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Abstract (260 words):

Background

Previous studies have suggested that modern obesogenic environments accentuate

the genetic risk of obesity. However, these studies have proven controversial as to

which, if any, measures of the environment accentuate genetic susceptibility to high

BMI.

Methods

We used up to 120,000 adults from the UK Biobank study to test the hypothesis that

high risk obesogenic environments and behaviours accentuate genetic susceptibility

to obesity. We used BMI as the outcome and a 69-variant genetic risk score (GRS)

for obesity and 12 measures of the obesogenic environment as exposures. These

measures included Townsend deprivation index (TDI) as a measure of

socioeconomic position, TV watching, a “westernised” diet, and physical activity. We

performed several negative control tests, including randomly selecting groups of

different average BMIs, using a simulated environment, and including sun protection

use as an environment.

Results

We found gene-environment interactions with TDI (Pinteraction=3x10-10), self-

reported TV-watching (Pinteraction=7x10-5), and self-reported physical activity

(Pinteraction=5x10-6). Within the group of 50% living in the most relatively deprived

situations, carrying 10 additional BMI-raising alleles was associated with

approximately 3.8 kg extra weight in someone 1.73m tall. In contrast, within the

group of 50% living in the least deprivation, carrying 10 additional BMI-raising alleles
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was associated with approximately 2.9 kg extra weight. The interactions were

weaker, but present, with the negative controls, including sun protection use,

indicating that residual confounding is likely.

Conclusions.

Our findings suggest that the obesogenic environment accentuates the risk of obesity

in genetically susceptible adults. Of the factors we tested, relative social deprivation

best captures the aspects of the obesogenic environment responsible.

Keywords (3-10):

Body Mass Index; Gene-environment interactions; Obesogenic environment; UK

Biobank

Key Messages (3-5 bullet points)

 This study suggests that something about the obesogenic environment

accentuates the genetic risk of obesity.

 Caution needs to be taken when interpreting gene environment interactions as

they are not immune from confounding. We have illustrated this point by using

a negative control “environment” that is implausibly causal to obesity

 In contrast to the conclusions from previous studies, this study demonstrates

that there is unlikely to be any one particular aspect of the environment or

behaviour that if altered would have a preferential benefit over others.
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 It is premature to use genetic interaction studies to suggest that public health

measures should be targeted specifically at fried food reduction, fizzy drink

consumption and diet in those genetically predisposed to obesity
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INTRODUCTION (426 words old: 316)

The prevalence of obesity is set to dramatically exceed targets set by the World

Health Organisation and place an increasingly large burden on health services

throughout the world(1). Whilst environmental influences, including diet and lifestyle

have caused the obesity epidemic(2), twin and family studies show that genetic

factors influence susceptibility to obesity in today’s environment(3, 4). Recent genetic

studies have identified many common genetic variants associated with BMI(5) but the

role of genetic susceptibility in different modern day environments has proven

controversial. Different studies have concluded that physical inactivity(6, 7),

consuming more fried food(8), more fizzy drinks(9) or more protein(10) accentuates

the risk of obesity in those genetically predisposed. These studies have often

concluded that their results highlight the need for public health interventions targeted

at the specific environmental factors. For example “highlighting the particular

importance of reducing fried food consumption in individuals genetically predisposed

to obesity”(8). Other studies have not identified interactions, most recently between

the FTO variant and weight loss(11). Previous studies have often had to rely on

meta-analysis of data from many heterogeneous studies(6, 7, 12-14). Most

importantly, unlike main effect Mendelian randomisation studies, gene x environment

interaction studies are susceptible to confounding(15, 16). A recent study, testing

only the variant in the FTO locus, overcame many of these issues by using a single

large, relatively homogeneous study, the UK Biobank, and testing many measures of

the environment in the same statistical model(17).

One objective but broad measure of the obesogenic environment is relative social

deprivation. Social deprivation is correlated with obesity in children(18) and

adults(19) and studies show that people from more deprived backgrounds make
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poorer food choices(20) and tend to be less active(21). Whilst people from more

socially deprived backgrounds are more overweight on average, few studies have

tested the hypothesis that deprivation accentuates genetic susceptibility to obesity.

An exception is the recent study using the UK Biobank that nominally suggested that

deprivation accentuates the BMI effect of the variant at the FTO locus (p=0.035)(17).

The UK Biobank study was designed to improve our understanding of the interaction

between genes and the environment in health and disease. It provides a unique

opportunity to investigate a range of obesogenic environments and behaviours in a

single large, relatively homogeneous study. Here, we hypothesized that genetic

susceptibility to high BMI interacts with aspects of the obesogenic environment and

obesogenic behaviours to accentuate the risk of obesity.

MATERIALS AND METHODS (3247, old: 2985)

UK Biobank participants

The UK Biobank recruited over 500,000 adults aged 37-73 years in 2006-2010 from

across the UK. Participants provided samples and a range of information via

questionnaires, interviews and measurements (22). We used up to 119,733 adults of

white British descent with genetic data, BMI and at least one obesogenic variable

available. We did not include other ethnic groups, because individually they were

underpowered to detect previously reported effects. British-descent was defined as

individuals who both self-identified as white British and were confirmed as ancestrally
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Caucasian using principal components analyses (PCA) of genome wide genetic

information. This dataset underwent extensive central quality

control (http://biobank.ctsu.ox.ac.uk) including the exclusion of the majority of third

degree or closer relatives from a genetic kinship analysis of 96% of individuals. We

performed an additional round of principal components analysis (PCA) on these

120,286 UK Biobank participants. We selected 95,535 independent single nucleotide

polymorphisms (SNPs) (pairwise r2 <0.1) directly genotyped with a minor allele

frequency (MAF) ≥ 2.5% and missingness <1.5% across all UK Biobank participants 

with genetic data available at the time of this study (n=152,732), and with

HWE P>1x10-6 within the white British participants. Principal components were

subsequently generated using FlashPCA (13) and the first five adjusted for in all

analyses.

Patient Involvement

Details of patient and public involvement in the UK Biobank are available online

(http://www.ukbiobank.ac.uk/about-biobank-uk/ and https://www.ukbiobank.ac.uk/wp-

content/uploads/2011/07/Summary-EGF-

consultation.pdf?phpMyAdmin=trmKQlYdjjnQIgJ%2CfAzikMhEnx6).

Phenotypes

BMI

The UK Biobank measured weight and height in all participants and calculated BMI.

BMI was available for 119,883 individuals of white descent with genetic data
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available. We performed analyses of BMI on both its natural (kg/m2) and an inverse

normalised scale to account for differences in variances.

