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Supplementary Methods

Discovery and meta-analysis

Discovery results from an allergic sensitization GWAS was included as one of the datasets comprising

results from 5,809 with allergic sensitization and 9,875 controls with data from the following cohorts:
AAGC, ALSPAC!, B58C, COPSAC2000, LISA, MAAS, NFBC 1966, RAINE and PIAMA. Please see discovery
paper for ethical statements, cohort profiles and numbers.? Sensitization status was assessed
objectively by either elevated levels of allergen-specific IgE (sIgE) in blood or by a positive skin
reaction after skin prick test (SPT) against common food and inhalant allergens. The SPT cut off level
was 3 mm larger than the negative control for cases, and below 1 mm for controls. For sIgE, cases
were defined as levels at or above 3.5 IU/mL and for controls below 0.35 IU/mL. Imputation was
independently conducted for each study with reference to HapMap phase 2 or 3 CEU genotypes
(Central European ancestry). Study level association analysis was performed using logistic regression
models based on an expected additive allelic dosage model for SNPs, adjusting for ancestry-
informative principal components as necessary. SNPs with MAF <1% and/or poor imputation quality
(MACH r? <0.3 or IMPUTE proper info <0.4) were excluded. After genomic control at the level of the
individual studies, the summary statistics were meta-analyzed using a fixed effects model and inverse
variance as weights in METAL (2010-08-01). In total 2,400,129 SNPs were available in three or more

cohorts.

GWAS results from the 23andMe study were included in the present study involving 10,509

individuals with self-reported cat-allergy, 9,815 with Dust-mite allergy, 16,133 with Pollen allergy
(grasses, trees or weeds) and 26,311 without symptoms in a total of 46,646 individuals. Allergy was
defined as those individuals who reported a positive allergy test, difficulty in swallowing or speaking,
hives, itchy mouth, itchy eyes, itchy nose or asthma in response to a particular allergen.? The second
part of the study sample on self-reported allergy (mothers from the Alspac cohort) was not included

in the present study as these individuals are related to individuals in the GWA on sensitization.



Imputation was performed in the 23andMe study using the 1000 Genomes reference (August 2010
release) in batches. SNPs with an imputed r? > 0.5 averaged across all batches and r? > 0.3 in every

batch were used. SNPs were remapped to B36. A generalized estimating equation (GEE) model was
applied to assess the shared genetic effects on all three phenotypes taking into account the

correlations between these phenotypes.

The meta-analysis was performed using a fixed effects model using inverse variance as weights in

METAL (2010-08-01)* after a second genomic control for the meta-analysis of the dataset on self

reported allergy and sensitization.

Enrichment of autoimmune disease-associated loci and allergy

Candidate loci were chosen from the GWA’s catalog® accessed 25th of November 2013 using
autoimmune and inflammatory traits of interest (Supplementary Table E1). These reported traits
were collapsed into 16 overall autoimmune disease traits. All SNP-trait associations with P<5e-8 were
used. We collapsed close SNPs into loci (+/-250kb)® and used for each locus the SNP with lowest
reported P as index SNP (Supplementary Figure 1). For common loci (listed in table 2), all original
publications were checked for effect allele, and any discrepancies with the GWA'’S catalog was
corrected. After the extraction of SNP-associations, the enrichment Odds Ratio was calculated as the
number of observed extracted SNPs with P<0.05 out of total extracted SNPs as compared to total
number of independent SNPs with P<0.05 within the GWA discovery results using a Fisher’s exact test.
For this we used Hapmap, CEU panel, to define independent loci. This was performed using PLINK (--
indep-pairwise 200 5 0.5) with a sliding window on 200 SNPs at steps on 5 SNPs pruning the datasets
to contain only one of 2 correlated SNPs with a r*2>0.5. To plot enrichment, we equally plotted
observed P-values against expected under the null hypothesis (QQ plots). Enrichment and QQ plots
were plotted overall for all 290 loci and separately for each of the 16 autoimmune diseases, however
only for those diseases with more than 10 loci reported in the GWA catalogue. For extracted SNPs a
False Discovery Rate corrected P-value < 0.05 was considered significant. Analysis were performed in

Plink” and R project (3.0.1)8.



