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ABSTRACT	

Minocycline,	 a	 second	 generation	 broad-spectrum	 antibiotic,	 has	 been	 frequently	 postulated	 to	 be	 a	

“microglia	 inhibitor”.	 A	 considerable	 number	 of	 publications	 have	 used	 minocycline	 as	 a	 tool	 and	

concluded,	 after	 achieving	 a	 pharmacological	 effect,	 that	 the	 effect	 must	 be	 due	 to	 “inhibition”	 of	

microglia.	It	is,	however,	unclear	how	this	“inhibition”	is	achieved	at	the	molecular	and	cellular	level.	Here	

we	weigh	the	evidence	whether	minocycline	 is	 indeed	a	bona	fide	microglia	 inhibitor	and	discuss	how	

data	generated	with	minocycline	should	be	interpreted.		

	

	

	

	 	



Minocycline,	a	second	generation	tetracycline	antibiotic		

Minocycline	 is	 a	 semi-synthetic,	 broad-spectrum	 tetracycline	 antibiotic.	 It	 was	 first	 synthesized	 from	

natural	tetracyclines	in	1966	(Redin	1966)	and	approved	by	the	federal	drug	administration	(FDA)	for	the	

US	in	1971.	The	bacteriostatic	activity	of	tetracycline	antibiotics	(incl.	minocycline)	results	from	binding	

the	bacterial	30S	ribosomal	subunit,	blocking	the	attachment	of	aminoacyl-tRNA	to	the	ribosome	and	thus	

preventing	 the	addition	of	new	amino	acids	 to	 the	nascent	peptide	chain	 (Chopra	and	Roberts	2001).	

Minocycline	has	a	long	serum	half	life	of	11-18	hours,	which	is	2-3	times	longer	than	the	typical	water-

soluble	 tetracyclines	 (Agwuh	 and	 MacGowan	 2006).	 Minocycline	 is	 the	 most	 lipid-soluble	 of	 the	

tetracycline	family,	affording	it	the	greatest	CNS	penetrance	in	the	group	(Brain-to-serum	ratio	in	dogs:	

minocycline	2.8;	doxycycline	1.3;	tetracycline	0.3)	(Barza	et	al.	1975).	While	this	is	an	obvious	advantage	

for	 CNS	 indications,	 such	 as	 Lyme	 disease,	 it	 also	 is	 the	 underlying	 cause	 of	 CNS	 side	 effects	 such	 as	

dizziness,	vertigo,	ataxia	and	tinnitus	(Fanning	et	al.	1977).		These	vestibular	side	effects	are	more	common	

in	women	than	in	men,	occurring	with	a	frequency	of	up	to	7/10	(Fanning	et	al.	1977).	Minocycline	has	

other	well	described	peripheral	and	central	side	and	because	of	multiple	potential	safety	issues,	the	FDA	

added	minocycline	to	its	Adverse	Event	Reporting	System	(ARES)	in	2009	effects	(Balestrero	et	al.	2001;	

Cohen	2004;	Davies	and	Kersey	1989;	Fraser	et	al.	2012;	Golstein	et	al.	1997;	Gordon	et	al.	1995;	Gough	

et	al.	1996;	Hanada	et	al.	2016;	Hardman	et	al.	1996;	Healy	et	al.	2009;	Lander	1989;	Lefebvre	et	al.	2007;	

Matsuura	et	al.	1992;	Porter	and	Harrison	2003;	Schlienger	et	al.	2000;	van	Steensel	2004;	Weller	and	

Klockgether	1998).	That	said,	minocycline	remains	a	mainstay	drug	for	anti-bacterial	therapy	and	has	been	

taken	safely	and	efficiently	by	millions	of	people.	