BMI, genetic data and at least one obesogenic measure was available for up to

119,733 individuals (Supplementary Table 1).

Obesogenic environment and behaviour variables

The obesogenic environment refers to an environment that promotes gaining weight

and that is not conducive to weight loss (23). Here we use the term “environment” to

refer to any variable that describes a component to obesity that is not genetic

variation. Many of these measures are likely to be a complex mixture of environment

and behaviour. For example the number of fizzy drinks a person consumes could be

a mix of availability in the environment and satiety.

We selected 12 measures of the obesogenic environment including Townsend

deprivation index as a measure of socio economic position, sedentary time, TV

watching, physical activity (3 measures), western diet, percentage protein and fat

intake, fried food consumption, fizzy drink consumption and a composite score of TV

watching, sedentary time, physical activity and westernized diet. As a negative

control, we chose a variable with an implausible causal link to BMI, sun protection

use in the summer. These measures were all self-reported at the same time as BMI

was measured with the exception of TDI and the accelerometer data used to

measure activity in a subset of individuals (n=19,229). Several measures were

correlated with each other with a maximum correlation of R=0.64 between TV

watching and sedentary time (supplementary table 2). For presentation purposes,

each obesogenic variable was dichotomised to represent high and low exposure

either at the median or a specific cut off as close to the median as possible. For
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testing of interactions we used continuous measures of the environment because

using thresholds to select groups of individuals can inflate gene-BMI effect estimates

if the variance of the environmental measure is lower in the selected group than the

comparison group.

The 12 measures of the obesogenic environment are described below. All self-report

measures were associated with factors such as sex, measures of socio-economic

position (TDI) and type 2 diabetes in the expected directions, (Supplementary table

3).

Townsend deprivation index

The Townsend deprivation index (TDI) is a composite measure of deprivation based

on unemployment, non-car ownership, non-home ownership and household

overcrowding; a negative value represents high socioeconomic position (24). TDI

was calculated prior to joining the UK Biobank and was based on the preceding

national census data, with each participant assigned a score corresponding to the

postcode of their home dwelling.

The Townsend deprivation index variable was skewed (Supplementary figure 1) and

therefore we single inverse normalised this variable for use in sensitivity analyses.

Job class

On finding an interaction with TDI, we tested more specific variables related to TDI

including job class and number of years in education. The UK Biobank asked people

to select their current or most recent job. This was classified into one of the following
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strata: elementary occupations, process plant and machine operatives, sales and

customer service occupations, leisure & other personal service occupations, personal

service occupations, skilled trades, admin and secretarial roles, business and public

sector associate professionals, associate professionals, professional occupations

and managers and senior officials. Data were available for 76,374 individuals.

Years in education

A variable based on the standardised 1997 International Standard Classification of

Education (ISCED) of the United Nations Educational, Scientific and Cultural

Organisation was created in the UK Biobank, using previously published guidelines

(25). Data were available for 118,775 individuals.

Replication with TDI: CoLaus Study

The CoLaus Study (26) is a population based study including over 6500 participants

from Lausanne (Switzerland). This study included inhabitants aged 35-75 years at

baseline (2003-2006) and they were followed up between 2009 and 2012 (mean

follow-up 5.5 years). Within this cohort TDI was available for 5,237 individuals with

BMI and BMI genetic variants available. The use of TDI in Lausanne may capture

socioeconomic position in a different way to the UK Biobank, because, for example,

not owning a car correlates with higher SEP. The CoLaus study complied with

Declaration of Helsinki and was approved by the local Institutional Ethics Committee.

Replication with job class: 1958 Birth Cohort

The 1958 Birth Cohort (27) has followed persons born in England, Scotland and

Wales during one week in 1958 from birth into middle age. Within this cohort 6,171
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individuals had information on social class based on their own current or most recent

occupation (at age 42), body mass index (measured at age 44-45) and genetic data.

Dietary information

All participants completed a generic diet questionnaire during recruitment and a

subset of 46,526 individuals completed up to five 24-hour food frequency

questionnaires (FFQ). The FFQ focussed on the consumption of approximately 200

commonly consumed food and drinks

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=118240). For each participant

completing the food frequency questionnaire nutrient intakes were estimated by

multiplying the quantity consumed by the nutrient composition of the food or

beverage, as taken from the UK food composition database (28). The 46,526

participants with genetic data completing at least one standard (i.e. normal diet) FFQ

were included in this study. Where participants had completed more than one FFQ

for a standard days diet an average was calculated for the food group of interest.

Fizzy drink consumption

Fizzy drink consumption was determined from the FFQ and represented number of

glasses of fizzy drink consumed on an average day. This was dichotomised at the

median, resulting in two groups – low risk (no fizzy drinks daily, n=40,107) and high

risk (at least one fizzy drink a day n=6419). No data on type of fizzy drink was

available.

Fried food intake

Fried food intake was determined from the FFQ and combined the reported intake of

fried chicken and fried potato.
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Percentage fat

Fat (in grams) consumed was taken from the UK Biobank derived nutrients

information in the FFQ. The variable was then divided by total energy intake (in KJ).

Percentage protein

Protein (in grams) consumed was taken from the UK Biobank derived nutrients

information in the FFQ. The variable was then divided by total energy intake (in KJ).

Calorie dense “Western” diet

The generic diet questionnaire was used to calculate the average consumption of

fruit, vegetables, fish (oily and non-oily), meat (processed, poultry, beef, lamb and

pork), cheese, milk, bread, cereal, tea, coffee and water. To condense this

information we performed a principal component factor analysis. Seven eigenvalues

were greater than 1, factor 1 was considered to represent a calorie dense “Western”

diet, factor 2 representing a prudent diet and factor 3 representing a healthy diet.

This information was available for 94,040 individuals of white origin with genetic data

available.

Physical activity

International Physical Activity Questionnaire

The UK Biobank asked a range of questions about physical activity questions to all

participants. We derived the total metabolic equivalent of task (MET) minutes of

exercise per week (based on the International Physical Activity Questionnaire

(IPAQ)). This is calculated using the number of days and minutes per day spent

walking, performing moderate or vigorous activity and the speed of walking variable.
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Individuals reporting more than 16 hours of walking and/or moderate and/or vigorous

activity a day were excluded (n=1,589) on the grounds that these values were likely

to be an error or misreporting. All individuals reporting more than three hours per day

of walking, moderate or vigorous activity were recoded to three hours as per IPAQ

guidelines(29).

The MET is a physiological measure expressing the energy cost (or calories) of

physical activities. The numbers of minutes per week for each level of exercise

intensity (walking, moderate and vigorous) are multiplied by specific MET values(30).

