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Sudden cardiac death (SCD) in the young (<40 years) occurs in the setting of a variety of 
rare inherited cardiac disorders and is a disastrous event for family members. Establishing 
the cause of SCD is important as it permits the pre-symptomatic identification of relatives 
at risk of SCD. Sudden arrhythmic death syndrome (SADS) is defined as SCD in the 
setting of negative autopsy findings and toxicological analysis. In such cases, reaching 
a diagnosis is even more challenging and post-mortem genetic testing can crucially
contribute to the identification of the underlying cause of death. In this review, we will 
discuss the current achievements of “the molecular autopsy” in young SADS cases
and provide an overview of key challenges in assessing pathogenicity (i.e., causality) of 
genetic variants identified through next-generation sequencing.
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iNTRODUCTiON

Each year, thousands of individuals die suddenly before the age of 35. Sudden cardiac death (SCD) 
in this age category has an estimated incidence of 0.005–0.2 per 1000 individuals per year, which is 
lower than in the general adult population (1). The causes of SCD in the young can be grouped into 
(1) structural heart disease, where the heart is structurally abnormal and (2) the channelopathies 
in which the heart is structurally normal (Figure 1) (2). Post-mortem analysis of young SCD cases 
uncovers a structural cardiac pathology in the majority of cases. However, a subset of around 30% 
remains unexplained (3). Sudden arrhythmic death syndrome (SADS) is defined as SCD in the 
setting of a negative autopsy and toxicological analysis (4, 5). In these cases, reaching a diagnosis 
is challenging and post-mortem genetic testing, the so-called molecular autopsy, can crucially 
contribute to the identification of the underlying (genetic) cause of death (6). This is important for 
clinical and genetic evaluation of surviving family members that are potentially at risk of SCD (7). 
The recent advances in sequencing technologies (next-generation sequencing) have made it possible 
to screen in detail large proportions of the human genome at relatively low cost. However, despite 
these significant developments, distinguishing true disease-causing genetic variants from the bulk 
of genetic variation that is not directly associated with the SCD phenotype is of major importance 
(8). In this review, we will discuss the current achievements of the molecular autopsy in young SADS 
cases and provide an overview of key challenges in assessing pathogenicity (i.e., causality) of genetic 
variants identified through next-generation sequencing (NGS).

http://www.frontiersin.org/Cardiovascular_Medicine
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2016.00013&domain=pdf&date_stamp=2016-05-30
http://www.frontiersin.org/Cardiovascular_Medicine/archive
http://www.frontiersin.org/Cardiovascular_Medicine/editorialboard
http://www.frontiersin.org/Cardiovascular_Medicine/editorialboard
http://dx.doi.org/10.3389/fcvm.2016.00013
http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:c.r.bezzina@amc.uva.nl
http://dx.doi.org/10.3389/fcvm.2016.00013
http://www.frontiersin.org/Journal/10.3389/fcvm.2016.00013/abstract
http://www.frontiersin.org/Journal/10.3389/fcvm.2016.00013/abstract
http://www.frontiersin.org/Journal/10.3389/fcvm.2016.00013/abstract
http://loop.frontiersin.org/people/300309/overview
http://loop.frontiersin.org/people/29402/overview
http://loop.frontiersin.org/people/33035/overview


FiGURe 1 | Overview of causes of sudden cardiac death in the young based on post-mortem studies. HCM, hypertrophic cardiomyopathy; ARVC, 
arrhythmogenic right ventricular cardiomyopathy. LQTS, long QT syndrome; CPVT, catecholaminergic polymorphic ventricular tachycardia; SADS, sudden 
arrhythmic death syndrome. Reprinted from Semsarian et al. (3) with permission of the publisher.
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THe CARDiAC CHANNeLOPATHieS

The cardiac channelopathies form a group of inherited disorders 
associated with the occurrence of arrhythmia and SCD in the 
presence of a structurally normal heart. These diseases are caused 
by mutations in genes that encode cardiac ion channel subunits 
or proteins that regulate and interact with ion channels. The 
underlying genetic defect leads to cardiac electrical disturbances 
that have the potential to initiate lethal cardiac arrhythmia (2). 
The cardiac channelopathies include, among others, the Long 
QT syndrome (LQTS), the Short QT syndrome (SQTS), Brugada 
syndrome (BrS), and catecholaminergic polymorphic ventricular 
tachycardia (CPVT) (5).