Anti-inflammatory	effects	of	tetracycline-based	antibiotics		

Early	 evidence	 for	 non-antibiotic	 properties	 of	 tetracycline	 antibiotics	 (e.g.	 tetracycline,	 doxycycline,	

minocycline,	for	structures	see	Fig.1)	surfaced	in	dermatology	and	rheumatoid	arthritis	(Clark	1995;	Eady	

et	al.	1993;	Galland	1995;	Greenwald	et	al.	1992;	Kloppenburg	et	al.	1996;	Miyachi	et	al.	1986).	By	early	

2016	more	than	2850	papers	on	the	anti-inflammatory	properties	of	tetracycline	antibiotics	were	listed	

in	 PubMed.	 The	 reported	 mechanisms	 include	 inhibition	 of	 T-cell	 activation,	 inhibition	 of	 neutrophil	

transmigration,	 inhibition	 of	 proinflammatory	 cytokine	 release,	 inhibition	 of	 nitric	 oxide	 release	 and	

augmentation	of	anti-inflammatory	cytokine	release	(Table	1)	(Bernardino	et	al.	2009;	Bostanci	et	al.	2011;	

Cazalis	et	al.	2009;	Celerier	et	al.	1996;	Eady	et	al.	1993;	Garrido-Mesa	et	al.	2013;	Greenwald	et	al.	1992;	

Jain	et	al.	2002;	Kloppenburg	et	al.	1996;	Kloppenburg	et	al.	1995;	Koistinaho	et	al.	2004;	Milano	et	al.	



1997;	Miyachi	 et	 al.	 1986;	 Ochsendorf	 2010;	 Pang	 et	 al.	 2012;	 Sadarangani	 et	 al.	 2015;	 Sapadin	 and	

Fleischmajer	2006;	Shapira	et	al.	1996;	Toussirot	et	al.	1997).	The	list	of	effects	is	far	from	complete	and	

one	has	to	keep	in	mind	that	not	all	properties	have	been	investigated	for	all	tetracyclines.	However,	there	

seems	 to	 be	 consensus	 that	 the	 second	 generation	 tetracyclines	 (e.g.	 doxycycline,	minocycline)	 have	

improved	anti-inflammatory	properties	(Garrido-Mesa	et	al.	2013;	Leite	et	al.	2011).	In	fact,	based	on	the	

intriguing	anti-inflammatory	properties	of	the	second	generation	tetracyclines,	efforts	are	underway	to	

engineer	 tetracycline-based	 molecules	 without	 antibiotic,	 but	 improved	 anti-inflammatory	 properties	

(Cazalis	et	al.,	2009;	Monk	et	al.,	2011;	Tilakaratne	and	Soory,	2014).		

Coincidently,	tetracyclines	are	also	being	used	to	regulated	gene	transcription	in	transgenic	animals.	In	

the	1990	the	Tet-Off	and	Tet-On	systems	have	been	developed	utilizing	the	Tet	repressor	DNA	binding	

protein	(TetR)	from	the	tetracycline	resistance	operon	of	Escherichia	coli	transposon	Tn10	(Furth	et	al.	

1994;	Gossen	and	Bujard	1992;	Kistner	et	al.	1996).	This	system	is	used	to	regulate	the	expression	of	a	

target	 gene	 that	 is	under	 transcriptional	 control	of	 a	 tetracycline-responsive	promoter	element	 (TRE).	

These	 systems	 have	 found	wide	 adaption	 for	 the	 temporal	 regulation	 of	 gene	 expression	 or	 deletion	

(Mansuy	 and	 Bujard	 2000;	 Sakai	 2014;	 Zhu	 et	 al.	 2002b).	 While	 originally	 coined	 the	 “tetracycline	

regulated	expression	system”,	most	experiments	are	performed	with	doxycycline	as	the	Tet-On	system	

responds	poorly	 to	 tetracycline,	but	well	 to	doxycycline	(Baron	and	Bujard	2000).	 If	 these	systems	are	

used	to	investigate	an	animal	model	where	the	phenotype	is	associated	with	an	inflammatory	component,	

it	 might	 be	 difficult	 to	 separate	 the	 the	 Tet-On/Off	 effect	 from	 the	 anti-inflammatory	 properties	 of	

doxycycline	(See	Table	1).		

