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Abstract 
 

Impaired kidney function, as measured by reduced estimated glomerular filtration rate (eGFR), has 

been associated with increased risk of coronary heart disease (CHD) in observational studies, but it is 

unclear whether this association is causal or the result of confounding or reverse causation.  In this 

study we applied Mendelian randomisation analysis using 17 genetic variants previously associated 

with eGFR to investigate the causal role of kidney function on CHD. We used 13,145 participants 

from the UCL-LSHTM-Edinburgh-Bristol (UCLEB) Consortium and 194,427 participants from the 

Coronary ARtery DIsease Genome-wide Replication and Meta-analysis plus Coronary Artery Disease 

(CARDIoGRAMplusC4D) consortium. We observed significant association of an unweighted gene 

score with CHD risk (odds ratio=0.983 per additional risk allele, 95%CI=0.970-0.996, p=0.008).  

However, using weights calculated from UCLEB, the gene score was not associated with disease risk 

(p=0.11). These conflicting results could be explained by a single SNP, rs653178, which was not 

associated with eGFR in the UCLEB sample, but has known pleiotropic effects that prevent us from 

drawing a causal conclusion. The observational association between low eGFR and increased CHD 

risk was not explained by potential confounders, and there was no evidence of reverse causation, 

therefore leaving the remaining unexplained association as an open question. 

 

 Introduction 

Chronic kidney disease (CKD) occurs in 15-20% of the general population aged 65 years or older. 

Markers of CKD, such as a low estimated glomerular filtration rate (eGFR) and/or elevated Urine 

Albumin Creatinine Ratio (UACR), are major independent risk factors for cardiovascular and all-cause 

mortality  1,2. In particular, people with lower eGFR are at a higher risk of developing coronary heart 

disease (CHD).  
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Although it has been proposed that CKD may be causally associated with CHD, the precise biological 

pathways for this association are not well understood, and hypotheses regarding this finding are 

varied, broadly involving inflammatory pathways and/or vascular calcification 3-6. Currently, people 

with CKD are treated with blood pressure lowering drugs and statins to prevent poor outcomes. 

However, many genetic variants that are associated with high blood pressure are not associated 

with eGFR or CKD 7, as might be expected if they were on the same causal pathway to CHD. Also, 

there is little overlap in association between CKD and CHD genetic variants and early markers of 

cardiovascular disease, which would be expected if kidney function were causally related to CHD 8. 

People with CKD tend to have had adverse early life circumstances that predispose them to 

cardiovascular disease 9-11, and individuals who are overweight at earlier age are more likely to have 

CKD at older age suggesting that CKD is a marker or consequence of a cumulative adverse life style. 

Hence, it is not yet clear whether low kidney function directly causes CHD or whether the observed 

association is due to other shared risk factors/confounders, in particular socioeconomic status, early 

life risk factors and unhealthy lifestyle.  

Here we applied Mendelian Randomisation (MR) to determine whether lower eGFR per se has a 

causal role to contribute to later CHD. To our knowledge, this is the first MR study to explicitly 

investigate the influence of eGFR on CHD.  Previously, Olden et al studied whether several genetic 

variants affect both eGFR and CHD 8.  They identified one SNP, rs653178 that was associated with 

both; but while this is consistent with a causal effect, they did not consider whether it met the 

assumptions required for MR nor did they estimate a causal effect size.  Here we go further by 

combining 17 SNPs into a single gene score, which can improve the power of MR studies when 

individual SNPs are not significantly associated with the outcome 12, and we use a richly phenotyped 

data set, the UCLEB consortium 13 to thoroughly examine the possibility of violating the MR 

assumptions through confounding or pleiotropy. 
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Research design and methods 

Study design 

We used data from two consortia, UCLEB 13 and CARDIoGRAMplusC4D 14-16.  The former 

allowed assessment of the MR assumptions for eGFR, namely that the gene score is associated with 

eGFR, not associated with potential confounders of the eGFR-CHD association, and not associated 

with other biomarkers of CHD that might represent alternative pathways than that through eGFR.   

In UCLEB, we used individual patient data from 2,249 cases of CHD and 10,896 controls from 7 

cohort studies: the British Regional Heart Study (BRHS), British Women’s Heart and Health Study 

(BWHHS), Caerphilly Prospective Study (CAPS), Edinburgh Type-2 Diabetes Study (ET2DS), Edinburgh 

Artery Study (EAS), English Longitudinal Study of Ageing (ELSA), and Whitehall II Study (WHII). Four 

studies (BRHS, BWHHS, CAPS, and ET2DS) have eGFR available. UCLEB has 116 phenotypes related to 

cardiovascular function, allowing SNPs to be thoroughly assessed for validity of the MR assumptions. 