Functional evaluation

Enrichment of SNPs falling in DHS sites:

DHS sites were downloaded from the ENCODE project® and from the Epigenomics Roadmap®°
selecting only cell types (or cell lines, herefrom “cell types”) with duplicates, removing transformed
cell types, and removing redundant cell lines, based on manual curation. Huh7 was an outlier in all
analyses, and was removed. DHS sites were set to a fixed width of 150bp from center of region for all
cell types. Allergy and Crohn’s Disease SNPs were split in bins of increasing p-value cutoff, starting at 1
(including all SNPs and setting baseline for enrichment) and decreasing one decimal digitor each bin (1,
0.1, 0.001 etc). Each bin was overlapped with DHS regions using bedtools v2.19.0, and enrichment for
each bin was calculated for each cell type as compared to p =1. For GWAS Catalogue SNPs, SNPs were
selected for traits with > 30 reported associated SNPs. For identical SNPs for the same trait, the SNP
with the lowest p-value was chosen. SNPs were then overlapped with DHS regions using bedtools
v2.19.0, and ratio of overlapping SNPs was calculated. To filter out non-informative cell-types, only
cell-types with the highest quartile of overlap ratios was included. For immune cell hierarchical
clustering the manhattan distance of square root transformed ratios were used. For PCA, log10

transformed ratios were used.

Enrichment of SNPs falling in FANTOM enhancers:

FANTOM cell specific enhancers were downloaded from ‘http://enhancer.binf.ku.dk/’ and were set to

a fixed width of 150bp from center of region for all cell types. The ratio between overlaps of all SNPs
(p <=1) and SNPs at p<= 1e-5 was calculated, and a p-value for this ratio calculated using a binomial
test with the genomic overlap frequency as null frequency, calculated as the number of total
enhancers per cell type times enhancer length (150bp), divided by the total number of base pairs
shown to be bound by transcription factors in the human genome across cell types in the ENCODE
project (231mb)°. FDR values were calculated adjusting p-values with the Benjamini-Hochberg

method.



Data-driven Enrichment-Prioritized Integration for Complex Traits (DEPICT):

For details of this method please refer to Pers et al.!! . DEPICT facilitates gene set enrichment analysis
by testing whether genes in associated regions enrich for reconstituted versions of known pathways,
gene sets, as well as protein complexes. The gene-set enrichment analyses in DEPICT contains three
steps: first a scoring step; second a bias correcting step taking into account gene density that possibly
could inflate results due to gene length and finally estimating experiment-wide FDR’s.

Gene set reconstitution is accomplished by identifying genes that are co-expressed with genes in a
given gene set based on a panel of 77,840 gene expression microarrays; genes that co-express with
genes from a given gene set are likely to be part of that gene set.'? In DEPICT, several types of gene
sets were reconstituted: 5,984 protein complexes that were derived from 169,810 high-confidence
experimentally-derived protein-protein interactions®3; 2,473 phenotypic gene sets derived from
211,882 gene-phenotype pairs from the Mouse Genetics Initiative4; 737 Reactome database
pathways®®; 184 KEGG database pathways®®; and 5,083 Gene Ontology database terms'’. In addition,
the DEPICT also facilitates tissue and cell type enrichment analysis, by testing whether genes in
associated regions are highly expressed in any of 209 Medical Subject Heading annotations of 37,427
microarrays from the Affymetrix U133 Plus 2.0 Array platform. We used DEPICT to test enrichment in
a total of 14,461 reconstituted gene sets and enrichment of 209 tissue and cell type annotations.

For the allergy meta-analysis, and Crohns disease, DEPICT was performed on all loci P<10e-5. For PCA
GWAS catalogue data, DEPICT was performed on all traits with more than 30 reported associated

SNPs. For identical SNPs for the same trait, the SNP with the lowest p-value was chosen.

Pathway analysis and visualization for allergy and Crohn’s disease:

To account for difference in GWAS study sizes, a linear model was fitted between logged p-values of
DEPICT results for allergy and Chron’s disease, and the estimator was used to adjust the p-value
thresholds for the largest study, Crohn’s disease. The inflation estimate for Crohn’s disease was 1.21.
Shared pathways were set at pailergy and Pcrohns_adjusted < 0.001, allergy specific pathways were set at
Pallergy < 0.001 and pcrohns_adjusted > 0.05 and Crohn’s disease specific pathways were set at paliergy > 0.05

and Pcrohns_adjusted < 0.001.



DHS genomic location:

Genomic regions for 186 cell types, of which 14 cell types (CD14_Primary_Cells,
CD19_Primary_Cells_Peripheral_UW, CD20, CD3_Primary_Cells_Cord_BI,
CD3_Primary_Cells_Peripheral_UW, CD34Mobilized, CD56_Primary_Cells, ThO, Thl, Th17, Th2, Treg,
GM12864, and Fetal_Thymus) were annotated as immune cells, were downloaded from the
ROADMAP and ENCODE tracks (June 2014) in the UCSC Genome Browser and processed by bedtools,
ensuring no redundancy between exons, introns, promoters (defined as 5000 bases upstream and 200
bases downstream of transcription start sites), and intergenic sites. DHS sites were overlapped with
genomic regions, requiring 1bp of overlap. Enrichment of markers in DHS regions was calculated for
GWAS catalog traits with 30 or more reported variants, and was normalized by trait SNP count and
cell type specific DNAse sequence lenghts.