As	of	early	2016,	about	750	papers	in	PubMed	refer	to	minocycline’s	anti-inflammatory	effects.	Of	the	

three	major	tetracyclines	(i.e.	tetracycline,	doxycycline,	minocycline)	minocycline	is	the	best	investigated	

in	regards	to	anti-inflammatory	effects	(Table	1)	(Garrido-Mesa	et	al.	2013;	Ochsendorf	2010).	However,	

while	the	effects	on	inflammation	and	immune	cells	(e.g.	monocytes,	macrophages,	T-cells,	neutrophils)	

are	well	described,	the	actual	molecular	mechanism	by	which	minocycline	exerts	these	effects	are	far	less	

understood.	 Many	 molecules	 in	 pro-	 and	 anti-inflammatory	 signal	 transduction	 cascades	 have	 been	

suggested,	such	NF-κB,	LOX-1,	LPS-induced	TNF-α	factor	(LITAF),	Nur77,	p38	MAPK,	PI3K/Ak,	PKC,	IRF-1	

and	the	inflammasome	(Dunston	et	al.	2011;	Kauppinen	et	al.	2014;	Nikodemova	et	al.	2007;	Pang	et	al.	

2012).	However,	while	the	evidence	for	anti-inflammatory	activity	of	minocycline	is	overwhelming,	the	

molecular	target(s)	of	minocycline	mediating	these	effects	still	remain	elusive.		



Minocycline	employed	as	a	putative	microglia	inhibitor		

The	keywords	“microglia	AND	minocycline”	return	over	500	hits	from	PubMed	in	early	2016.	There	is	a	

large	body	of	data	showing	anti-inflammatory	effects	of	minocycline	on	microglial	(patho)physiology	 in	

vitro	 as	well	 as	 in	 vivo.	 Similar	 to	 effects	 on	 peripheral	 immune	 cells,	 typical	 effects	 reported	 include	

reduction	in	cytokine,	prostaglandin	and	nitric	oxide	release,	reduced	proliferation	and	reduced	staining	

for	“activation”	markers	such	as	CD11b,	MHC-II	or	Iba-1	(El-Shimy	et	al.	2015;	Hanlon	et	al.	2016;	Hou	et	

al.	2016;	Nikodemova	et	al.	2007;	Papa	et	al.	2016;	Scholz	et	al.	2015;	Silva	Bastos	et	al.	2011;	Tikka	et	al.	

2001;	Tikka	and	Koistinaho	2001)	and	reviewed	in	(Zemke	and	Majid	2004).	Based	on	the	available	data	

for	minocycline	as	a	CNS	penetrant	anti-inflammatory	 these	data	are	not	 surprising.	However,	 several	

publications	 have	 called	minocycline	 a	 “selective	microglia	 inhibitor”	 and	 have	 drawn	 conclusions	 on	

microglia	involvement	in	animal	models	of	disease	solely	based	on	the	effects	of	minocycline	(Cui	et	al.	

2008;	Huang	et	al.	2014;	Kobayashi	et	al.	2013;	Ledeboer	et	al.	2005;	Mika	et	al.	2007;	Osikowicz	et	al.	

2009;	Raghavendra	et	al.	2003).	It	should	be	self-evident,	that	minocycline	is	not	selective	for	microglia,	

but	affects	peripheral	immune	cells	as	well.	Therefore,	an	unequivocal	attribution	of	the	pharmacological	

effects	to	microglia,	especially	in	the	in	vivo	experiments	is	not	possible.	Furthermore,	it	is	unclear	what	

is	 being	 “inhibited”.	 Microglia	 “activation”?	 In	 turn,	 are	 only	 “activated”	 microglia	 effected	 my	

minocycline?	What	about	microglia	 “surveying”	 the	 tissue?	 It	 is	becoming	 clear	 that	microglia	exist	 in	

different	phenotypes	(Biber	et	al.	2014;	Hanisch	2013).	Consequently,	which	phenotype(s)	are	“inhibited”	

by	minocycline	with	which	outcome?	The	 term	“microglia	 inhibition”	seems	as	vaguely-defined	as	 the	

term	“microglia	activation”.	

