[bookmark: _GoBack]
Pedunculopontine nucleus region deep brain stimulation in Parkinson disease: surgical anatomy and terminology
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Gait disorders, which are frequently progressive, are a major source of disability in patients with movement disorders.  The anatomical basis and pathophysiology is poorly understood and there is a need to draw more attention to this area.
The possible relevance of the pedunculopontine nucleus (PPN) region for movement disorders has been outlined by independent groups of investigators who have demonstrated that there are degenerative changes in patients with advanced akinetic disorders such as Parkinson’s disease (PD), progressive supranuclear palsy (PSP) and multiple systems atrophy (MSA)1-3.  Recent data indicates that cholinergic denervation due to degeneration of PPN neurons may underlie dopamine-nonresponsive gait and balance impairment in PD 4, 5.
Several lines of evidence over the last few years have been important in ascertaining that the PPN area could be considered as a potential target for deep brain stimulation (DBS) to treat freezing and other problems as part of a spectrum of gait disorders in Parkinson’s disease(PD).  In a metabolic study, Mitchell et al. showed increased 2-deoxyglucose uptake reflecting increased synaptic activity in the PPN region of a primate rendered parkinsonian after (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) (MPTP) injections6.  The PPN receives GABAergic projections from the medial pallidum7, 8, and therefore it has been assumed that PPN activity was reduced in the parkinsonian brain 7, 9.  Yet, this concept has been challenged by the known pathophysiology that the subthalamic nucleus (STN), which is excitarory and hyperactive in PD also projects to the PPN.  This later pathway might account for the hyperactivity of PPN neurons projecting to STN in rats with unilateral lesion of the substantia nigra10.  In normal primates, high frequency stimulation, radiofrequency and excitotoxic PPN lesions induced akinesia11-15.  In MPTP-treated parkinsonian primates, however, low frequency stimulation (25Hz) and microinjections of bicuculline, a GABA antagonist, into the PPN reversed akinesia15-18.  Recording of the midlatency auditory evoked P50 potential in PD patients concluded that the PPN was overactive in PD, and that bilateral pallidotomy normalized PPN output 19, 20.
Since the introduction of the PPN area as a target for DBS in PD, a variety of studies have been published.  Most indicate improvements in freezing and falls in patients that are severy affected by these problems.  The results across patients, however, have been variable, perhaps reflecting patient selection, heterogeneity in target selection and differences in surgical methodology.  Here we provide a thorough review of several issues relevant to targeting and surgical technique.  The aim of this manuscript is to gain more insight into the reasoning for choosing specific techniques and to discuss shortcomings of vailable studies.  Finally, this set of data is intended to form a foundation for developing a core protocol to be used in PPN DBS surgery.


Materials and Methods

A working group was encharged of reviewing data relevant to PPN surgery.  Questions were formulated during a consensus conference and were distributed to the co-authors of the manuscript  A PubMed database was searched using the following key words: pedunculopontine nucleus; deep brain stimulation; anatomy; physiology; surgery.  Specific topics were assigned to groups of authors, and this work was reviewed and edited by the Executive Committee of the working group.

Here we outline both the accumulated knowledge and the domains of uncertainty in surgical anatomy and terminology.  Issues relevant for surgical technique, side effects and postoperative imaging will be addressed in a companion manuscript.