Long QT Syndrome
The LQTS is characterized by prolongation of the QT-interval 
on the surface electrocardiogram (ECG) associated with syncope 
and SCD as a result of torsades des pointes (TdP) ventricular 
tachycardia (VT) (9). The disease is genetically heterogeneous 
and has an estimated prevalence of 1:2000 (10). The inherit-
ance pattern is generally autosomal dominant and mutations 
in 16 different genes have been associated with the disorder 
(11). Together, mutations in three major LQTS-causing genes 
account for ~90% of genotype-positive LQTS patients (7, 12). 
These genes include KCNQ1 encoding for the Kv7.1 potassium 
channel (LQT1, 40–55%), KCNH2 (LQT2, 30–45%) encoding for 
the Kv11.1 potassium channel, and SCN5A (LQT3, 5–10%) that 
encodes for the Nav1.5 sodium channel. Genotype–phenotype 
studies have uncovered genotype-specific clinical presentations 
that can contribute to the diagnosis of SADS cases based on the 
circumstances of the SCD (13). In LQT1, cardiac events occur 
typically during exercise and more specifically during swimming 
and diving, whereas in LQT2 symptoms are often triggered by 
sudden auditory stimuli. Patients with LQT3 usually present with 
symptoms during rest or sleep. The 13 minor LQTS-associated 
genes have been linked to LQTS in small studies with varying 

evidence of disease association (2). LQTS can also present with 
extra-cardiac features. The Jervell and Lange-Nielsen (JLN) syn-
drome is characterized by significant QTc-interval prolongation 
accompanied by severe arrhythmias and sensorineural deafness. 
JLNS is caused by homozygous or compound heterozygous 
mutations in KCNQ1 (14) or KCNE1 (15). The Andersen–Tawil 
syndrome (LQT7) presents with QTc-interval prolongation, 
hypokalemic periodic paralysis and facial dysmorphism. The 
disease is caused by mutations in KCNJ2 (16). Timothy syndrome 
(LQT8) presents with severe QTc-prolongation, cardiac arrhyth-
mia, syndactyly, autism, and malignant hypoglycemia. The most 
common associated mutation is the heterozygous G406R muta-
tion in CACNA1C (17). The presence of extra-cardiac features has 
the potential to contribute to the unequivocal identification of 
the underlying genetic defect and identify an overlooked clinical 
diagnosis.

Catecholaminergic Polymorphic 
ventricular Tachycardia
Catecholaminergic polymorphic ventricular tachycardia is an 
inherited arrhythmia syndrome characterized by the onset of 
life-threatening arrhythmia during exercise or acute emotional 
stress (18). These patients have a normal resting ECG and the 
disease can be diagnosed using exercise-stress testing or Holter 
recording, revealing typical bidirectional or polymorphic VT (5). 
When left untreated SCD occurs in up to 30% of cases before 
the age of 40 (19, 20). The autosomal-dominant form of CPVT 
is caused by mutations in RYR2 (21) encoding for the ryanodine 
receptor, whereas an autosomal recessive and more rare form 
is caused by biallelic mutations in CASQ2 (22) that encodes for 
the calsequestrin-2 protein. In addition, mutations in TRDN, 
CALM1, KCNJ2, and ANKB have also been identified in a small 
set of CPVT patients (2). Mutations in RYR2 can be identified 
in ~60% of CPVT cases that have a classical phenotype and 
these mutations are mainly located in clusters within the gene 
(21, 23, 24). Genotype-phenotype studies have been conducted 
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and these data suggest a higher arrhythmia risk associated with 
mutations in the C-terminal portion of the protein (25).