MET values used for the short IPAQ are 2.5 for slow walking, 3.3 for moderate

walking and 5 for fast walking, 4 for moderate exercise and 8 for vigorous exercise.

Total MET minutes are calculated by summing MET minutes per week for walking,

moderate and vigorous exercise. The short form of IPAQ is validated(30, 31) and

utilised in many studies into physical activity(32).

Sedentary behaviour

The UK Biobank asked all participants about the hours per day they spent a) driving,

b) using a computer and c) watching television. These three variables were summed

to provide hours per day participants spent sat down. Values greater than 24 hours

per day were excluded. Those reporting over 16 hours were recoded to 16 hours.

Sedentary time was available for 119,688 individuals with genetic data available. We

dichotomised individuals into those who spent less than 5 hours a day sedentary

(n=63,631) and those that spent 5 or more hours a day sedentary (n=56,655).

TV watching

Participants in the UK Biobank were asked to report how many hours they spent

watching TV in a typical day. We dichotomised individuals into those watching 4 or
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more hours of TV per day (n=37,029) and those watching 3 hours or less (n=82,392).

This was based on the median value (3 hours) but due to lots of tied values this

resulted in imbalanced groups.

Vigorous activity

The minutes of vigorous activity per week were calculated and for display purposes a

dichotomous variable was also derived denoting participants who performed more

than 1 hour of vigorous activity per week or not. Of the available individuals, 35,242

reported more than 1 hour of vigorous activity per week, whilst 74,128 did not. This

was the most balanced way of dichotomising this variable because only 21,676

individuals reported more than 2 hours.

Measured physical activity with accelerometer data

Daily accelerometer data were available for 19,229 individuals of White British origin

with genetic data available for a period of 6 days. A variable was derived from this

data representing the mean levels of moderate physical activity per day for each

individual.

Composite score of the obesogenic environment and behaviour

Physical activity (as measured by IPAQ), sedentary time, TV watching and

westernised diet were available in 86,549 individuals with BMI genetic variants

available. We did not use other variables as they were only available in smaller

numbers. The obesogenic variables were combined using a principle components

factor analysis in STATA. Only one factor had an eigenvalue of greater than one and

this was used as a composite score of the obesogenic environment.

Negative controls “environments”
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We performed three negative control experiments

Self-reported sun protection use

First, we used sun protection use as a negative control variable to assess residual

confounding. UK Biobank participants were asked “Do you wear sun protection (e.g.

sunscreen lotion, hat) when you spend time outdoors in the summer?" with the

options: Never, Sometimes, Most of the time, Always, Don’t go out in the sun, Don’t

know and Prefer not to answer. The variable was correlated with TDI and BMI but is

implausible as a mechanism (see discussion for why vitamin D exposure is unlikely

to be a mechanism in this context). (Supplementary table 3).

Randomly selecting groups of individuals to be of different average BMI

Second, we used a meta-heuristic sampling approach to randomly select 2 groups of

individuals with BMI distributions identical to the high and low groups for observed

obesogenic environment measures. For example, this method was used to select

59,712 individuals with a mean BMI of 27.86 and a standard deviation of 5.12

representing the 50% of individuals in the lowest socioeconomic position and a group

of 59,754 individuals with a mean BMI of 27.19 and a standard deviation of 4.47

representing the 50% of individuals in the highest socioeconomic position. There was

no overlap between individuals selected for the two groups. Meta-heuristic sampling

was repeated 100 times and the interaction p-values were calculated each time. Here

we report the results from the median analysis based on the interaction p-value. We

repeated this process 100 times to match average BMIs to those for 5 dichotomised

measures of the environment: 4 that interacted (at p<0.05): the composite score, self-

report physical activity, socioeconomic position (TDI) and TV watching; and one that
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did not interact (at p>0.05) but where BMI differences were substantial: fizzy drink

consumption.

BMI genetic risk score interactions with dummy “environments”

Third, we created dummy continuous variables as random “environments”. The new

variables were created in STATA by regressing the obesogenic variables on BMI, the

BMI genetic risk score and a range of covariates (age, age2, sex) and taking the fitted

values and the residuals. The fitted value from the regression was then added to

random permutations of the residuals (n=10,000) to produce 10,000 simulated

variables that associate with BMI in a similar way to the real obesogenic variable, but

are only minimally associated with the real variable itself. This ensures that the

simulated variable has the same conditional expectations and same residual

distributions as the four real variables (physical activity, TDI, TV watching and the

composite score). Further information on this method is provided in the supplement.

The interaction model was run for all 10,000 simulations. Here we report the results

from the median simulation (based on the interaction p values).

Selection of Genetic Variants associated with BMI and Genetic Risk Score

We selected 69 of 76 common genetic variants that were associated with BMI at

genome wide significance in the GIANT consortium in studies of up to 339,224

individuals (Supplementary table 4)(5). We used these variants to create a genetic

risk score to represent genetic susceptibility to high BMI – we were not testing

specific variants for interaction, but instead how genetic susceptibility overall may be

influenced by environmental and behavioural exposures. We used genotypes

imputed by UK Biobank. We limited the BMI SNPs to those that were associated with
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BMI in the analysis of all European ancestry individuals. Variants were excluded if

known to be classified as a secondary signal within a locus. Three variants were

excluded from the score due to potential pleiotropy (rs11030104 [BDNF reward

phenotypes], rs13107325 [SLC39A8 lipids, blood pressure], rs3888190 [SH2B1

multiple traits]), 3 SNPs not in Hardy Weinberg Equilibrium (P<1x10-6; rs17001654,

rs2075650, rs9925964) or the SNP was unavailable (rs2033529).

The imputed dosages for each SNP were recoded to represent the number of BMI-

increasing alleles for that particular SNP. A BMI genetic risk score (GRS) was

created using the SNPs. Each allele associated with high BMI was weighted by its

relative effect size (β-coefficient) obtained from the previously reported BMI meta-

analysis data(5). A weighted score was created (equation 1) in which β is the β-

coefficient representing the association between each SNP and BMI.

� � � � ℎ� � � 	� � � � � = 	 � � 	� 	� � � � + 	 � � 	� 	� � � � 	 +⋯ � � 	� 	� � � � (Equation 1)

The weighted score was rescaled to reflect the number of BMI-increasing alleles

(Equation 2).