Minocycline	effects	on	astrocytes,	oligodendrocytes	and	neurons		

In	addition	to	its	broad	effects	on	immune	cells,	minocycline	has	been	shown	to	have	multiple	effects	on	

astrocytes,	 oligodendrocytes	 and	 neurons	 in	 vitro	 as	 well	 as	 in	 vivo.	 	 For	 example,	 minocycline	 (and	

doxycycline)	reduces	the	release	of	the	pro-inflammatory	cytokines	TNF-α,	 IL-6,	and	IL-8	from	cultured	

rhesus	monkey	 astrocytes	 (Bernardino	 et	 al.	 2009).	Minocycline	 reduced	 the	 number	 of	 hippocampal	

GFAP+	cells	in	LPS	challenged	mice	and	in	the	mutant	SOD1	model	of	amyotrophic	lateral	sclerosis	(Hou	

et	 al.	 2016;	 Keller	 et	 al.	 2011).	 Minocycline	 also	 protected	 oligodendrocytes	 and	 oligodendrocyte	

precursors	against	hypoxic	and	traumatic	 injury	 in	vitro	and	 in	vivo	 (Scheuer	et	al.	2015;	Schmitz	et	al.	

2012;	Stirling	et	al.	2004;	Yune	et	al.	2007).	There	is	a	plethora	of	reports	of	neuroprotection	and	direct	

effects	 on	 neurons	 by	 tetracyclines	 including	 minocycline	 (reviewed	 in	 (Domercq	 and	Matute	 2004).	



However,	the	effects	of	minocycline	are	not	always	positive.	Several	publications	report	neurotoxic	effects	

of	minocycline	(Arnoux	et	al.	2014;	Diguet	et	al.	2004a;	Diguet	et	al.	2004b;	Diguet	et	al.	2003;	Tsuji	et	al.	

2004;	Yang	et	al.	2003).	Of	course,	 in	 the	absence	of	proof	positive,	one	has	 to	acknowledge	 that	 the	

effects	on	astrocytes,	oligodendrocytes	and	neurons,	especially	 in	 vivo	 could	be	 indirect.	By	 the	 same	

token,	however,	 the	reported	effects	attributed	to	“microglia	 inhibition”	could	be	 indirect	as	well.	For	

example,	 improved	 neuronal	 outcomes,	 would	 most	 likely	 be	 accompanied	 by	 less	 “activation”	 of	

surrounding	microglia.	Because	of	the	uncertainty	which	cell(s)	or	networks	are	affected	by	minocycline,	

it	only	seems	prudent	to	interpret	minocycline	in	vivo	data	in	regards	to	the	cell	type	affected	with	the	

outmost	caution.		

Minocycline	in	clinical	trials	targeting	microglia		

Based	on	encouraging	data	on	minocycline’s	broad	anti-inflammatory	effects,	over	150	clinical	trials	have	

been	registered	at	clinicaltrials.gov	(early	2016)	for	the	use	of	minocycline	as	standalone	or	adjunctive	

therapy	 in	 indications	 ranging	 from	 atrial	 fibrillation,	 to	 Angelman	 Syndrome	 and	 schizophrenia	 (US-

National-Institutes-of-Health).	In	the	last	decade	minocycline	has	received	considerable	attention	for	CNS	

applications	 reviewed	 (Garrido-Mesa	 et	 al.	 2013;	 Zemke	 and	Majid	 2004).	Of	 the	 currently	 registered	

trials,	ten	specifically	refer	to	a	“microglia	activation”	mechanism	in	diseases	like	hypertension,	opioid-

induced	hyperalgesia,	and	schizophrenia.	Registration	in	clinicaltrials.gov	is	voluntary	and	other	pilot	trials	

for	minocycline	have	been	reported	for	Parkinson’s	disease,	Huntington’s	disease	and	Multiple	sclerosis	

(Bonelli	et	al.	2004;	Chen	et	al.	2011;	Huntington	Study	Group	2010;	 Investigators	2006;	Thomas	et	al.	

