i.e. skin prick test positivity. The number of

siblings is furthermore very variable in the international context with higher mean numbers in

less affluent centres. On theoretical grounds we would expect an individual risk factor that

has a) a reasonable strong effect size and b) a high variability between populations to have a

notable effect on prevalence differences worldwide.

After a first exploration of the Phase Two data sets we chose the risk factors for our wheeze

example to reflect different directions of association (harmful and protective) on the individual

level and the ecological level. On the individual level, maternal smoking and whooping cough

infection represent harmful factor and breastfeeding and fish consumption the protective

factors. On the ecological level, maternal smoking and breastfeeding have positive

correlation with wheeze prevalence, whereas whooping cough infection and fish

consumption have a negative correlation. As we will see both the individual and ecological

level matter for the direction of the overall change in variation, highlighting that ecological

analyses on their own may be misleading in this kind of analysis. The prevalence of all four

risk factors varies strongly in the international context.

a) Example 1: number of siblings and atopy

In a first example we consider how much of the international variation in the prevalence of

atopy, defined as a positive skin prick test, can be explained by the reported number of

siblings and birth order as reflected by the number of older siblings.
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To evaluate the change in the rescaled tau2 when introducing an explanatory variable, we

first calculate an empty model without the risk factor to determine the variation in wheeze

prevalence as reflected by tau2 which is 0.6061. This entity, we call tau0
2.

We use eq. 2 to calculate the scaling factor. In our case of a logistic regression model for a

binary outcome, a and 	� �
� 	 in the equation are

�

�

�
. We obtain a scaling factor of 0.844 and

therefore a rescaled tau0
2 of 0.5115.

We then introduce the number of siblings (variable num_sibs) into the model (see Figure 2)

and obtain a tau2 of 0.5657 which is (0.75212) i.e. the sd(_cons) from Figure 2 squared.

For the formula we now need to calculate the term		� � ∑ � 	� 	 (see eq.1).

b, the vector of the regression coefficients, starting with the intercept, is here (-1.296155

-0.0542936) see Figure 2, and therefore its transpose is � 	� � . � � � � � � 	
� � . � � � � � � � 	

� . Note that the order

of the regression coefficients in Stata is actually in the inverse order of that needed in the

formula (e.g. intercept in the last instead of the first position).

∑ � , is obtained in Stata with “correlate num_sibs, cov” and contains the covariance matrix, in

the single risk factor case simply the variance of that variable (3.19307), and is then

enhanced with additional 0s to obtain

�
0 0
0 3.19307

�

The whole formula for the scaling factor according to (eq. 1) therefore is

�
3

�

� �
−1.296155
−0.0542936� 	x	 �

0 0
0 3.19307

� 	x ( −1.296155 − .0542936 )� + .56572603 +
�
3

�
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which results in a scaling factor of 0.8511 and multiplying it with tau2 we obtain the rescaled

tau2 of 0.4815. This results in a relative reduction respective to the null-model of 5.91%.

We next introduce a second variable, the number of older siblings (oldersibs) into the model.

As we have already the number of all siblings in the model, this variable reflects mainly birth

order and informs us whether having older sibling has a stronger effect than having younger

siblings.

b, the vector of the regression coefficients, starting with the intercept followed by the first and

then the second explanatory variable, is now (-1.295132 -0.0576607 0.005064) see Figure

3, and therefore its transpose is �
� � . � � � � � �
� . � � � � � � �
	� . � � � � � �

� .

∑ � is obtained in Stata with “correlate num_sibs oldersibs, cov” and contains the variance of

num_sibs (3.1931) and the variance of oldersibs (1.8923), and the covariance between the

two variables (1.9859) (Figure 4). This is then enhanced with additional 0s to obtain

0 0 0
0 3.19307 1.9859
0 1.9859 1.89234

The whole formula for the scaling factor according to (eq. 1) therefore is

�
3

2

� �
� � .� � � � � � 	
� � .� � � � � � � 		
� . � � � � � � 	

� 	x	 �
0 0 0
0 3.19307 1.9859
0 1.9859 1.89234

� 	x ( −1.295132 − 0.0576607 0.005064 )� + 0.56534304 +
�
3

2

which results in a scaling factor of 0.8513 and multiplying it with tau2 we obtain the rescaled

tau2 of 0.4813. This now results in a relative reduction respective to the null-model of 5.97%.