� � � � ℎ� � � 	� � � =
� � � � � � � � 	� � � � � 	� 	� � � � � � 	� � 	� � � � � � � � � 	� � � �

� � � 	� � 	� � � 	� 	� � � � � � � � � � � � 	� � 	� � � � � � � � � 	� � � �
(Equation 2)

Statistical analysis

The mean and standard deviation of BMI was calculated in each of the pairs of

obesogenic exposures.
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For each of the measures of the obesogenic environment we calculated the

association between the 69 SNP BMI GRS and BMI in the high risk and low risk

environments using linear regression models. BMI was adjusted for age, sex, five

ancestry principal components and assessment centre location. We additionally

adjusted the full model for genotyping platform (two were used).

Interactions between the genetic variables and the obesogenic environment variables

on BMI were tested by including the respective interaction terms in the models (e.g.

interaction term= GRS x physical activity (continuous)). Continuous measures were

used to limit spurious results from the gene x environment interactions

(Supplementary methods).

We performed the analyses in two ways. First we analysed the data with BMI on its

natural scale (kg/m2) (residualised for age, sex, centre location and five ancestry

principal components). Second we inverse normalised the data so that BMI, in all 20

strata had a mean BMI of 0 and a SD of 1. This analysis allowed us to account for

the differences in BMI variation observed in high and low risk strata. We present

primary results from the inverse normalised data. To further assess the extent to

which differences in BMI variation could influence our results we tested for

heteroscedasticity using the Breusch-Pagan test as implemented with the estat

hettest in STATA (33). Standard regression analysis can produce biased standard

errors if heteroscedasticity is present (34). If heteroscedasticity was present we used

robust standard errors, using the vce(robust) option in STATA, which relaxes the

assumption that errors are both independent and identically distributed and are

therefore more robust.
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For the TDI analyses we also repeated the analysis adjusting for other measures of

the environment previously associated with interactions, including self-reported

physical activity, TV watching and diet(7, 9, 10, 35).

Finally, we investigated each of the 69 SNPs individually. Interactions between each

SNP and the Townsend deprivation index on BMI were tested by including the

respective interaction terms in the models (e.g. interaction term= SNP x Townsend

deprivation index (continuous)).

Identical analyses were performed in the CoLaus Study and the 1958 Birth Cohort.

Testing for potential reverse causality.

Genetic variants could influence BMI through primary effects on physical activity or

diet related variables, especially when BMI is measured at the same time as the

exposure. For example, alleles that reduce activity could increase BMI and result in

estimates of self-reported activity biased towards higher activity. This direction of

causality could result in alleles associated with higher BMI being associated with

stronger effects on BMI in people reporting more activity. To attempt to test for this

possibility we looked for evidence that BMI-associated variants had primary effects

on levels of activity and measures of diet. None of the BMI-associated variants had

effects on activity that were disproportionately larger than their BMI-effects

(supplementary methods and supplementary figure 2). The BMI GRS was associated

with some of the obesogenic measures of the environment (3 of 12 below threshold

of 0.004; Supplementary table 5).
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RESULTS (2161 versus 1922)

Measures of the obesogenic environment and behaviour are associated with

BMI and variance in BMI in the UK Biobank study

We used twelve measures of the obesogenic environment and behaviour that were

associated with BMI in the UK Biobank in the expected directions (Table 1). All self-

reported measures were associated with sex, measures of socio-economic status

and type 2 diabetes in the expected directions, suggesting that over reporting of

healthy, and underreporting of unhealthy behaviour had not completely biased the

associations with self-reported measures (Supplementary table 3). In each case the

group of people in the higher risk environment had a larger mean BMI but also a

larger variation in BMI, as measured by the standard deviation, compared to people

in the lower risk environment (Table 1, Supplementary figure 3). For example, the

50% least (self-reporting) physically active people (n=54,569) had an average BMI of

27.9 kg/m2, and 95% had a BMI between 21.3 and 37.3 kg/m2, (a range of 16)

whereas the 50% most physically active people (n=54,573) had an average BMI of

26.9 kg/m2, and 95% had a BMI between 21.9 and 34.7 kg/m2 (a range of 12.8).

Genetic variants are associated with BMI in the UK Biobank study

The BMI genetic risk score, consisting of 69 known BMI-associated variants, was

associated with higher BMI and explained 1.5% of the variation in BMI, a figure

consistent with previous studies(5).
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Measures of high risk obesogenic environments and behaviours are

associated with an accentuated risk of high BMI in genetically susceptible

individuals.

We observed interactions between self-reported measures of the obesogenic

environment and genetic susceptibility to high BMI in the following scenarios (Table

2, Figures 1-2 and Supplementary figure 4).

Townsend deprivation index

A higher level of deprivation was associated with an accentuated genetic

susceptibility to higher BMI. The effect of the BMI genetic risk score on BMI was

larger in the group of 50% living in the most relatively deprived situations (0.025

standard deviations per allele [95%CI: 0.023-0.027]) compared to the group of 50%

living in the least deprived situations (0.022 SDs per allele [95%CI: 0.020-0.024])

(Table 2; Figure 2A). When performing the analysis with Townsend deprivation index

on a continuous scale (a more robust analysis than using dichotomized measures)

the interaction was strong: Pinteraction 2x10-10. This apparent gene x deprivation

interaction meant that, compared to below average deprivation (in the UK Biobank),

above average deprivation was associated with a 0.92kgm-2 higher BMI in people

with the highest genetic risk (top decile) but a 0.35kgm-2 higher BMI in people at least

genetic risk (bottom decile)(Table 2, Figure 2A). Another way of expressing the

interaction is that, within the 50% group living in the most deprived situations,

carrying 10 additional BMI-raising alleles (weighted by effect size) was associated

with 3.8 kg extra weight in someone 1.73 metres tall. In contrast, within the 50%

group living in the least deprived situations, carrying 10 additional BMI-raising alleles

was associated with 2.9 kg extra weight in someone 1.73 metres tall. These
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differences were even stronger when using a cut off that reflected the UK population

average TDI (36) (Supplementary table 6) and were consistent across different age

groups (Supplementary table 7). We also noted that the interaction effect was not

driven by specific BMI associated variants, but was a feature of general genetic

susceptibility to higher BMI, as measured by the 69 SNP BMI risk score

(Supplementary table 8 & supplementary figure 5). Excluding the FTO variant did not

alter the evidence of interaction.

In the CoLaus study of 5,237 individuals from Switzerland, we did not observe any

TDI - BMI genetic risk score interaction, but the effect estimates overlap those in the

UK Biobank (Supplementary table 9).