Brugada Syndrome
Brugada syndrome can present with syncope due to polymorphic 
VT and SCD as a result of ventricular fibrillation. SCD most com-
monly occurs during rest or sleep and it typically occurs in males 
in the fourth decade of life (5, 26). Recent guidelines state that 
BrS is diagnosed when a coved ST-segment elevation of ≥0.2 mV 
is present in at least one precordial lead, either occurring spon-
taneously or after administration of a sodium channel-blocking 
agent (5). The typical ECG pattern can be concealed and may be 
intermittently present. In addition to sodium channel blockers, 
the typical BrS ECG pattern can also be induced by pyrexia (26). 
Loss-of-function mutations in SCN5A, encoding for the Nav1.5 
sodium channel, are identified in ~16% of BrS cases (27). In addi-
tion to SCN5A, multiple other genes have been associated with 
this disorder (2). Even though the yield of genetic testing is low, 
genetic testing of SCN5A can identify a pathogenic mutation that 
could contribute to further genetic risk stratification in the fam-
ily (5, 7). The observation that within some families the SCN5A 
mutation does not segregate with the disease suggests a potential 
modifying or more complex role for other genetic factors (28). 
Furthermore, a recent study suggested a more complex form 
of inheritance for the BrS with an important role for common 
genetic variation in disease susceptibility (29).

Short QT Syndrome
The SQTS presents with a short QT-interval on the surface ECG 
(<350  ms) predisposing to supraventricular and ventricular 
arrhythmia and is associated with a high risk of SCD (30, 31). 
The disorder is genetically heterogeneous and inherited in an 
autosomal-dominant mode. SQTS has been associated with 
pathogenic variants in genes that encode potassium channels 
(KCNQ1, KCNH2, and KCNJ2), which are also implicated in 
LQTS (32–34). Importantly, SQTS-causing variants in these 
genes lead to a gain-of-function on the affected channel, whereas 
the LQTS-causing variants lead to a loss-of-function. In addition, 
Cav1.2 L-type calcium channel subunits (CACNA1C, CACNB2) 
have been associated with SQTS (35). Even though in half of 
SQTS cases familial disease is present, the yield of genetic testing 
is around 14% (36).

THe CARDiOMYOPATHieS

The inherited cardiomyopathies include hypertrophic car-
diomyopathy (HCM), dilated cardiomyopathy (DCM), and 
arrhythmogenic cardiomyopathy (ACM) (37). The hallmark 
of HCM is unexplained ventricular hypertrophy, and myocyte 
disarray and fibrosis during histological analysis (38). The disease 
has an autosomal-dominant mode of inheritance in the majority 
of cases, with mutations predominantly located in genes encod-
ing sarcomeric proteins. Most mutations are found in MYBPC3 
and MYH7 (39, 40). SCD occurs in only a small subset of HCM 
cases (38). DCM can present with heart failure due to dilatation of 
the left ventricle and systolic dysfunction (41). In approximately 
one-third of patients with idiopathic DCM, a positive family 

history for DCM can be identified (42). The inheritance pattern 
varies and is most commonly autosomal dominant or autoso-
mal recessive, whereas X-linked inheritance or mitochondrial 
inheritance is less common (43, 44). The disease is genetically 
heterogeneous and more than 30 genes have been associated 
with DCM, although the evidence of disease association is highly 
variable. The most common genetic causes of DCM are found in 
TTN, MYH7, LMNA, and TNNT2 (43). Importantly, mutations in 
LMNA have been associated with a form of DCM with significant 
cardiac conduction abnormalities and the occurrence of cardiac 
arrhythmia. Therefore, the identification of a mutation in LMNA 
during molecular autopsy has the potential to offer pre-symp-
tomatic intervention (e.g., implantable defibrillator, pacemaker) 
to surviving family members carrying the familial LMNA muta-
tion (45). ACM is characterized by fibrofatty infiltration of the 
myocardium and a high susceptibly to ventricular arrhythmia 
and SCD at young age (46). The disease is most commonly 
inherited in an autosomal-dominant fashion and gene mutations 
are mostly found in the following desmosomal genes: PKP2, JUP, 
DSP, DSC2, and DSG2 (47). ACM has a variable disease expres-
sivity and reduced penetrance among mutation carriers (48). It 
may affect the right ventricle predominantly (arrhythmogenic 
right ventricular cardiomyopathy – ARVC), the left ventricle, or 
both. Genetic testing in ACM can be helpful to identify family 
members at risk (7).

THe MOLeCULAR AUTOPSY

Post-mortem genetic testing, using DNA extracted from blood or 
other tissue after death, has an important role in the identification 
of the underlying genetic cause in SADS cases (i.e., SCD cases 
with negative toxicology and pathology analysis). This process 
has been termed the “molecular autopsy” (Figure  2). Recent 
guidelines recommend the use of post-mortem genetic testing 
in cases where clinical evidence suggests a diagnosis of the LQTS 
or CPVT (5, 7).