The uneven distribution of cell types within the Roadmap ENCODE dataset could possibly contribute
to the separation of immune-mediated diseases from other diseases. However, repeated iterative
removal of % of cell types continuously produced a statistical significant separation of autoimmune
diseases, allergy and asthma vs. other traits (results not shown), hence supporting the finding of
common SNPs and cell types to congregate in allergy and autoimmune diseases. In addition,
hierarchical clustering was performed on the full ENCODE Roadmap set to investigate if this clustering
was facilitated by similar DHS-profiles in different immune cells, basically representing a single
“immune-system-footprint”, but this was not the case, as different immune cell types also separated
internally, comparable to other non-immune cell types (Supplementary Figure 18).

A further cluster analysis of the cell-type specific genomic DHS location in all cells (intronic, exonic,
intergenic, promotor) was performed revealing that the DHS sites in immune cells tend to fall within

promotor and exonic regions (Supplementary Figure 19).



Transcription factor binding sites:

Transcription factor binding sites for 161 transcription sites were downloaded in BED format from
ENCODE for the hg19 build, and were intersected with 28 independent shared loci, expanded to
included markers with r2>= 0.5 in the 1000g CEU panel, using BedTools. Enrichment and one-sided p-
values were calculated in relation to an empirical null distribution of loci overlap for each TF,
generated by 10,000 random permutations of random genomic loci with the same length
characteristics as the 28 LD-expanded shared loci. Random locus LD-structure was assumed to have

no effect on TF-binding probability as a function of locus length.
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Supplementary Figure 1

Flowchart of the selected known autoimmune disease associated SNPs/loci for lookup in the allergy
GWAS identified within the GWA’s catalog (accessed 25th of November 2013). Please also see
methods section here in the supplement. A detailed description for each step in the flow chart:

1) The GWA’s catalog® were accessed 25th of November 2013.

2) All autoimmune diseases and associations to SNPs were selected with p<5*107-8. The chosen traits
were collapsed into 16 overall autoimmune disease categories (see supplemental table 1)

3) We collapsed close SNPs into loci (+/-250kb)® and used for each locus only the SNP with lowest
reported P as index SNP and as representative for the specific locus.

4) For several of the SNPs we had to use a proxy SNP as the index SNP were not present within the
allergy GWAS. Proxy SNPs were chosen on highest r2 to index SNP and if two or more proxies had the
same r2 the SNP closest in physical distance to the index SNP were chosen. In total 290 SNPs were
available for look up/extraction within the allergy GWAS.

GWAs Catalog 15100 phenotype-variant associations:
(25t of November 2013) 946 traits, 1757 Papers

Selecting phenotypes of interest
collapsed in 16 overall phenotypes I
with p<5*107-8

Collapsed into loci
using as index most mmmmm 296 loci
signifcant reported SNP

Extracting SNPs
from sensitization gwas

870 phenotype-SNP associations:
648 unique SNPs, 108 Papers

mmmmm 290 SNPs (33 proxies, r2>0.5)
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Supplementary Figure 2
QQ plot of the of the meta-analysed 2,284,215 SNPs and association to 1) Sensitization?
2) Self-reported allergy?® 3) These two data-sets meta-analysed and 4) Without reported known loci
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Supplementary Figure 3

Manhattan plot of the of the meta-analysed 2,284,215 SNPs and association to allergy. Red dots

indicate novel loci not described in the discovery papers (grey)?3, with p<5*10e-6. Dashed line: 10e-6.
Solid line: 5e-8.
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Supplementary Figure 4

LocusZoom plots of the suggestive novel loci from the allergy meta-analyses
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Supplementary Figure 5

QQ plots of the autoimmune disease associated loci within the combined allergy meta-analysis as well
as allergic sensitization and self-reported allergy separately. The numbers in the figures show
enrichment Odds Ratio and P-value for enrichment.
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Supplementary Figure 6

Separate QQ plots of the autoimmune disease associated loci within the allergy meta-analysis with
printed calculated enrichment Odds Ratio and P-value for enrichment. Only plotted for autoimmune
diseases with at least 10 loci associated. Solid line reflects the P-value distribution under the null
while the dashed is the distribution of all SNPs from the allergy meta-analysis.
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Psoriasis:
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Celiac Disease:
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Crohn’s Disease:
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Inflammatory Bowel Disease:
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Supplementary Figure 7

QQ plot of 57 Migraine loci extracted from the allergy meta-analysis results.