 

The CARDIoGRAMplusC4D consortium provides a large sample for assessing genetic 

association with CHD.  The Consortium released summary statistics from 3 meta-analyses of 

coronary artery disease: CARDIoGRAM genome-wide association study (GWAS) with 22,233 CHD 

cases and 64,762 controls 16, C4D GWAS with 15,420 CHD cases and 15,062 controls 15, and the 

combined data of these two GWAS with additional cohorts, CARDIoGRAMplusC4D Metabochip, with 

63,746 CHD cases and 130,681 controls 14.  These consortia data allow the assessment of genetic 

association with CHD in very large samples, but do not provide information on eGFR. 

 

Selection of SNPs and construction of gene score 
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We identified 32 SNPs previously reported to be associated with eGFR (S1 Table). Seventeen of 

them, which are not in linkage disequilibrium (LD) and have been genotyped in UCLEB, were 

shortlisted as potential components of an instrument for MR (S2 Table) because they could be 

investigated for validity of the MR assumptions using the UCLEB data. Due to the different 

genotyping platforms used in CARDIoGRAM GWAS, C4D GWAS, and CARDIoGRAMplusC4D 

Metabochip, our 17 selected SNPs are not always available in all 3 meta-analyses. Thus the total 

sample sizes vary across SNPs used to investigate association with CHD (S1 Fig). 

 

These selected SNPs were then combined into gene scores. Two types of gene score were used: 1)  

unweighted gene score, defined for subject i as ௜ܵ = ∑ 	݃௜௝௝  where 	݃௜௝  is the count of eGFR-

increasing alleles for subject i at SNP j with the direction of effect taken from the UCLEB data,  and 2) 

weighted gene score, ௜ܵ = ∑ ݃௜௝௝	௝ݓ	 , which includes  estimates of effects on eGFR, ݓ௝, at each SNP 

based on the UCLEB data.  More precisely, the ݓ௝  are the estimates from linear regression analyses 

of eGFR on SNP j, under additive genotypic coding.  

 

Exposure and outcome variables 

Our primary outcome is CHD (defined as fatal or non fatal myocardial infarction, or 

revascularization, from both diagnosis validation and self-report) and the exposure is the level of 

kidney function measured by eGFR. In the UCLEB data, we derived eGFR based on creatinine using 

the modification of diet in renal disease (MDRD) model 17 

(min/1.73݉ଶ/ܮ݉)ܴܨܩ = 175 ∗ (0.011312 ∗ ଵ.ଵହସି((ܮ/݈݋݉ݑ)݁݊݅݊݅ݐܽ݁ݎܿ ∗ (ܽ݃݁)ି଴.ଶ଴ଷ ∗(0.742	݂݅	݂݈݁݉ܽ݁).          (1) 

 eGFR was normally distributed in our data, therefore no further transformation was applied. 
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Potential confounding factors 

From the total of 116 traits available in UCLEB, we systematically checked for potential 

confounding factors across 94 traits measured in up to 7 studies. We identified potential 

confounders by testing each of these traits for both eGFR-trait (available in 4 studies) and CHD-trait 

associations. As the presence of both associations is necessary but not sufficient to establish 

confounding, we considered those associated traits as potential confounding factors, unless there is 

additional external evidence that a particular biomarker is renally cleared, i.e. potentially on the 

causal pathway between kidney function and CHD.   For the eGFR-trait and CHD-trait associations we 

controlled the false discovery rate at 0.05 by the Benjamini-Hochberg procedure. We used a 

permutation procedure to check whether correlation among traits would cause this procedure to be 

conservative, finding that the overall level of correlation is negligible in this context (see 

Supplementary Methods). 

 

SNP instrument validity 

We used UCLEB data to test the validity of our gene scores as instrumental variables under 

the three MR assumptions: 1) association between gene scores and eGFR, 2) absence of association 

between gene scores and common causes of eGFR and CHD, and 3) absence of pathways between 

gene scores and CHD other than through eGFR.  We tested assumption 1 using linear regression of 

eGFR on the gene scores, assumption 2 using linear regression of each identified potential 

confounder on the gene scores (except gender where logistic regression was applied), and 

assumption 3 using linear regression of each trait in UCLEB (whether or not a potential confounder) 

on the gene scores.  Each regression adjusted for study as a categorical covariate.  We controlled the 

false discovery rate at 0.05 by the Benjamini-Hochberg procedure. 
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Mendelian Randomisation 

We tested for a causal effect by testing the association between each gene score and CHD 

and appealing to the MR principle.  As only summary odds ratios and their standard errors were 

available from the CHD consortia, we applied the Johnson formula described by Burgess et al 12, in 

which the regression coefficient of the gene score on CHD is 



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1
, where Yjβ̂  is the estimated log odds ratio of SNP j on CHD, Yjs  is 

its standard error, and jw  is a predetermined weight.  The unweighted score has 1=jw  for all 

SNPs, whereas the weighted score sets jw  to the linear regression coefficient of SNP j for eGFR, 

here estimated from the UCLEB data (weights and odds ratios were calculated for the eGFR 

increasing alleles).  This is an example of two-sample Mendelian randomization 18 in which the 

exposure and outcome associations are measured in different samples.  Two-sided tests of 

association were performed by comparing the ratio of YSβ̂  and its standard error to a standard 

normal distribution. 