In 1999, the identification of LQT1 as the underlying cause of 
death in a 19-year-old female was reported by Ackerman and col-
leagues (49). Several years after this report, Chugh and colleagues 
analyzed 5 LQTS-associated genes (KCNQ1, KCNH2, SCN5A, 
KCNE1, and KCNE2) in 12 sudden unexplained death cases in 
whom no diagnosis could be established after thorough post-
mortem analysis of 270 adult SCD cases. Through this analysis, 
the authors identified the same KCNH2 missense mutation in 2 
out of 12 cases (yield of genetic testing: 17%) (50). Shortly after-
wards, another study reported the post-mortem genetic analysis 
in 10 cases of juvenile (13–29 years) sudden unexplained death 
cases and identified LQTS-associated mutations in two patients 
(51). Subsequently, multiple similar post-mortem genetic studies 
have been conducted by several groups (52–58). In one study, 
33 young cases were examined for LQT1–6 genes, and a puta-
tive pathogenic mutation was identified in 15% of patients (59). 
Tester and colleagues conducted a post-mortem analysis in 49 
cases screening 18 exons of the CPVT-associated gene RYR2 
(60). In a subsequent study in the same cohort, these authors 
analyzed the three major genes associated with LQTS (KCNQ1, 
KCNH2, and SCN5A) (61). The genetic yield of CPVT and that 
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of LQTS genetic testing were, respectively, 14 and 20%, with an 
overall genetic yield reaching 35%. In an extended cohort of 173 
autopsy-negative sudden unexplained death cases from the same 
group, five genes associated with LQTS and RYR2 were screened 
(62). In this expanded analysis, 25% out of the 173 cases carried a 
potentially pathogenic variant in a LQTS-associated gene (14.5%) 
and RYR2 (12%). Even though SCD was the presenting event in 
the majority of these patients, nearly 60% of the mutation positive 
cases had a family history of cardiac events. These studies showed 
that a significant proportion of unexplained death in the young is 
caused by cardiac channelopathies.

NeXT-GeNeRATiON SeQUeNCiNG 
MOLeCULAR AUTOPSY STUDieS

The above-mentioned molecular autopsy studies have inves-
tigated a small number of channelopathy-associated genes. 
Recent advances in sequencing technologies (next-generation 
sequencing) have now made it possible to screen in detail an 
increasing number of genes in cardiac gene panels (i.e., >100 
genes) at relatively low cost and using a limited amount of DNA. 
In addition, whole-exome sequencing (WES), where the coding 
regions of all ~22,000 genes is sequenced, has been introduced in 
post-mortem genetic testing as well. It is important to note that 
these NGS-based studies did not only consider more genes, but 
also extended to the inclusion of genes involved in the inherited 
cardiomyopathies (in addition to the channelopathy genes). The 
role of the cardiomyopathy-associated genes in normal-cardiac 
autopsy SCD cases remains largely unexplored. In evaluating 
these NGS-based studies, one should keep in mind that they 
not only screened varying numbers of genes but also employed 
different methods of variant prioritization (based on minor 

allele frequency (MAF) in the general population as cut-off, 
in  silico prediction tools for variant pathogenicity). Therefore, 
the genetic yield of these studies should be interpreted in relation 
to the varying variant curation and categorization. Bagnall and 
colleagues, conducted a post-mortem WES study in 28 sudden 
unexplained death cases and identified three rare variants in the 
major LQTS-associated genes when they focused their analysis 
on only a small panel of four genes (KCNQ1, KCNH2, SCN5A, 
and RYR2) (63). In subsequent analyses, more than 70 arrhythmia 
and cardiomyopathy-associated genes were included and this 
led to the identification of an additional variant in CACNAC1 
that had been previously reported in a LQTS family. Of note, 
this additional analysis (using a MAF cut-off of <0.1% in 7500 
publically available exomes) identified a large number of variants 
of unknown significance (VUSs), attesting to the complexity of 
analyzing such data. In a more recent study, WES followed by the 
analysis of 135 genes associated with cardiac channelopathies and 
cardiomyopathies was performed in 59 SADS victims (age range: 
1–51 years) (64). Of these, 20 cases had subtle post-mortem car-
diac structural abnormalities not reaching the diagnostic criteria 
for one of the cardiomyopathies. A primary analysis using a filter-
ing MAF ≤0.02% based on the NHLBI exome sequencing project 
identified rare variants in seven probands. Three of these variants 
were located in ion channel genes of which two were known 
LQTS-associated de novo variants in SCN5A and one known 
CPVT-associated variant in RYR2. The other four rare variants 
were found in cardiomyopathy-associated genes. In a secondary 
analysis, using a MAF cut-off of 0.02–0.5%, previously reported 
variants were identified in an additional 10 probands. However, 
the clinical significance of these variants has yet to be determined.