Lower occupational job class and less time spent in education were not associated

with an accentuated genetic susceptibility to higher BMI

To further explore possible reasons for the TDI interaction we tested job class and

time spent in education. In both the UK Biobank and the 1958 Birth Cohort, people

with lower job classes had a higher mean and standard deviation for BMI. However,

there we found no interaction between job class and genetic risk score in determining

BMI in either study (Supplementary table 9). Using the UK Biobank data, there was

no interaction between time in education and genetic risk score in influencing BMI

(Supplementary table 9).

Self-reported physical activity

The effect of the BMI genetic risk score on BMI was larger in the 50% of people

reporting less physical activity (0.025 standard deviations per allele [0.023-0.027])

compared to the 50% reporting more physical activity (0.022 [0.020-0.024]) (Pinteraction

5 x10-6 ; IPAQ on a continuous scale) (Table 2, Figure 2B).
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In a subsample (n=19,229) of people we used an objective, accelerometer-based

measure of physical activity recorded over 6 days. We noted a similar trend with a

larger effect of the BMI genetic risk score on BMI in less physically active people

(0.026 standard deviations per allele [0.022-0.029]) compared to those doing more

physical activity (0.023 [0.019-0.027]), although the evidence of interaction was weak

(Pinteraction 0.11; Table 2).

TV-watching

The effect of the BMI genetic risk score on BMI was larger in people watching 4 or

more hours of TV per day (0.026 standard deviations per allele [0.024-0.028])

compared to those watching 3 hours or less (0.022 [0.021-0.024]) (Pinteraction 7x10-5 ;

using TV watching on a continuous scale) (Table 2, Figure 2C).

Other self-reported measures of the obesogenic environment

We did not find any gene x obesogenic environment interaction when considering

sedentary time, vigorous activity, westernised diet, percentage protein or fat in diet,

fried food or fizzy drink consumption at Bonferroni adjusted thresholds (P<0.004;

Table 2). In six of these seven measures (exception percentage fat consumption) the

trend was towards the high risk obesogenic environments accentuating the risk of

high BMI in genetically susceptible individuals.

A composite measure of the obesogenic environment

We next tested a composite score consisting of four self-report variables available in

the majority of people: sedentary time, TV watching, physical inactivity and

westernised diet. The 50% of people with a high composite score were on average

2.2 kg/m2 BMI units heavier than the 50% with a low composite score. The effect of
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the BMI genetic risk score on BMI was larger in people with a high composite score

(0.025 standard deviations per allele [0.023, 0.027]) compared to those with a low

composite score (0.022 [0.021-0.024]) (Pinteraction 2x10-4; composite score on a

continuous scale) (Table 2, Figure 2D).

The gene x environment interactions may not be specific to the environments tested

– using negative controls.

We next hypothesized that the interactions observed may not be specific to the

obesogenic environment tested, but a general feature of selecting groups of

individuals of higher BMI and comparing them to groups of individuals of lower BMI.

For example, previous studies have observed stronger effects of BMI raising alleles

in groups of individuals who are less active, eating more fried food and consuming

more sugary drinks(6, 9, 35). However all these groups were more overweight on

average than those with the healthier lifestyles and environments and any interaction

observed may have been a feature of higher BMI and the general environment, not

the specific environment tested. We therefore performed three additional, negative

control, analyses to test the specificity of the interactions observed. These tests

represented “impossible by the proposed mechanism” negative controls. (36,37)

These analyses also help test whether or not statistical artefacts were influencing our

results, such as different variances in BMI.

Sun protection use as a negative control

First, we tested sun protection use as a negative control that has no plausible role in

obesity but is associated with deprivation, the measure with the strongest evidence of

interaction. Using less sun protection in the summer was associated with higher
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deprivation and there was an interaction with genetic susceptibility to higher BMI,

before (Pinteration 1x10-4) and after adjustment for TDI (Table 2; Figure 2E).

Individuals randomly selected to be of different BMIs

Second, we sampled individuals so that they had identical BMI distributions (means

and standard deviations) to the high and low TDI groups, but were otherwise

randomized to all other variables. We then tested for evidence of interaction using

these randomly selected groups. These analyses were repeated 100 times. The

associations between the BMI genetic risk score and BMI in these randomly selected

individuals were similar to those observed when we selected based on Townsend

deprivation index, but none of the 100 iterations showed an interaction p-value lower

than the real TDI interaction (median p=9x10-4, Table 3, Figure 2F, Figure 3A). We

repeated this analysis by selecting individuals to have similar BMI distributions to

those in the high and low physical activity, TV watching, fizzy drink consumption or

the high and low composite score groups but who were otherwise randomized to all

other variables. We saw some interaction with the BMI genetic risk score having

larger effects on BMI in the fatter group compared to thinner group (median of 100

permutations p=0.003, p=0.047 and p=0.028 for those selected to have similar BMIs

to the physical activity (IPAQ), TV watching and composite score groups,

respectively) (Table 3, Supplementary Figure 6). No interaction was found for groups

based on the high and low fizzy drink groups (a real variable with no evidence of

interaction) (Table 3, Supplementary Figure 6). We note that these analyses are not

completely representative of the real analyses because the interaction term is a

binary variable (presence or absence of the individual in the randomly selected

groups of higher and lower BMI) not continuous.
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A dummy environment

Third, we generated a dummy continuous environment associated with BMI but not

TDI, physical activity or any of the other measures of the obesogenic environment.

We forced this variable to have a similar correlation to BMI as the observed real TDI,

physical activity, TV watching, the composite score and the fizzy drink variables, but

that was only very minimally associated with those real measures of the environment

(see methods). We then tested the hypothesis that the BMI genetic risk score would

have stronger effects on BMI in the individuals “exposed” to high levels of this

dummy obesogenic environment. We observed some interaction, with the BMI

genetic risk score having stronger effects on BMI in the fatter groups (p=0.10,

p=0.025, p=0.08 and p=0.003 for the dummy environments correlated with BMI to the

same extent as TDI, physical activity, TV watching and the composite score,

respectively, based on the median of 10,000 dummy environments tested) (Figure

2G, Figure 3B, Table 3, Supplementary Figure 7). No interaction was observed for

the dummy environment correlated with BMI to the same extent as fizzy drinks (Table

3, Supplementary Figure 7). However, the evidence of interaction with these dummy

environments tended to be weaker than that for the real variables. For example, in

the 10,000 permutations of a dummy environment, we never observed interactions

as strong as that observed with real TDI, providing evidence at p<0.0001 that the TDI

effect was capturing a genuine interaction (Figure 3B).