This is very similar to the figure of 5.91% obtained from the single risk-factor model with total

number of siblings. This reflects both the weakness of the older siblings effect at the

individual level, independent of total siblings, and the fact that mean birth order does not vary
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greatly between study centres independently of total sibship size, whereas there is much

greater variation in total sibship size.

b) Example 2: Influence of several risk factors on wheeze in the past year

In the second example we investigate several risk factors for their influence on the variation

of wheeze prevalence.

We start by investigating each risk factor separately for the change in tau after this risk factor

has been introduced into the random intercept model without any explanatory variables

(“empty model”). We then start building a multivariate model introducing the explanatory

factors one-by-one.

The influence of the tested risk factors when introduced as only risk factors in the model on

the change in tau2 is shown in Table 1. The change in tau2 is presented as the relative

decrease (in %) in relation to the tau2 of the empty model and hence a negative sign

indicates that the risk factor actually increases tau2.

The variable “mother smoking in the first year of life of the child” has a moderate association

with wheeze at the individual level with an odds ratio (OR) of 1.2 which is statistically

significant. This risk factor is also quite variable in its prevalence across the centres (Table

1). The introduction of this risk factor results in a relative reduction in the variability between

centres, as reflected by tau2, of 7.1%. This risk factor has a positive ecological correlation

with wheeze and hence the tau2 is decreased.

Whooping cough has a moderately higher and also statistically significant effect size and a

somewhat lower variation in prevalence between centres. However, this factor entrains an

increase in tau. This seems at first glance counterintuitive because one might think that

introduction of any predictive factor will decrease the variance. The increase in tau2 is a

consequence of the negative ecological correlation between the wheeze prevalence and the
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whooping cough infection prevalence – in contrast to the prevalence of mothers smoking

where we had a positive correlation with wheeze prevalence at the centre level (Figure 5)

We also observe an increase in tau2 for breastfeeding, where the ecological correlation is

positive but the association at individual level is inverse i.e. smaller than one. On the other

hand, for fish consumption, where both the odds ratio as well as the correlation are negative

we observe again a decrease in tau2.

The final model (Table 2), incorporating individual level variables that decrease and increase

the tau2 results in an overall decrease of 1.8%.

The precision of our estimates of the change in tau2, is not obtainable directly from model

outputs, so we have applied bootstrapping to determine its 95%-confidence interval (CI). As

we are looking at a centre-level parameter, bootstrapping should not sample individual

children but needs to sample centres, i.e. a block sampling procedure has to be performed.

Performing this procedure 2000 times is sufficient to derive 95% CI 18. For carrying out the

block sampling procedure in our worked example, complete centres were randomly selected

with replacement from the whole study population until the number of centres reached 24 in

each bootstrap sample. Because of different numbers of children in each centre, the number

of children varied between the bootstrap samples. The empty model and the full model were

fitted to each bootstrap sample and afterwards the results were rescaled. A simple 95%

bootstrap confidence interval was obtained using the 2.5% and the 97.5% percentile as

confidence limits. For the example with skin prick test and siblings, we obtain thus a relative

reduction of unexplained between-centre variance of 6% with the CI ranging from -0.5% to

14%. For the wheeze example with its small decrease of unexplained between-centre

variance of 1.8% we obtain a CI of -7% to 8.8%.

In the appendix we present the code of a Stata macro that runs the multilevel analyses and

calculation for models with as many risk factors as desired. This procedure can easily be

adapted to probit regression (as used by Bauer 11) by replacing π2/3 by 1. In our data set, the
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results and scaling factors obtained by probit regression were very similar to the results

obtained by logistic regression.

Our Stata-Macro can be adapted to accommodate sampling weights which are necessary

often in survey data or when analysing stratified subsamples (see code in the appendix). For

example, the ISAAC Phase Two data consists partly of subsamples stratified by wheeze i.e.