Recently, Hertz and colleagues screened 52 SCD cases with 
non-diagnostic structural cardiac abnormalities during autopsy 
using a gene panel consisting of 100 genes previously associated 
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with cardiac channelopathies and cardiomyopathies (65). 
Genetic variants were prioritized using MAF in control popula-
tions (<1%), measures of evolutionary sequence conservation, 
prediction of deleteriousness, and prior disease association of 
the variant in the Human Genome Mutation Database (HGMD). 
Variants were subsequently classified as (a) likely, (b) unknown, 
or (c) unlikely to have functional effects by two physicians. Fifteen 
individuals (29%) were identified as carriers of variants with 
“likely functional effects” according to their classification system. 
In another study, Ackerman and colleagues performed WES and 
gene-specific analysis of 117 sudden death-susceptibility genes 
in 14 cases of sudden unexplained death in the young (66). In 
their analyses, eight rare variants in six genes were identified in 
seven cases. More recently, the same authors performed WES in 
21 cases in whom no mutation was found during the screening 
of KCNQ1, KCNH2, SCN5A, and RYR2 (67). Interestingly, three 
variants (CALM2-F90L, CALM2-N98S and PKP2-N634fs) were 
classified as pathogenic according to the quideline recommenda-
tions of the American College of Medical Genetics (ACMG) (68). 
Of the 18 remaining cases, 7 carried at least 1 VUS in 1 of the 100 
genes associated with SCD.

Thus far, several comparable post-mortem genetic studies 
using NGS have been conducted recently by several groups 
(69–72). Collectively, from these studies, it is clear that expanding 
the number of tested genes from small channelopathy panels to 
large panels containing a broader set of channelopathy genes, and 
even the cardiomyopathy-associated genes, increases the yield of 
likely causal variants only slightly as opposed to the large number 
of VUSs that are uncovered. The interpretation of these variants 
is challenging and their clinical utility is currently minimal. In 
addition, the large majority of SADS cases remain unexplained 
despite NGS screening of large gene panels.

iMPLiCATiNG GeNeTiC vARiANTS 
iDeNTiFieD THROUGH NGS iN THe 
MOLeCULAR AUTOPSY

Post-mortem genetic testing using NGS is plagued by the same 
issues as genetic testing in patients with aborted SCD (and many 
other disorders) with the added complication that one cannot 
undertake further clinical tests in the deceased patient. The 
incorporation of NGS in post-mortem genetic testing requires 
the capability of assessing the genetic variants identified. False 
assignment of causality can have significant consequences for 
patients and their families (73). Even though assessing patho-
genicity (i.e., causality) of genetic variants is complex, there are 
several steps to aid in this process (74, 68). It is important to note 
that each of these steps contributes to rather than determines the 
classification of a given variant.

Gene-Level implication
Unlike the major channelopathy or cardiomyopathy-associated 
genes, some of the minor associated genes have been implicated 
in disease in small studies and evidence of disease association 
has not always been robust (absence of linkage data or absence 
of recurrent implication of the gene in independent families). 