Sensitivity analyses

We next performed several sensitivity analyses to further test the interaction of TDI,

TV-hours, physical activity and a composite measure of the obesogenic environment
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with the BMI genetic risk score. We explored a potential source of error – the

correlation between the risk factors and the outcomes. In this study, risk factors in the

interaction model - measures of the obesogenic environment – were associated with

the outcome – BMI. In theory this problem could have created false positive

interactions but a number of sensitivity analyses suggested this was not the case

(Supplementary information and Supplementary table 10). We showed that the

interactions for each of the four measures (IPAQ, TDI, TV watching and the

composite score) was similar when correcting for smoking and the other 3 measures.

We also showed that the interaction with TDI remained strong when correcting for the

interaction terms of the other three variables. In contrast the interaction was

attenuated for IPAQ, TV watching and the composite score, when including the TDI

interaction term (Supplementary table 11).

Inflated interactions when analysing BMI on the kg/m2 scale

When analysed on the natural BMI scale (kg/m2), the evidence of interaction was

stronger than when using an inverse normalised scale, but likely partly artefactual.

The BMI genetic risk score was associated with even larger effects on BMI in high

risk obesogenic environments compared to low risk environments, and there were

apparent interactions (at p<0.05) in seven of the twelve tests (Supplementary Table

12 and Supplementary Figure 8). This potential artefact occurs because the variance

in BMI was higher in individuals in the high risk environment groups and this

heteroscedasticity inflates effect estimates (Supplementary Figure 9).
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DISCUSSION (1559 versus 962)

In the UK Biobank we found that aspects of the obesogenic environment accentuate

genetic susceptibility to higher BMI. The corollary of this finding, if true, is that

exposure to low risk obesogenic environments partially attenuates the effects of

genetic susceptibility to obesity. Of the factors we tested, relatively low socio

economic position, as measured by the Townsend deprivation index, best captured

the relevant environmental factors. Our results provide some evidence for public

health campaigns aimed at reducing obesity but suggest that measures that target

more deprived individuals may have proportionally higher impact. We were not

testing for specific gene variant-environment interactions but instead asking a

question of public health relevance – are people at higher risk of obesity due to their

genetics more susceptible to the obesogenic environment? We used a BMI genetic

risk score as a measure of genetic susceptibility, and the data suggested that no

individual variants contributed disproportionately to the evidence of interaction.

The relevant components of higher levels of deprivation that accentuate the genetic

risk of obesity are uncertain. When adjusting for measures of self-report physical

activity, a more calorie dense “westernised” diet and sedentary activity, the evidence

of interaction remained strong. This observation, and the interaction with a composite

score, suggest that no one aspect of the obesogenic environment we tested can

explain the interaction effect with TDI, although a caveat to this argument is that

these other measures were self-reported. This conclusion contrasts with those from

some previous studies that have suggested (in separate papers) that fried food and

sugary drink consumption and TV watching specifically interact with BMI genetics (7-

10, 35). The evidence of interaction remained strong when adjusting for urban versus

rural dwelling, an objective measure associated with obesity in the UK Biobank and
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previously proposed as a contributory factor to the obesogenic environment (through

reduced exposure to open spaces for example(38)).

Our results are consistent with data from twins, where the genetic component to

obesity is stronger in young UK children exposed to the modern environment (twins

born in the 1990s and measured at the age of 9), compared to measures from twin

studies in earlier generations(3) and that the genetic and environmental components

to common traits varies by UK region (39).

The use of negative controls provided two additional pieces of evidence about the

nature of the gene x obesogenic environment interactions. First, when compared to

the real data, the evidence of interaction was weaker when using a simulated

environment or randomly selecting groups to be of different BMIs. For example, for

TDI, we never observed the actual interaction in 10,000 simulations of a dummy

environment or 100 iterations of selecting groups of different BMIs. These control

experiments mimicked almost perfectly the observed differences in BMI, but still the

evidence of interaction was weaker than when using the real obesogenic

environments. These results suggest that something about the real obesogenic

environment, captured by TDI, accentuates genetic risk of obesity.

Second, the use of a control measure implausibly linked to obesity, sun protection

use, helped us establish the possibility that residual confounding has affected the

results. The importance of using negative controls in epidemiology to control for this

residual confounding has been discussed(37, 40) is closely related to the use of one

of Hill’s original criteria for causal inference in epidemiology – that of specificity of the

exposure-outcome association(41). The fact that this negative control showed

evidence of interaction, even after adjustment for TDI, suggests that either it is a bad
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negative control or it is correlated with other obesogenic factors not captured by TDI

– residual confounding. We believe sun protection use is a good negative control: low

vitamin D levels (which would be caused by high use of sun protection) are

associated with higher BMI, but there is genetic evidence that this is not a causal

relationship(42), and even if it were, would have resulted in evidence of interaction in

the opposite direction to our observation.

The observation of some evidence of interaction in all our negative control

experiments indicates that genetic variants altering BMI may have larger effects in

any group of individuals of higher BMI compared to those with lower BMI. Our results

show that the greater the mean and variance of BMI, the greater the apparent effects

of genetic variants. These effects may be driven by statistical artefacts that can affect

gene x environment interaction studies, and we note that the evidence is sensitive to

the scale on which the non-genetic factors are analysed. Further work, including the

use of negative controls that are likely associated with unmeasured confounders but

are implausible, will help disentangle which aspects of the environment are causally

interacting with BMI genetics to accentuate the risk of high BMI.

Our analysis had a number of strengths. The major strength was the availability of a

single large study, which was beneficial for two main reasons. First, it provided us

with relatively homogenous measures of the environment. Several previous studies

were limited to meta-analyses of summary statistics from many studies with

heterogeneous measures of the environment (6, 8-10). An exception is a recent

study that also used the UK Biobank and individual level data to jointly model multiple

exposures and provide evidence that some measures we did not test, including

frequency of alcohol consumption and adding salt to food, remain interacting when

adjusting for TDI (17). Second, it allowed us to test the robustness and specificity of
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our results by using a composite measure of the environment, randomly selecting

individuals and testing interactions using a dummy, simulated environment. A third

advantage is that we used an objective measure of the environment TDI, which

provides a cleaner interpretation of results compared to those from previous studies

that have had to rely on subjective measures such as self-reported diet and physical

activity. These subjective measures are often complex mixtures of environment and

behaviour and may be subject to reporting biases. The fourth advantage of our study

is that we used a negative control variable, sun protection use, which helps control

for residual confounding. Finally, we performed extensive analyses to account for

potential statistical artefacts that can plague gene x environment interaction studies.

For example, we have accounted for the effects of heteroscedasticity – a statistical

term that describes unequal variance in data. Groups of overweight individuals have

a wider variance in BMI than groups of thinner individuals and these differences in

BMI can create false positive evidence of interaction. Previous studies have not

necessarily accounted for these “scale” effects and are likely to have overestimated

the effects of any interactions.