2004;	 Zabad	 et	 al.	 2007;	 Zhang	 et	 al.	 2008).	 While	 many	 of	 the	 targeted	 diseases	 have	 a	 bona	 fide	

microglia/neuroinflammation	component	(Garden	and	Möller	2006;	Möller	2010)	it	is	not	always	obvious	

which	effect	of	minocycline	(anti-inflammatory,	neuroprotective,	etc.)	the	trials	are	aiming	to	leverage.		

There	is	at	least	one	CNS	disease	where	minocycline	is	contraindicated.	Based	on	positive	effects	in	rodent	

models	of	amyotrophic	lateral	sclerosis	(ALS)	(Kriz	et	al.	2002;	Van	Den	Bosch	et	al.	2002;	Zhu	et	al.	2002a),	

and	promising	phase	I/II	clinical	trials	(Gordon	et	al.	2004;	Pontieri	et	al.	2005),	a	randomized	Phase	III	

clinical	trial	was	run	in	ALS	patients.	Unexpectedly,	disease	progression	in	ALS	patients	given	minocycline	

was	faster	than	the	control	group	(Gordon	et	al.	2007).	This	effect,	however,	was	not	dose-dependent	as	

patients	on	low	and	high	doses	fared	equally	unfavorable	compared	to	controls	(Gordon	et	al.	2007).	This	

negative	 effect	 was	 later	 replicated	 in	 a	 mouse	 model	 of	 ALS	 where,	 in	 contrast	 to	 prior	 studies,	

minocycline		treatment	was	started	after	disease	onset	(Keller	et	al.	2011).	



Minocycline	is	not	a	selective	microglia	inhibitor	

The	 anti-inflammatory	 activity	 of	 minocycline	 (and	 other	 tetracyclines)	 is	 well	 documented	 and	

undisputed.	 However,	 whether	 this	 activity	 can	 be	 solely	 attributed	 to	 a	 “microglia	 inhibitory	 effect”	

seems	 rather	 unlikely.	 The	 data	 presented	 here	 should	 make	 it	 clear	 that	 any	 activity	 attributed	 to	

minocycline	has	multiple	potential	cellular	targets	and	a	still	unknown	set	of	molecular	targets.	As	such,	

data	generated	with	minocycline	need	to	be	interpreted	with	caution.	In	the	worst	case,	there	might	be	

experiments	where	the	reported	“improvements”	in	animal	models	are	in	fact	due	to	the	primary	activity	

of	the	agent	-	i.e.	antibacterial	activity	-	in	animals	exposed	to	(unintentional)	bacterial	challenges.	In	the	

best	 case,	 the	 well	 documented,	 “anti-inflammatory”	 or	 “neuroprotective”	 activity	 of	 minocycline,	

coupled	with	its	high	CNS	penetrance,	might	exerts	the	effect	“somewhere”	in	the	CNS.	Regardless	of	the	

actual	activity	and	target,	this	might	be	good	news	for	patients	in	the	long	run.	When	minocycline,	a	drug	

with	a	well-documented	record	in	the	clinic,	holds	up	in	human	trials,	it	could	enable	a	quick	entry	into	

clinical	practice	for	the	benefit	of	patients.	Nevertheless,	the	learnings	from	the	ALS	clinical	trial	should	

give	the	most	endeavoring	mind	pause.	In	the	preclinical	area,	data	generated	with	minocycline,	should	

not	be	misconstrued	as	a	proof	of	microglial	involvement.	Instead,	such	preclinical	data	should	be	seen	as	

document	of	minocycline’s	undisputed	plethora	of	anti-inflammatory,	anti-apoptotic	and	neuroprotective	

properties.		
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Tables:	
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Figures	

Figure	1:	Chemical	structures	of	tetracycline,	doxycycline	and	minocycline.	

	

	