100 wheezers and non-wheezers were sampled in some centres for certain modules 15. In

this case, we use gllamm to incorporate the appropriate “pweight”. Note, however that certain

conditions have to apply to get reliable unbiased results from this weighted multilevel

approach using a so-called pseudolikelihood. For details we refer the reader to Rabe-

Hesketh & Skrondal 19 and Rabe-Hesketh & Skrondal 20 on page 572. Note also that stratum

sampling weights remain necessary even if the outcome variable is the one that was used to

define the stratified subsample. This is in contrast to the more conventional analyses of the

effects of risk factors on the outcome itself, where no weighting is needed because the

analyses then correspond to a classical case-control analysis. However in our analysis, we

are interested in the intercept and its variation and not in the effect estimates. Therefore not

weighting the children in the subsample to the frequencies in the full sample will result in

falsely elevated intercepts in the centres concerned – just as we cannot interpret the

intercept as baseline prevalence in a case-control study. The consequence is a grossly false

result for the overall intercept and its variation tau2. Note that the use of gllamm with weights

necessitates markedly more time than doing an unweighted analysis with xtlogit. Advice for

speeding up the estimation procedure with gllamm is given in Rabe-Hesketh & Skrondal 20

on page 542. Even so, in the complete Phase Two data set with more than 50 000

observations and 30 centres, one multivariate model can run for several hours.

General Discussion

Our application of Bauer’s method 11 to rescale the model parameters to an underlying

continuous outcome offers a useful way to investigate the role of individual-level risk factors
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in explaining variations in disease prevalence between populations. This method allows

standardizing the interpretation of estimates of the tau2, i.e. of the unexplained non-sampling

variance of the random intercept. We therefore can estimate the proportion of the variance

between the centres that can be explained by individual-level risk factors that are included in

the model. In our example of real data, we could show e.g. that the unexplained variance in

wheeze prevalence between centres is estimated to be reduced by 7% when maternal

smoking in pregnancy was taken into account.

The between-centre variance tau2 is comparatively high in our data set with unrescaled

values of 0.52 (skin prick test example) and 0.29 (wheeze example). The relatively high tau2

in our dataset corresponds to a prevalence range of 1.6% to 43.6% for the skin prick test

example and of 3.4% to 26.6% for the wheeze example. Other studies have found e.g. a tau2

of 0.14 for a study of reported asthma diagnosis in children in 287 neighbourhoods and 45

000 individuals 21. Other studies on diverse outcomes found an even lower tau2 8,22,23. We are

not aware of any study reporting corresponding figures for a binary outcome in an

international multi-centre study.

Our modelling with real world data showed that the incorporation of individual level variables,

in contrast to centre level variables, can either decrease or increase the unexplained

between-centre variance (tau2). Therefore multivariate modelling can lead to very little net

change when factors increasing and factors decreasing the variance are simultaneously

incorporated into the model. A special case consists in introducing variables that reflect very

similar exposures like “smoking of the mother in the first year of life of the child” or “smoking

of the mother during pregnancy”. These variables are highly correlated but as we are not

interested in their effect estimates but in the random intercept, the collinearity of these two

variables is not a problem24. Indeed the standard error (SE) of the tau2 remains very similar

between the models containing one or both of the risk factors. However, in general the

additional variables will not add much additional new information. In our view it is therefore

commendable to build a parsimonious model e.g. by choosing the variable with the highest
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change in tau2 or the one that shows a statistically significant effect in the single risk factor

model.

To our knowledge, we have for the first time determined CIs for the estimated change in the

between-centre variance tau2 by successfully applying bootstrapping. In general, research

reports just give the percentage of change without any indication of the precision of their

estimate. Our results based on 24 diverse study centres, show that the precision is quite low,

thus the numbers presented for reduction of tau2 have to be viewed with a certain caution

regarding their absolute values highlighting the explorative nature of this approach.