Results

Anatomy and function of the PPN area
The PPN, sub-cuneiform and cuneiform nuclei (CnF) comprise the mesencephalic locomotor region (MLR)21-23.  This is a functional region from which electrical stimulation induces coordinated locomotion in decerebrate mammals21, 22.
The PPN projects and receives projections from the STN, globus pallidus internus (GPi), and substantia nigra reticulata (SNr) and compacta (SNc) 24-26.  Further, it has afferent and efferent connections with the cerebellum, thalamus, cerebral cortex, and the spinal cord7, 21.  The PPN is also connected to catecholaminergic systems in the brainstem, such as the noradrenergic locus coeruleus21, 27 and to serotonergic neurons of the dorsal raphe nucleus28-30.
On the basis of its cytoarchitectural organization, the PPN has been subdivided into a pars dissipata (pdPPN) and a pars compacta (pcPPN) (Fig. 1).  Triple in situ hybridization studies determined that the profile of PPN neurons varies across its extent 31.  The pdPPN  is located throughout the rostrocaudal extent of the PPN region and contains mainly small to medium sized GABAergic neurons.  The pcPPN is located in the caudal half of the nucleus and contains mostly cholinergic and glutamatergic cells7, 9, 21, 32, 33.  In addition cholinergic neurons of the PPN are also known as the Ch5 cholinergic cell group according to the classification of Mesulam 34.  Similar to the PPN, the sub-cuneiform and cuneiform nuclei do not contain homogenous neuronal populations.  Neurons of the CnF are mainly comprised of nitrinergic and GABAergic cells.  These nuclei have no clear boundaries.  This has led to some confusion concerning the overlap of functionally or anatomically defined regions in this area.
Experimental studies have shown that the PPN receives dopaminergic input from the substantia nigra compacta (SNc) and ventral tegmental area (VTA) 28, 35, 36.  Such inputs are modulated by NMDA, AMPA and GABAB receptors.
The PPN output controls the striatal loop, i.e., STN, GPi, and SNc.  Other projections reach the intralaminar nuclei of the thalamus and nuclei of the lower brainstem.  As such, the PPN occupies a strategic position between the limbic and striatal loops and while it is mainly involved in locomotor activity7, 9, 21, 32, 37-40, and it is also potentially relevant in other domains including cognition and sleep.  Together with the thalamic intralaminar nuclei, the PPN is part of the “ascending reticular activating system” 7, 21, 41.
Both PPN and CnF have been suggested to influence muscle tone during the initiation of locomotion 42, 43.  Rodent studies have shown that MLR injections of the GABAA agonist muscimol completely abolish stepping.  Because muscimol solely acts on neuronal cell bodies and not on passing axons, these results suggest that cells around the injection site (i.e. CnF and PPN) may be responsible for MLR-induced stepping 39.  A recent rodent study has shown that stimulation of the MLR markedly improves hind limb function in rats with incomplete spinal cord injury 44.

Considerations about the terminology used in PPN anatomy
Since the description of the PPN by Jacobsohn in 1909 45, the terminology used to label this nucleus has varied continuosly.  For instance, it has been labelled as “Nucleus tegmenti pedunculopontinus” 45, “Pedunculo-pontine tegmental nucleus” 46, “Nucleus reticularis pedunculopontinus” 47, “Nucleus pedunculopontinus” 48, “Nucleus tegmenti pedunculopontinus” 49, 50, “the Area U” 50-52, “the n’ nucleus ” 53, and “the PPTn of Kolliker”  49(the latter must be distinguished from the Kolliker-Fuse nucleus which now refers to a subnucleus of the parabrachialis nucleus).  Since there are so many differences in nomenclature, the terminology used across studies has not been consistent.

Anatomical localization of the PPN on brainstem atlases
There is variabilitiy concerning the exact anatomical localization of the PPN across different brainstem atlases, in particular with regard to its borders 46, 47, 49, 50, 54.  It is commonly accepted, that the PPN is bordered medially by the superior cerebellar peduncle (and its decussation) as well as the central tegmental tract (Fig. 2).  Anterior and lateral to the PPN is the lemniscal system, and caudal and rostral are the retrorubral field and SNr, respectively.  The posterior aspect of the PPN is contiguous with the lateral portion of the CnF.
Considering the cytoarchitectural characteristics of the pontomesencephalic reticular formation, the precise anatomical distinction between pontine and mesencephalic structures has always been open to debate.  As a result, to define the rostro-caudal extent of the PPN some investigators have relied on the pontomesencephalic junction (PMJ), a line that connects the inferior aspect of the quadrigeminal plate (frenulum veli) posteriorly with the foramen caecum of the interpeduncular fossa anteriorly.
Reviewing different brainstem atlases with a focus on the PMJ as well as on the orientation of the slices in the transverse plane may provide a landmark for the rostro-caudal extent of the PPN in the human brainstem.