Including these minor genes in NGS panels often leads to the 
identification of a plethora of VUSs. Their clinical utility in 
establishing the diagnosis in a SADS case and for genetic risk 
stratification of family members is, therefore, likely to be small. 
Therefore, the evaluation of an identified variant should start with 
the assessment of the published data linking that gene to a specific 
form of disease. In addition, these data should also be taken into 
consideration during the design of clinical channelopathy and 
cardiomyopathy gene panels.

variant-Level implication
The assessment of a genetic variant has to take into account the large 
background of genetic variation in the human genome. Healthy 
individuals carry multiple rare protein-altering variants and this 
has been described as “genetic background noise.” Consequently, 
one of the first important steps in variant prioritization is filter-
ing using the variant MAF in the general population using large 
ancestry-matched publically available reference databases, such 
as the Exome Aggregation Consortium (WES data from >60,000 
individuals) (75). However, rarity of a variant does not, by defini-
tion, implicate disease causality.

After the identification of a genetic variant in a SADS case, 
co-segregation with disease status should whenever possible be 
performed in surviving family members. De novo inheritance of 
rare genetic variation in an SCD-associated gene in a SADS case, 
with unaffected parents, provides strong evidence for disease 
association. Of importance, parental mosaicism, as opposed to 
de novo inheritance should be taken into account during genetic 
counseling as this could lead to the false assumption that siblings 
are genetically unaffected. Parental mosaicism has been described 
previously in Timothy syndrome (LQT8) (76).

The previous identification of the genetic variant in an inde-
pendent proband displaying the same or similar phenotype is 
also highly valuable. Such previous associations can be found by 
scanning the literature and by using in-house or public databases 
of disease variants. Of importance, these previous published stud-
ies should be assessed carefully (i.e., study design, co-segregation 
in the family, functional data) to assess the strength of disease 
association. In this regard, some of the previously published 
“pathogenic” variants in the literature have later been shown to 
be at such a high MAF in the general population that their role 
in disease is questioned (77–79). The assessment of a variant’s 
pathogenicity would benefit from centralized depositories that 
include curated evidence for previously identified disease-
associated variants.

Computational prediction tools, such as sorting intolerant 
from tolerant (SIFT) and PolyPhen2, can be helpful in the process 
but should be handled with caution. Measures of evolutionary 
sequence conservation among species (orthologs) and among 
proteins derived from same ancestral gene (paralogs) can have 
value in the assessment of variants. Paralog annotation tools 
have been applied to the cardiac channelopathies and are freely 
available online (80). The Grantham score is a measure of the 
difference in the physicochemical properties of the amino acid 
substitutions and a higher score indicates larger differences 
between amino acids (81). Combining these in silico prediction 
tools has been performed for KCNQ1, KCNH2, and SCN5A and 
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has shown a synergistic utility during the assessment of genetic 
variation within these genes (82, 83). Most of the recently con-
ducted NGS-based port-mortem genetic testing studies have also 
incorporated in  silico prediction tools in variant prioritization 
(65, 69, 70). Despite these developments, prediction algorithms 
should not be regarded as stand-alone evidence of pathogenicity. 
Although certain classes of genetic variation, such as splice-site 
or truncating variants, are much more likely to affect the protein, 
their role should be assessed in the specific gene context and if 
loss of function is a known mechanism of disease. Functional 
studies can contribute to the understanding of a variant’s biologi-
cal consequences. However, these studies are labor-intensive and 
require specialized research centers.

CONCLUSiON AND FUTURe DiReCTiONS

Next-generation sequencing (NGS) has made it possible to screen 
large gene panels, spanning not only the channelopathy genes but 
also the cardiomyopathy genes, in search for the cause of SCD. 
While these panels have made it possible to broadly screen for 
genetic variation, it comes with the challenge of interpreting 
any identified VUS. As seen for the cardiac channelopathies and 
cardiomyopathies, the genetic architecture of SADS is character-
ized by large genetic and allelic heterogeneity, which adds to the 
difficulty of genetic screening in these patients. Even though 
the majority of SADS cases remain elusive after NGS screening, 
the generated data make it possible to combine similar datasets 

through future international collaboration. This has the huge 
potential to demonstrate statistically an excess of rare genetic 
variation in known SCD genes (or more interestingly in new 
genes) in comparison to controls through burden testing (74). 
Even though presumed to be monogenic, the genetic architecture 
of SADS is largely unknown in the majority of cases and such 
case-control studies could point toward a genetic model in which 
an accumulation of rare genetic variation is required to develop 
symptoms. However, implementation of the oligogenic model 
in the segregation within families will be challenging and may 
require different approaches.
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