The major limitation of our study, as with most previous studies, is that the majority of

the obesogenic variables were based on self-reported measures, and that these self-

reports were made at the same time as BMI was measured. A more objective

measure of physical activity demonstrated similar results to the self-reported physical

activity, but accelerometer based measures of activity were only available in 1/5th of

the dataset. Other limitations of our study include i) the possibility of reverse causality

– genetic variants that predispose to higher BMI may in turn lead to a stronger

association with BMI if they make people less active; (supplementary table 9) ii)

subtle effects – from figure 3 we can see that the correlation between BMI genetics
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and BMI is only slightly larger in the high risk compared to low risk environment

groups. However, the differences are still such that carrying an additional ten BMI

raising alleles can increase weight by up to 3.6kg in a high risk environment

compared to 2.8 kg in a low risk environment (for a person of average height).; iii) the

use of cross-sectional data, with self-reported measures of the obesogenic

environment made at the same time as BMI was measured - bias may be introduced

by individuals with higher BMIs trying to lose weight through diet and exercise; iv)

missing data - not all participants responded to diet and physical activity questions

which may introduce further bias into the study. Individuals not reporting were more

likely to be older, female and with higher BMI; and v) the measures of the obesogenic

environment were correlated with each other and therefore the tests were not

independent. For example TV watching and sedentary time were the most correlated

measures (r=0.64).

Our results provide an advance for gene x environment interaction studies. We

highlight many of the statistical and methodological issues that can make

interpretation of GxE results very difficult. One aspect that we can be very confident

about, and that contrasts with the conclusions from previous studies, is that there is

no evidence that one particular aspect of the environment or behaviour if altered

would have a preferential benefit over others. It is premature to use genetic

interaction studies to suggest that public health measures should be targeted

specifically at fried food reduction, fizzy drink consumption or diet in those genetically

predisposed to obesity (8, 9). However, our data suggest that something about the

obesogenic environment accentuates the genetic susceptibility to obesity, and that,

of the factors we tested, socio economic position best captures the relevant factors.
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Figure List

Figure 1: Forest plot demonstrating the change in BMI per allele increase in BMI

genetic risk score (GRS) for the 12 different obesogenic environments and the

negative control on a standardised inverse normalised scale. BMI was corrected for

age, sex, ancestry principal components and assessment centre location prior to

calculating residuals. The analyses were further adjusted for genotype platform.

Figure 2: Association between the BMI genetic risk score (by decile) and BMI in A)

the most socially deprived (black circles) and least socially deprived (white circles);

B) high and low self-reported physical activity, C) high and low TV watching and D)

high and low composite score, E) high and low use of sun protection in the summer

F) individuals randomly selected to be of high BMI (black circles) and individuals

randomly selected to be of low BMI (white circles) and G) individuals in the high

obesogenic simulated environment (black circles) and individuals in the low

obesogenic simulated environment (white circles). Note for the simulated

environment we used the median BMI GRS BMI association after 1000 simulations.

For F it was not possible to use a continuous measure in the calculation of the

interaction term. This figure is based on a similar way of showing interaction data

with a BMI genetic risk score from (12) SEP: Socioeconomic Position

Figure 3: Histograms showing the -log10(P values) for the interactions from a) the

100 iterations of the individuals selected to be of different BMIs at random, and b) the

10,000 iterations of a simulated environment with a similar association to BMI as TDI.

The dashed line represents the median value and the solid red line represents the p-

value obtained from the real interactions with TDI.
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Table 1: Comparison of the high and low risk categories for the 10 obesogenic environmental/behavioural measures, the composite score and the
negative control (sun protection).

Environmental factor Obesogenic category N Male, N (%) Mean BMI SD BMI

Effect size (95%CI) representing
change in BMI (kg/m2) for people in

high risk group compared to the low
risk group^

P

Fizzy drink
None daily 39,975 18,327 (45.9) 26.93 4.62 Reference

>1 glass daily 6,393 3,537 (55.3) 27.69 4.91 0.71 (0.58, 0.83) <1E-15

Fried food intake
None daily 31,821 14,485 (45.5) 26.96 4.66 Reference

>1 meal daily 14,547 7,379 (50.7) 27.20 4.68 0.20 (0.10, 0.29) 0.00002

Percentage fat*
Low risk 23,194 11,080 (47.8) 26.91 4.46 Reference

High risk 23,174 10,784 (46.5) 27.16 4.86 0.28 (0.19, 0.36) 1E-10

Percentage protein*
Low risk 23,188 12,137 (52.3) 26.70 4.54 Reference

High risk 23,180 9,727 (42.0) 27.37 4.77 0.77 (0.68, 0.85) <1E-15

Western diet*
Low risk 47,027 19,783 (42.1) 27.06 4.71 Reference

High risk 47,013 24,853 (52.9) 28.00 4.79 0.86 (0.80, 0.92) <1E-15

IPAQ

>1845 MET minutes per
week

54,573 27,217 (49.9) 26.86 4.31 Reference

<1845 MET minutes per
week

54,569 25,111 (46.0) 27.93 4.99 1.11 (1.06, 1.17)
<1E-15

Sedentary time
<5 hours daily 63,343 25,281 (39.9) 26.61 4.47 Reference

>5 hours daily 56,345 31,387 (55.7) 28.56 4.99 1.84 (1.78, 1.89) <1E-15

TV
<4 hours daily 82,022 38,866 (47.4) 26.98 4.54 Reference

>4 hours daily 36,814 17,496 (47.5) 28.70 5.16 1.69 (1.63, 1.75) <1E-15

Vigorous activity
>1 hour weekly 35,242 18,672 (53.0) 26.81 4.24 Reference

<1 hour weekly 74,128 33,760 (45.5) 27.69 4.88 0.92 (0.86, 0.98) <1E-15

Measured physical
activity*

Low risk 9,632 4,038 (41.9) 25.79 3.92 Reference

High risk 9,636 4,777 (49.6) 27.79 4.92 1.97 (1.84, 2.09) <1E-15

Townsend Deprivation
Index (natural scale)

High SEP TDI<-2.294 59,872 28,383 (47.4) 27.20 4.47 Reference

Low SEP TDI>-2.294 59,861 28,306 (47.3) 27.87 5.13 0.69 (0.64, 0.75) <1E-15

Composite score*
Low risk 43,275 19,768 (45.7) 26.33 4.13 Reference

High risk 43,274 21,933 (50.7) 28.46 4.87 2.08 (2.02, 2.14) <1E-15
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Sun protection use
Usually or always use 68,507 25,641 (37.4) 27.32 4.75 Reference

Never or sometimes use 50,561 30,743 (60.8) 27.81 4.89 0.31 (0.25, 0.37) <1E-15

^ Adjusted for age, sex and ancestry principal components; * high and low risk taken from median values
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Table 2: Differences in BMI by BMI genetic risk score decile (kg/m2) and by allele (inverse normalised scale) for the obesogens, the composite score and
the negative control (sun protection).