Nevertheless, the magnitude of our standard errors in relation to tau2 are comparable to

those reported by Ivert et al 22 studying the utilization of psychiatric care by 17 729

individuals in 235 neighbourhoods (SE of 0.026 for a tau2 of 0.052) and Merlo et al 8

investigating survival after heart failure in 4467 patients from 90 hospitals (SE of 0.014 for a

tau2 of 0.053). On the other hand, Gupta et al 21 report a SE of 0.02 for a tau2 of 0.14

(reported asthma; approx. 45 000 children in 287 neighbourhoods). Thus, overall, large CIs

of tau2 may not be uncommon. Similarly one can see from the literature that the I-squared

statistic describing the heterogeneity in meta-analysis often has similarly wide CIs 25. The

imprecision of estimates of tau2 and its reduction will be especially high if the number of

centres is small.

The scaling factors we observe in our data set vary little between models and are closer to

one than the ones from the example of simulated data in Bauer 11. In general, we expect the

scaling factor to deviate more strongly from one when the unexplained between-centre

variance tau2 and/or the explained variance � � ∑ � 	� are high. The scaling factor will differ

between models when the explained variance at individual level differs markedly between the

models and/or tau2 increases: in the case of explained variance at the individual level, an

increase in the explained variance will be important because there is no concomitant

decrease in tau2.
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Note that when adding centre level variables, no rescaling is necessary as these variables

cannot explain any of the individual level variation. Thus changes in scaling factors between

models will be minute and within the range of imprecision resulting from model estimation.

One limitation of our presented approach is that we have assumed a fixed slope for the

individual level variables which is equivalent to assuming the same relationship between

influence factors and outcome in all centres. From a methodological point of view, Bauer’s

method 11 can also accommodate random slopes. The interpretation becomes less

straightforward in this case, as the variance of the intercept will depend on the value of the

covariate with the random slope and hence the parametrization of that covariate has to be

chosen with care. Also, the mere fact of including a covariate will most likely increase the

imprecision around the estimated tau2.

A scaling procedure has also been proposed by Hox 13 based on the approach presented in

Snijders & Bosker (2001) 26 which itself is based on McKelvey & Zavoina (1975) 27: these

authors had developed an pseudo R-squared for the latent continuous variable that is very

similar to the OLS R-squares. This allows calculating the total variance of the latent variable

and is equivalent to the formula given by Bauer 11 for a random intercept model. The scaling

factor presented by Hox13 is obtained by dividing the total variance of the null model by that

of the model containing the predictors. Therefore this approach rescales the logistic risk

factor model in comparison to the respective logistic (or other non-linear) null model,

whereas Bauer’s formula rescales the logistic null model and risk factor model to the

respective linear underlying latent variable models.

Enzmann & Kohler14 have developed a Stata ado file named meresc based on the approach

presented by Hox13. The results for the comparison with the null model obtained by meresc

and our Stata-macro are very similar and differ only in the 4th last decimal. This is due to the

fact that the procedure to determine the explained variance is slightly different: meresc uses

the variance of the predicted values whereas Bauer’s formula uses the covariance matrix in

combination with the regression coefficients. The equivalence of both approaches to the
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explained variance is given in Bauer’s article11 in formula (22). The approach in meresc

corresponds to the binary case of the method of Fielding12 presented for outcomes with

several categories. Note that meresc does not run after gllamm.

In conclusion, our approach allows extending the investigation of the influence of personal

risk factors on the variation of a continuous outcome between populations to binary

outcomes. This is a useful exercise when trying to identify new risk factors especially when

they may show little variation in a given location. This method also provides a quantitative

insight of the extent to which elimination of a given risk factor would reduce international

differences in prevalence. A Stata code is given to implement this kind of analyses.
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Key messages

Investigating differences in prevalence between centres in a multicentre study, in

particular in an international setting, can give important insights regarding relevant risk

factors

By quantifying the variation of the random intercept in a multicentre study it can be

estimated how much of variation in the outcome prevalence can be attributed to

ecological and individual level risk factors

In the case of a binary outcome, e.g. for multilevel logistic regression, a scaling

procedure has to be performed to allow the direct comparison between models with

different individual level risk factors
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Table 1: Single risk factor models: 34809 children in 24 centres

risk factor

prevalence

range OR (CI)

ecological

correlation &

rescaled

tau2

relative

reduction

rescaled

tau2 * tau2

relative

reduction

tau2 *

Empty model (without RF) 0.299 0.329

Risk factor models

Mother smoked during first

year of life of the child 0.08-43.6% 1.24 (1.14; 1.36) 0.635 0.278 7.63% 0.304 7.17%

