A novel \textit{erm}(44) gene variant from a human \textit{Staphylococcus saprophyticus} confers resistance to macrolides, lincosamides but not streptogramins

Christian Strauss1, Yanmin Hu2, Anthony Coates2, and Vincent Perreten*

1Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; 2St Georges, University of London, SW17 ORE, London, United Kingdom

Running title: \textit{erm}(44), in \textit{S. saprophyticus}

Keywords: MLS\textsubscript{B}, antibiotic resistance, phages, coagulase-negative staphylococci, 23S RNA methylase
A novel \textit{erm(44)} gene variant, \textit{erm(44)v}, has been identified by whole genome sequencing in a \textit{Staphylococcus saprophyticus} isolated from the skin of a healthy person. It has the particularity to confer resistance to macrolides and lincosamides, but not to streptogramins B when expressed in \textit{S. aureus}. The \textit{erm(44)v} gene resides on a 19,400-bp genomic island which contains phage-associated proteins and is integrated into the chromosome of \textit{S. saprophyticus}.
Staphylococcus saprophyticus is a bacterium which is widespread in the environment and in animals, and may also occur on the skin of humans. It is known as a major cause of urinary tract infection and cystitis in humans (1). Although macrolides and lincosamides are not used for the treatment of urinary tract infections, they are amongst the antibiotics of choice for the treatment of other infection diseases, such as pulmonary infection, and their use may contribute to the selection of resistance in bacteria of the normal human flora, including staphylococci (2). Resistance to macrolide, lincosamide and streptogramin (MLS\(_B\)) antibiotics in staphylococci have been associated with erythromycin ribosome methylase (*erm*) genes which methylate the 23S rRNA at position A2058 preventing binding of the MLS\(_B\) antibiotics (Fig.1) (3). The *erm*(44) gene, originally found in *Staphylococcus xylosus* from bovine mastitis milk (4), has also been recently identified in a *S. saprophyticus* isolate from river water (5), and now in *S. saprophyticus* from human skin.

Three of ten healthy human volunteers who did not receive MLS\(_B\) antibiotics and who were participating to a large project aiming at determining the effects of antibiotic administration on the emergence and persistence of antibiotic-resistant bacteria in humans (ANTIRESDEV project [www.ucl.ac.uk/antiresdev]; UK ethics approval number EC 10/H0806/12) were found to harbor *Staphylococcus saprophyticus* on the skin. The strains were isolated on sheep blood agar plates and identified using MALDI-TOF (microflex LT, Bruker Daltonic GmbH, Bremen, Germany). Minimal inhibitory concentrations of MLS\(_B\) antibiotics erythromycin, clindamycin, virginiamycin S1 and pristinamycin 1A were determined by microdilution method in Mueller-Hinton broth and one strain (N041) showed resistance to erythromycin and clindamycin according to the EUCAST interpretation criteria (6). As this strain did not contain any known *erm* genes as determined using a microarray (7), whole genome sequencing was performed at the UZH/ETH Functional Genomics Center (Zurich, Switzerland) by life technologies Ion Torrent™ semiconductor sequencing using a 400-bp library on a 314v2 chip. Comparison of all contigs with currently annotated *erm* genes using
BLAST™ identified a *erm* gene which showed the closest relatedness to *erm*(44) from *S. xylosus* JW4341 with 84% amino acid (aa) and 86% DNA identity, and to *erm*(44) from *S. saprophyticus* A ER Ab-7 with 84% aa sequence identity and 83.1% DNA identity (Fig. 1). The newly detected *erm* gene encodes a 243-aa protein containing an rRNA adenine dimethylase signature (PS01131) as found in other *erm* methylases (8). It was not preceded by any intact leader peptides, neither by a complete IFVI motif nor by inverted repeat sequences, which are essential for induction and translational attenuation of *erm* genes (3, 9-11), likely explaining constitutive expression of this *erm* gene as determined by MIC (Table 1). Putative -10 (TTTTAAAAT) and -35 (TTGCCT) promoter sequences were found 27 bp and 48 bp upstream of the start codon, respectively.