Trait Obesogenic category N

BMI
difference

in 10%
lowest

genetic risk

BMI
difference

in 10%
highest

genetic risk

Per-
allele
beta

SE P association P interaction*
P Interaction

Robust**

Fizzy drink
None daily 39975

+0.93 kg/m2 +0.79 kg/m2
0.023 0.001 <1x10-15

0.86 0.86
>1 glass daily 6393 0.023 0.002 <1x10-15

Fried food consumption
None daily 31821

+0.35 kg/m2 +0.52 kg/m2
0.023 0.001 <1x10-15

0.94 0.94
>1 meal daily 14547 0.024 0.002 <1x10-15

Percentage fat^
Low risk 23194

+1.91 kg/m2 +2.10 kg/m2
0.024 0.001 <1x10-15

0.58 0.59
High risk 23174 0.023 0.001 <1x10-15

Percentage protein^
Low risk 23188

+1.90 kg/m2 +2.10 kg/m2
0.022 0.001 <1x10-15

0.78 0.79
High risk 23180 0.024 0.001 <1x10-15

Western diet^
Low risk 47027

+0.76 kg/m2 +1.02 kg/m2
0.023 0.001 <1x10-15

0.05 0.07
High risk 47013 0.025 0.001 <1x10-15

IPAQ

>1845 MET minutes per
week

54573
+0.92 kg/m2 +1.32 kg/m2

0.022 0.001
<1x10-15

2x10-6 5x10-6

<1845 MET minutes per
week

54569 0.025 0.001
<1x10-15

Sedentary time
<5 hours daily 63343

+1.73 kg/m2 +2.13 kg/m2
0.022 0.001 <1x10-15

0.023 0.030
>5 hours daily 56345 0.025 0.001 <1x10-15

TV watching
<4 hours daily 82022

+1.46 kg/m2 +1.97 kg/m2
0.022 0.001 <1x10-15

1x10-5 7x10-5

>4 hours daily 36814 0.026 0.001 <1x10-15

Vigorous activity
>1 hour weekly 35,242

+0.72 kg/m2 +1.05 kg/m2
0.022 0.001 <1x10-15

0.008 0.013
<1 hour weekly 74,128 0.024 0.001 <1x10-15

Measured physical
activity*

Low risk 9,632
+1.63 kg/m2 +2.53 kg/m2

0.023 0.002 <1x10-15

0.10 0.11
High risk 9,636 0.026 0.002 <1x10-15

Townsend Deprivation
Index (natural scale)

High SEP TDI<-2.294 59,872
+0.35 kg/m2 +0.92 kg/m2

0.022 0.001 <1x10-15

6x10-12 2x10-10

Low SEP TDI>-2.294 59,861 0.025 0.001 <1x10-15

Composite score^ Low risk 43,275 0.022 0.001 <1x10-15 1x10-4 2x10-4
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High risk 43,274 0.025 0.001 <1x10-15

Sun protection use
Usually or always use 68,507

+0.32 kg/m2 +0.63 kg/m2
0.022 0.001 <1x10-15

1x10-4 1x10-4

Never or sometimes use 50,561 0.025 0.001 <1x10-15

BMI adjusted for age, sex, ancestral principal components and assessment centre location and then inverse normalised. Models additionally adjusted for
genotyping platform
* Interaction p-value

** Interaction p-value accounting for heteroscedasticity using robust standard errors
^ Data were split on the basis of arbitrary median values.
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Table 3

Simulation Trait based on Simulation category N
BMI
(SD)

Beta
(per

allele)
SE P association

P
interaction*

P
Interaction
Robust**

Randomly
selected

individuals***
TDI

Low risk 59,753
27.19
(4.47)

0.022 0.001 <1x10-15

8x10-4 9x10-4

High risk 59,711
27.86
(5.12)

0.024 0.001 <1x10-15

Simulated
environment

TDI
Low risk 59,741

27.16
(4.61)

0.022 0.001 <1x10-15

0.09 0.10
High risk 59,740

27.90
(5.01)

0.025 0.001 <1x10-15

Randomly
selected

individuals***
IPAQ

Low risk 54,573
26.86
(4.31)

0.022 0.001 <1x10-15

0.002 0.003
High risk 54,519

27.93
(4.99)

0.024 0.001 <1x10-15

Simulated
environment

IPAQ
Low risk 59,979

26.97
(4.48)

0.022 0.001 <1x10-15

0.022 0.025
High risk 59,978

28.11
(5.08)

0.025 0.001 <1x10-15

Randomly
selected

individuals***
TV watching

Low risk 82,022
26.98
(4.54)

0.023 0.001 <1x10-15

0.044 0.047
High risk 36,814

28.70
(5.16)

0.025 0.001 <1x10-15

Simulated
environment

TV watching
Low risk 59,392

26.59
(4.34)

0.023 0.001 <1x10-15

0.07 0.08
High risk 59,391

28.47
(5.06)

0.024 0.001 <1x10-15

Randomly
selected

individuals***
Composite score

Low risk 43,275
26.33
(4.13)

0.021 0.001 <1x10-15

0.027 0.028
High risk 43,274

28.46
(4.87)

0.023 0.001 <1x10-15

Simulated
environment

Composite score
Low risk 59,844

27.21
(4.64)

0.023 0.001 <1x10-15

0.002 0.003
High risk 59,844

27.85
(4.97)

0.024 0.001 <1x10-15

Fizzy drink Low risk 39975 26.93 0.023 0.001 <1x10-15 0.47 0.48
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Randomly
selected

individuals***

(4.62)

High risk 6393
27.69
(4.91)

0.025 0.002 <1x10-15

Simulated
environment

Fizzy drink
Low risk 37,103

26.66
(4.31)

0.024 0.001 <1x10-15

0.26 0.30
High risk 9,275

28.58
(5.64)

0.024 0.001 <1x10-15

BMI adjusted for age, sex, ancestral principal components and assessment centre location. Models additionally adjusted for genotyping platform
* Interaction p-value

** Interaction p-value accounting for heteroscedasticity using robust standard errors

*** by Meta-heuristic sampling
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Figure 1
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Figure 2
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Figure 3