Whooping cough infection 0.6-34.2% 1.58 (1.37; 1.83) -0.097 0.309 -3.95% 0.342 -3.20%

Breastfeeding 26.1-97.8% 0.85 (0.77; 0.94) 0.349 0.306 -2.64% 0.338 -2.27%

Fish consumption 17.2-95.6% 0.89 (0.81; 0.97) -0.264 0.297 0.74% 0.327 0.77%

* this is the reduction relative to the tau2 of the empty model: a negative sign shows that there is an increase in tau2;

§ the prevalence is calculated as 1/(1/exp(0)+1)

& correlation of risk factor prevalence with wheeze prevalence
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Table 2: Multivariate risk factor model: 34809 children in 24 centres

final multivariate model$

Empty model (without RF)

risk factor

prevalence range OR (CI) rescaled tau2

SE

(rescaled

tau2)

stepwise

relative

reduction

rescaled tau2 *

0.29915 0.099

Risk factor models

add Mother smoked during first year of life of the child 0.08-43.6% 1.22 (1.11; 1.33) 0.27769 0.091 7.63%

add Whooping cough infection 0.6-34.2% 1.56 (1.35; 1.80) 0.28722 0.095 3.79%

add Breastfeeding 26.1-97.8% 0.87 (0.78; 0.96) 0.29394 0.098 1.24%

add Fish consumption 17.2-95.6% 0.90 (0.82; 0.98) 0.29214 0.097 1.82%

* this is the reduction relative to the tau2 of the empty model: a negative sign shows that there is an increase in tau2;

§ the prevalence is calculated as natural logarithm of the intercept;

$ the odds ratios are given for the final model
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Figure legends

Fig 1: Graphical illustration of random intercept model

Fig 2: STATA output for the random intercept model with number of all siblings (num_sibs) as explanatory variable

Fig 3: STATA output for the random intercept model with number of all siblings (num_sibs) and number of older siblings (oldersibs) as

explanatory variables

Fig 4. STATA output for the command “correlate num_sibs oldersibs, cov”

Fig 5 a-d: scatterplots of risk factor prevalence vs. wheeze prevalence: a) mother smoking during the first year of life of the child; b) whooping

cough infection; c) breastfeeding; d) fish consumption
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Appendix: Stata macro code

* Stata program to rescale estimates obtained from 2-level models (1st
level: individuals 2nd level: study centres)
* calculated in xtlogit
* rescaling formulae from Bauer 2008
* originally programmed in STATA10, later also used in STATA14
***************************************************************************
**********************************************

use "G:\Daten1\ISAACII.dta", clear

cd "G:\Gudrun\ISAACII\Tutorial\"

global logfile="logfilename.log"
log using "$logfile", replace

count

set more off
***************************************************************************
******************************************
****** regression model for the Null Model (with random intercept for study
centre but without any risk factor) ***********************
** example: skin prick test positivity = sp09x

xtlogit sp09x, i(centre) quad(30)
matrix u0=e(b)

* tau (NOT tau2) contained in e(sigma_u)
* e(b) contains the individual-level parameters plus lntau (not tau2) as
the last element
* We can't access element of e(b) directly without copying e(b) to another
matrix
matrix u0=e(b)
scalar tau02=e(sigma_u)^2

**** corresponding gllamm syntax**********
** run gllamm twice to speed up estimation, statements nip(5) and then
nip(30) important to get correct estimates!

gllamm sp09xx, i(centre) link(logit) family(bino) nip(5) pweight(wt)
matrix b0= e(b)
gllamm sp09xx, i(centre) link(logit) family(bino) nip(30) pweight(wt) from
(b0)adapt
matrix u0=e(b)
scalar tau02=u0[1,2]^2
******************************************

**** calculate the scaling factor and rescaled tau2 from Bauer, 2008
* calculating null model implied total variance of latent variable y
matrix y0 = tau02 + c(pi)^2/3
mat list y0