The functionality of the *erm* gene of strain N041 was assessed after cloning into the shuttle vector pBUS-HC(12) generating plasmid pBSC0714, where the gene was expressed with its own promoter. Presence of pBCS0714 in *S. aureus* RN4220 led to an increase of the MIC of erythromycin to 16µg/ml and of clindamycin to ≥256µg/ml, while the MICs for the streptogramins pristinamycin Ia and virginiamycin S1 did not increase compared to *S. aureus* RN4220 recipient strain alone and a RN4220 strain harboring pBUS-HC or pBUS-Pcap. To verify this uncommon phenotype, the *erm* gene was placed under the control of a strong cap promoter in plasmid pBSC0814 confirming both the erythromycin and clindamycin phenotype and the absence of increased MIC to streptogramins B pristinamycin and virginiamycin in RN4220 (Table 1), in contrast to the closely related *erm*(44) from *S. xylosus* JW4341 and from *S. saprophyticus* A ER Ab-7 (4, 5). Due to the sequence identity being above the 80% threshold for a new *erm* determinant and to an altered phenotype compared to the original *erm*(44) from *S. xylosus* when expressed in *S. aureus*, the *erm* gene identified in *S. saprophyticus* N041 was assigned the name *erm*(44)v according to the nomenclature of the MLSβ resistance genes (http://faculty.washington.edu/marilynr/) (13). However, it cannot be
excluded that \textit{erm}(44)\textsubscript{v} might confer resistance to streptogramins B in \textit{S. saprophyticus} due to the presence of a specific inducer which is absent in \textit{S. aureus} RN4220.

The \textit{erm}(44)\textsubscript{v} gene was located on a putative 19,400-bp genomic island (GenBank acc. no. LN623525), which is absent in the MLS\textsubscript{B}-susceptible strain \textit{S. saprophyticus} KACC16562 (GenBank acc. no. AHHK01, Fig. 2). In contrast to \textit{erm}(44) from \textit{S. xylosus} JW4341 which is situated on a pro-phage \textit{ΦJW4341-pro} (4), the genomic composition of the island described here shows a rather heterogeneous composition of ORFs remotely resembling that of a temperate siphoviral bacteriophage \textit{SaPlmw2} with the common presence of one terminase, two primases, two transcriptional regulators and an integrase belonging to the tyrosine type of bacterial phage integrases (\textit{Int-Ssaprol}, NCBI conserved domain number: cd01189, Fig. 2)(14). The genomic island contains an additional integrase of the same type (\textit{Int-Ssaprol2}, NCBI conserved domain number: cd01189) at its distal end which potentially played a role in the integration and recombination of the genomic island into the \textit{S. saprophyticus} genome.

However, no conjugal transfer of macrolide resistance into \textit{S. aureus} 80Cr5 (RifR)(15) and \textit{S. saprophyticus} 7108R (a rifampicin-resistant mutant of 7108) (16) was observed by filter mating (17) using different donor-recipient rations (106:108, 108:108, 108:106 cells/ml) and 10μg/ml erythromycin and 100 μg/ml rifampicin in the BHI agar selective plates. No circular form could be observed by PCR using GoTaq© polymerase (Promega) and plasmid DNA (NucleoBond® PC 100, Macherey-Nagel) as template and using primer1 (5'-CCCGTTGTTCACGGGTTT) and primer2 (5'-GCATTAAGAGCATTTTGGTATTTCC) (annealing temperature: 55°C, extension time 2 min) reading outwards of the genomic island (Fig. 2).

Analysis of \textit{Staphylococcus} whole genome sequences using the MaGe Microscope Platform (https://www.genoscope.cns.fr/age/microscope/home/) revealed that the genetic island containing \textit{erm}(44)\textsubscript{v} inserted into a chromosomal hotspot, as most strains annotated in MaGe
show large sequence variation at this specific locus. The genomic island integrated at a specific 19-bp integration site (\textit{attC}: CCCTCCCAGGACACTAAAA) situated between a metal-dependent phosphodiesterase and two tandem-transposases (\textit{InsO_Ssapro} and \textit{InsE_Ssapro}, NCBI conserved protein family number: COG2801, COG2963, Fig. 2). The attachment site \textit{attC} was duplicated in the N041 strain with one perfect copy downstream (\textit{attR}) and one imperfect copy upstream of the genomic island (\textit{attL}) (Fig. 2).

This study describes an \textit{erm(44)} gene variant, \textit{erm(44)v}, in a human isolate of \textit{S. saprophyticus}, which does not confer decreased susceptibility to streptogramin B in \textit{S. aureus}, in contrast to the \textit{erm(44)} from \textit{S. xylosus} from milk and from \textit{S. saprophyticus} from river water. However, besides this uncommon phenotype, the \textit{erm(44)v} was found, like \textit{erm(44)} from \textit{S. xylosus} (4), on an element containing genes associated with phages, indicating that phage associated elements may play a role in the spread of MLSB resistance.

\textbf{Nucleotide sequence accession numbers.} The \textit{erm(44)v}-containing element and its insertion region in \textit{S. saprophyticus} N041 has been deposited in the DDBJ/ENA/GenBank database under accession number LN623525.