Migraine:
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Supplementary Figure 8
QQ plot of 77 loci associated with the combined phenotype of schizophrenia and bipolar disorder
extracted from the allergy meta-analysis results.

Bipolar disorder and schizophrenia:

38



39

Supplementary Figure 9

Principal component plot of GWAS Catalogue SNPs’ perturbation of gene networks, based on the
DEPICT tool, PC1 vs PC3

(PLEASE SEE SEPARATE FILE)
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Supplementary Figure 10

Principal component plot of GWAS Catalogue SNPs’ perturbation of gene networks, based on the
DEPICT tool, PC1 vs PC2, all trait names.

(PLEASE SEE SEPARATE FILE)



Supplementary Figure 11

Allergy related loci and their resemblance to autoimmune disease and other types of disease loci
were assessed by principal component analysis by analyzing the tendency of each trait-locus to fall in
DHS sites in specific cell lines. This plot shows PC1 vs. PC2 and has the outlier “lipid metabolism
phenotypes” omitted, and only names for autoimmune diseases, asthma and allergy are printed. The
blue area represents the shared minimal ellipsoid area of immune-mediated diseases.

(PLEASE SEE SEPARATE FILE)
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Supplementary Figure 12

Allergy related loci and their resemblance to autoimmune disease and other types of disease loci
were assessed by principal component analysis by analyzing the tendency of each trait-locus to fall in
DHS sites in specific cell lines. This plot shows PC1 vs. PC2 for the full data set.

(PLEASE SEE SEPARATE FILE)
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Supplementary Figure 13

Allergy related loci and their resemblance to autoimmune disease and other types of disease loci
were assessed by principal component analysis by analyzing the tendency of each trait-locus to fall in
DHS sites in specific cell lines. This plot shows PC1 vs. PC2 overlayed with cell- and tissue type loadings.

(PLEASE SEE SEPARATE FILE)
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Supplementary Figure 14

Hierarchical clustering of all NHRGI GWAS catalog diseases’ associated SNPs’ tendency to fall within
DHS sites for immune cell types within the Encode data set.

(PLEASE SEE SEPARATE FILE)



Supplementary Figure 15

Enrichment of DHS sites in SNPs associated to allergy and Crohn’s disease.

X-axis denominates all SNPs associated to the given trait at —log10(p) <= x, and y gives the enrichment
of DHS sites for a given cell/tissue-type for those SNPs, as compared to all SNPs (x=0). Immune cells
are indicated in blue.

(PLEASE SEE SEPARATE FILE)
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Supplementary Figure 16
Enrichment of SNPs falling in FANTOM enhancers

(PLEASE SEE SEPARATE FILE)
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Supplementary Figure 17

PCA plot of DEPICT pathway perturbation analysis, showing names for all gene sets.

(PLEASE SEE SEPARATE FILE)
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Supplementary Figure 18

Enrichment of shared loci with ENCODE ChlP-seq based transcription factor binding sites. Green line
indicates FDR < 0.05. Transcription factors in blue have FDR < 0.05 and enrichment >= 3.

(PLEASE SEE SEPARATE FILE)
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Supplementary Figure 19

LocusZoom plots of the autoimmune disease associated loci within the allergy meta-analysis.

Each dot represents the association between allergy and the particular SNP. The purple SNP is the
index SNP for which the remaining SNPs are colored with respect to the r2 value to the index SNP. The
position on the Y-axis represents the P-value (left handside Y-axis). The blue line represents
recombination rates (righ handside Y-axis)
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Supplementary Figure 20

Paired LocusZoom plots within a Crohn’s datal’ meta-analysis (top panel) and the allergy meta-
analysis (bottom panel) for the 5 most significant shared loci.
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Supplementary Figure 21
ENCODE Roadmap DHS region overlap with genomic features. DHS regions for each cell type (vertical
lines) were overlapped with genomic features (exons, introns, promoters, and intergenic (remaining))

(horizontal lines). Overlaps were z-scaled within each feature, and a heatmap was generated after
hierarchical clustering. Immune cells are marked in red at bottom.
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Supplementary Figure 22

Association plot for rs11122898 with added enhancer regions for four cell types, as well as enhancer-
to gene regulatory associations, from the FANTOMS data repository™®.
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