* computing the scaling factor(s) to convert to marginally standardized
estimates
scalar scaling_factor_tau02=(c(pi)^2/3)/(y0[1,1])
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scalar rescaled_tau2_null_model = tau02*(c(pi)^2/3)/(y0[1,1])

scalar list

***************************************************************************
******************************************
*************** regression model with risk factor(s)
***********************************************

* define risk factor sets to be run
global rf_1 "rf06_04xx"
global rf_2 "rf05_04xx"
global rf_3 "rf05_04xx rf06_04xx"
global riskfactor_list " "$rf_1" "$rf_2" "$rf_3" "

* set up temporary file as required by postfile command
tempname testoutfile

foreach rf of global riskfactor_list {

* specify variable types and names you want to have in the output file and
name of the output file
postfile `testoutfile' str100 (riskfactor) float (Nchild Ncentres Tau2
rescTau2 reduction_Tau2 reduction_rescTau2 Relreduction_Tau2
Relreduction_rescTau2 estimate stderr) using "`rf'.dta", replace

******************* regression model with risk factor(s)
***********************************
xtlogit sp09xx `rf', i(centre) quad(30)
matrix u=e(b)
matrix v=e(V)

** extract tau2 and its standard error
scalar tau2=e(sigma_u)^2
scalar list tau2

**** corresponding gllamm syntax**********
** run gllamm twice to speed up estimation, statements nip(5) and then
nip(30) important to get correct estimates!

gllamm sp09xx `rf', i(centre) link(logit) family(bino) nip(5) pweight(wt)
matrix b= e(b)
gllamm sp09xx `rf', i(centre) link(logit) family(bino) nip(30) pweight(wt)
from (b)adapt
matrix u=e(b)
matrix v=e(V)

** extract tau2 and its standard error
scalar tau2=M_cov[1,1]
scalar list tau2
******************************************

*** Creating covariance matrix required for scaling formula
********************************
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** = create "cra", the covariance matrix with additional 0-cells needed in
the formula

correlate `rf' if wh02x != ., cov
matrix a=r(C)

*define cn=colsof(a)i.e. number of columns in correlation matrix
scalar cn=colsof(a)
di cn

forvalues i=1/`=cn'{
mat fac = (nullmat(fac)\0)
}
mat list fac

forvalues i=1/`=cn'{
mat c = (nullmat(c)\0)
}
mat list c

mat ca=(c,a)
matlist ca

forvalues i=1/`=cn+1'{
mat r = (nullmat(r),0)
}
mat list r

mat cra=(r\ca)
mat list cra

mat drop fac c r

* Extracting information required for Bauer's scaling formula into a matrix
and its transpose

************* create matrix d with coefficients **
** reminder: cn=colsof(a)
mat d = u[1,cn+1]
mat list d
mat list u

forvalues i=1/`=cn'{
*mat c = (nullmat(c)\0)
scalar i2=`i'
scalar list i2
matrix d = (d\u[1,i2])
}
mat list d

*** calculating model implied total variance of latent variable y
matrix y = d'*cra*d + tau2 + c(pi)^2/3
mat list y

* computing the scaling factor(s) to convert to marginally standardized
estimates
scalar scaling_factor_tau2=(c(pi)^2/3)/(y[1,1])
scalar rescaled_tau2 = tau2*(c(pi)^2/3)/(y[1,1])
scalar list
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***************************************************************

* extract standard errors of risk factor effect estimate(s)
matrix v=e(V)

post `testoutfile' ("`rf'") (e(N)) (e(N_g)) (tau2) (rescaled_tau2) (tau02-
tau2) (rescaled_tau2_null_model - rescaled_tau2) ((tau02 - tau2)/tau02)
((rescaled_tau2_null_model - rescaled_tau2)/rescaled_tau2_null_model)
(u[1,1]) (sqrt(v[1,1]))

ereturn clear

*************************
return clear

postclose `testoutfile'

}
***********************************

*** export results from all risk factor models into an excelfile
use "$rf_1", clear
foreach rf of global riskfactor_list {
append using "`rf'"
}

save "sp09x_multivariate"
list
outsheet using "sp09x_multivariate.xls"

log close
**************************************