\textbf{ACKNOWLEDGMENTS}

This study has been carried out with financial support from the Commission of the European Communities, specifically the Infectious Diseases research domain of the Health theme of the 7th Framework Programme, contract 241446, "The effects of antibiotic administration on the emergence and persistence of antibiotic-resistant bacteria in humans and on the composition of the indigenous microbiotas at various body sites" and by the research grant 35-539 from the Institute of Veterinary Bacteriology, University of Bern, Switzerland. We thank Sandra Neumann and Sören Gatermann (Ruhr-Universität Bochum) for providing \textit{S. saprophyticus}...
7108, Stefan Schwarz and Andrea T. Feßler for providing vector pLI50 containing \textit{erm}(44) from \textit{S. saprophyticus} A ER Ab-7, and Alexandra Collaud for technical assistance.
REFERENCES

TABLE 1 MIC of erythromycin, clindamycin, pristinamycin IA and virginiamycin S1 for different *Staphylococcus* strains, as determined by broth microdilution

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>human nose skin sample</th>
<th>Recipient strain for electrotransformation, pCR-free</th>
<th>Recipient strain for electrotransformation, pCR-positive</th>
<th>reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERY</td>
<td>128</td>
<td>RN4220</td>
<td>RN4220 with cloning vector pBUS-HC</td>
<td>human nose skin sample</td>
</tr>
<tr>
<td>CLI</td>
<td>>256</td>
<td>RN4220/pBUS-HC</td>
<td>RN4220/pBUS-HC</td>
<td>this study</td>
</tr>
<tr>
<td>PIA iPIA</td>
<td>>256</td>
<td>RN4220/pBUS-Pcap</td>
<td>RN4220/pBUS-Pcap</td>
<td>this study</td>
</tr>
<tr>
<td>VS1 iVS1</td>
<td>32</td>
<td>RN4220/pBJW13</td>
<td>RN4220/pBJW13</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RN4220/pLI50-erm(44)</td>
<td>RN4220/pLI50-erm(44)</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RN4220/pBCS0714</td>
<td>RN4220/pBCS0714</td>
<td>this study</td>
</tr>
</tbody>
</table>

Antibiotic resistance genes and functions:
- *bla* TEM-1, β-lactamase gene;
- *cat* pC194, chloramphenicol acetyltransferase;
- *tet* (L), tetracycline efflux gene;
- *erm* (44) and *erm* (44)v, 23S rRNA methylase genes.

Abbreviations:
- ERY, erythromycin;
- CLI, clindamycin;
- PIA, pristinamycin IA;
- VS1, virginiamycin S1;
- iCLI, iPIA and iVS1, 2 µg/ml erythromycin added to the broth for the detection of inducible resistance to clindamycin (iCLI), pristinamycin IA (iPIA) and virginiamycin S1 (iVS1);
- NA, not applicable.

Vector pBUS-Pca
- Vector pBUS-Pca is a pBUS-HC derivative that harbors the *cap* promoter of the *S. aureus* type 1 capsular polysaccharide biosynthesis gene cluster.
FIGURE LEGEND

Figure 1
Relationship tree of erythromycin resistance methylases (Erm) detected in different *Staphylococcus* species. Amino acid (aa) and nucleotide (nt) identity were obtained by sequence alignment and clustering with BioNumerics 7.6 (Applied Maths). Comparison settings were standard algorithm for pairwise alignment, open gap penalty 100%, unit gap penalty 0% and UPGMA. Methylase genes that were detected in *Staphylococcus* only by PCR and/or hybridization and whose sequences are not available (e.g. *erm*(F), *erm*(G), *erm*(Q)) were not included (http://faculty.washington.edu/marilynr/).

Figure 2
Insertion site of genomic island in *S. saprophyticus* N041 (GenBank accession no. LN623525) and core genome of *S. saprophyticus* KACC16562 (GenBank accession no. NZ_AHKB00000000.1). Grey areas represent high similarity at nucleotide level (>98%). Arrows represent position and orientation of open reading frames (ORFs). New ML resistance gene *erm*(44), is shown in pink. The 19-bp putative insertion site *attC* and the duplicated sites *attL* and *attR* in the N041 genome are shown. Two transposases of the core genome (*InsO_Ssapro* and *InsE_Ssapro*, short *InsO* and *InsE*) are indicated in yellow, the metal-dependent phosphodiesterase in red and the two flanking integrases of the genomic island (*Int-Ssapro1* and *Int-Ssapro2*) in orange. Additional genes are colored according to their sequence and function: transcription regulators are dark blue; replication genes (including the primase gene) are light blue; the terminase gene in green; genes encoding hypothetical proteins are grey. Primers for circular form test are indicated with a black arrow.