Cytoarchitecture of the Human Brain Stem: Olszewski and Baxter.  This atlas of brainstem structures provides an accurate description of the PPN and its subregions 49.  Caveats from a surgical perspective include that it is not based on stereotactic coordinates and that the transverse angle of sections is not exactly parallel to the PMJ.  Two sub-divisions of the PPN are distinguished: the pars dissipata and pars compacta.  The PMJ slice is in plate n◦ XXVIII (cross section n◦ 801) with no reference made to the PPN or the CnF.  The next plate consists of a section 3 mm or 150 slices rostral (plate n◦ XXX; cross section n◦ 651) that crosses the brainstem at the mid-portion of the inferior colliculus (IC) (Fig. 3).  In this section, the PPN pars dissipata and CnF are clearly delineated.  Of interest, plate n◦ XXXI (cross section n◦ 601), located 1 mm (50 slices) rostral to plate n◦ XXX and 4 mm rostral from the PMJ, contains the PPN pars compacta and dissipata, which is in contact with the CnF posteriorly.  In this atlas, the PPN extends for 8 mm in the rostrocaudal axis, reaching the level of the caudal border of the red nucleus (plate n◦ XXXIV - Cross section n◦ 401).  The CnF and its subnuclei are represented as a large structure that extends from the PMJ (or just above it) to the level of the red nucleus.

Atlas of the Human Brainstem: Paxinos and Huang.  Plates in this brainstem atlas are numbered based on distance from the obex 46.  The PMJ is represented in Figures 48 (Obex +31 mm) and 49 (Obex +32 mm), which contain the nucleus of the trochlear nerve, fibers of the trochlear nerve, their  decussation, and the frenulum veli, just caudal to the infra-collicular recess.  The caudal aspect of the PPN pars dissipata is shown in Figure 48 (Obex +31 mm).  The pars compacta is shown in Figure 50 (Obex +33mm), which also shows the pars dissipata at the level of IC.  According to the atlas, pars compacta extends 4 mm rostrally but does not extend beyond the level of IC.  The PPN extends to the rostral pole of IC (Obex +36mm).  Just above the PMJ, the CnF is located posterior to the PPN and extends to the caudal aspect of the superior colliculus. We note that in recent work, the authors have considerably changed this nomenclature 55. 

Atlas for Stereotaxy of the Human Brain: Schaltenbrand and Wahren.  In this atlas, the PPN is labelled as the Nucleus tegmenti pedunculopontinus (Tg.pdpo) 50.  It is represented in coronal slices perpendicular to the anterior-posterior commissural (AC-PC) plane at the level of the superior aspect of the superior cerebellar peduncle (plate 29).  Axial slices of the rostral brainstem are presented in plate 57.  The PPN per se is not labelled in those plates.  Nevertheless, it may be included in the diffuse area labelled as griseum circumflexum brachii conjunctivi (Gr.cf.b.cj), which extends from the caudal mesencephalon to a region 5 mm below the PMJ. 

Duvernoy’s Atlas of the Human Brain Stem and Cerebellum: Naidich et al.  This book consists of a multimodal atlas of the brainstem based on magnetic resonance imaging 47.  The PPN and CnF are described in several  axial slices (P 84-89 ; P 329-330).  Assumptions on the rostrocaudal extent of the PPN are difficult to conclude since the sections are not parallel to the PMJ.

The fact that most atlases rely on cytoarchitectural features may underestimate the extent of the PPN, which is in general a diffuse nucleus with indistinct borders.  Using choline-acetyltransferase (ChAT) immunohistochemistry, for example, Mesulam and colleagues studied the extent of PPN cholinergic cells 56.  They indicated that the caudal aspect of the PPN extends far below the level of the inferior colliculus, whereas PPNc could be observed as rostral as the decussation of the superior cerebellar peduncle.  These findings were confirmed in a later study which provided more detail about the cholinergic cell group Ch5 within the PPN 1.

Two post mortem human studies found that sagittal sections were the most reliable for identifying the PPN in three dimensions.  Labelling of cholinergic neurons showed that the pars compacta was located immediately dorsal to the brachium conjunctivum, with cells of the pars dissipata scattered within the brachium conjunctivum.  The pars compacta was localized anterior/ventral to the posterior half of the IC, while the pars dissipata extended posteriorly and anteriorly below PPNc 57, 58.


Discussion

In conclusion, the anatomy and the function of the PPN area will require further clarification.  The extent of both PPN and the CnF does not exactly coincide when different brainstem atlases and atlas slices are compared.  It is difficult to provide a precise delineation between the PPN pars dissipata and the CnF, as these two structures partially overlap in the MRF.
The lack of consensus in the field is an important overall limitation to PPN anatomy, particularly for PPN DBS surgery.  This lack of clarity contibutes to the difficulty in targeting and determining the exact localization of the electrodes implanted in human subjects suffering from neurodegenerative disorders.

Legends to Figures

FIG. 1.  The PPN region at the level of the decussation of the superior cerebellar peduncles and the inferior colliculus (A) and at the level of the trochlear nucleus and the intercollicular area (B).  The main nuclei are labeled on the left and the long fiber tracts on the right side. STT, spinothalamic tract; CA, cerebral aqueduct; CN, cuneiform nucleus; CTT, central tegmental tract; Dec SCP, decussation of the superior cerebellar peduncles; LC, locus coeruleus; LL, lateral lemniscus; ML, medial lemniscus; MLF, medial longitudinal fasciculus; NRD, nucleus raphé dorsalis; PAG, periaqueductal gray; PN, pontine nuclei; PPNc, pedunculopontine nucleus pars compacta; PPNd, pedunculopontine nucleus pars dissipata; SNc, substantia nigra pars compacta; RST, rubrospinal tract; IV, trochlear nucleus; V, mesencephalic nucleus of the trigeminal nerve.
Adapted from Fournier-Gosselin et al.33 with permission from John Wiley and Sons.

FIG. 2.  Functional mapping of PPN region: correlations between the structures in the vicinity of the PPN and their potential stimulation effects.  An electrode positioned lateral to the PPN might be revealed by buzzing sounds (lateral lemniscus), unpleasant painful sensation and/or change in temperature sensation (spinothalamic tract), or paresthesias (medial lemniscus) when trial stimulation is applied. An anteromedial position could elicit the sensation of contralateral facial pulling or blinking (rubrobulbar tract) and/or mood changes (substantia nigra). A mediodorsal location could lead to oscillopsia, diplopia, or ocular deviation toward the side stimulated (medial longitudinal fascicle and trochlear nucleus) mandating careful inspection of extraocular movements.  An electrode positioned dorsally could lead to a sensation of discomfort (PAG), mandating that the stimulation be done with caution in the vicinity of the PPN. A dorsally placed electrode could also be noticed by jaw movements subjectively felt as pulling of masticatory muscles (mesencephalic nucleus of the trigeminal nerve).  Nonspecific altered level of alertness (locus coeruleus) might also be observed. PPN, pedunculopontine nucleus; Dec SCP, decussation of the superior cerebellar peduncles; SNc, substantia nigra pars compacta.
Adapted from Fournier-Gosselin et al.33, with permission from John Wiley and Sons.



FIG. 3.  Plates XXX and XXXI of Cytoarchitecture of the human brain stem published by J. Olszewski and D.Baxter. The PPN pars dissipata is labelled as Tg. ds and PPN pars compacta is labelled as Tg. cm. CNf is labelled as Cun (a) Plate XXX: representation of the cross section 651. The plate contains the most caudal aspect of the PPN observable in the atlas. The posterior aspect of the brainstem is clearly located in the mesencephalon due to the presence of the inferior colliculus. According to the distances between cross-sections, the posterior aspect is located 3mm rostral the PMJ (Plate XXVIII in cross section 801). (b): photomicrograph of cross section 601 located 1 mm rostral to the plate XXX. The plate contains the PPN pars compacta. (a) and (b).
Reprinted from Olszewski and Baxter 49, with permission from Karger.
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