Using the weighted score, YSβ̂  is an estimate of the causal effect of eGFR on CHD, but we 

avoid this interpretation as our aim here was merely to detect the presence of a causal effect. 

 

Reverse Mendelian Randomisation 
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We considered whether a causal effect exists in the opposite direction, with CHD acting to 

cause reduced kidney function.  We constructed an weighted gene score from 51 SNPs associated 

with CHD at genome-wide significance, as reported by CARDIoGRAMplusC4D 14 and tested this score 

for association with eGFR in the UCLEB data using summary odds ratios as above. 

Results 

A summary of CHD cases and controls in UCLEB is shown in Table 1. As expected, we observed that 

eGFR is significantly negatively associated with CHD (OR=0.984 per ml/min/1.73m2 increase, 

95%CI=0.979-0.988, p =1.98x10-12) across its entire range and particularly when comparing subjects 

with reduced (<60 ml/min/1.73m2) eGFR to those in the intermediate (60-90ml/min/1.73m2), and 

normal/high range (≥90ml/min/1.73m2, Fig. 1), consistent with previous studies of the MDRD eGFR-

CHD association 19.  

 

From 94 traits available in 7 UCLEB studies, we identified 28 potential confounding factors of the 

eGFR-CHD association (Fig. 2, S4 Table). These are generally concordant with previously observed 

correlates of eGFR and risk factors for CHD 19. Some discrepancies, for example blood pressure and 

smoking (ever/never), which were not associated with eGFR in UCLEB are likely due to the cross-

sectional nature of the data, and have been previously seen in other data 20. One of the potentially 

confounding factors was NTproBNP, which is known to be renally cleared 6. NTproBNP was therefore 

considered to be a variable on the causal pathway between eGFR and CHD and not a confounding 

variable.  We also excluded percentage body fat because this was only available in the ET2DS study, 

which did not have many of the other confounders measured. Due to missing data in the remaining 

26 potential confounders, we then investigated the observational association between eGFR and 

CHD in a reduced sample size of 1547 (OR=0.977 per 1 ml/min/1.73m2 increase, 95%CI= 0.965-0.989, 

p= 3.38x10-4). After adjusting for 26 potential confounders, the association between eGFR-CHD was 
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slightly attenuated and remained borderline significant (OR=0.868  per 10 ml/min/1.73m2 increase, 

95% CI= 0.760-1.000, p=0.05). 

 

In UCLEB, the combination of 17 SNPs explained 1.5% of the variation in eGFR.  The corresponding F 

statistics were 59 and 91 for unweighted and weighted scores respectively, indicating that the gene 

score is a strong instrument.  In testing for association between gene scores and all traits available in 

UCLEB (Fig. 3), our gene scores showed an exclusive association with kidney function measurements, 

including eGFR (adjusted p=2.0x10-12 and p= 3.3x10-19 for unweighted and weighted gene scores 

respectively), creatinine (adjusted p=6.0x10-9 and p=6.8x10-16), and serum urea concentration 

(adjusted p=9.8x10-3 and p= 3.1x10-5). This confirms the first MR assumption that our gene scores 

are indeed a good proxy for kidney function. Secondly, associations between our gene scores and 26 

potential confounding factors and NTproBNP were not significant, meeting the second MR 

assumption that our gene scores are not associated with common causes of eGFR and CHD.  

Although we cannot be sure that our gene scores are not associated with unmeasured confounders, 

these results (including many of the strongest biomarkers for CHD) suggest that any such 

confounding is weak. Lastly, association between our gene scores and other traits available in UCLEB 

do not reach significance. Therefore our gene scores appear specific to eGFR and other kidney-

related traits. 

 

We found significant association of the unweighted score with CHD (OR=0.983 per additional eGFR 

increasing allele, 95%CI=0.970-0.996, p=0.008), suggesting a causal effect of eGFR on CHD. This was 

in the direction to that seen in the observational data.  However, the association was not significant 

when using a weighted score (OR=0.993, 95%CI=0.984-1.002, p=0.11).  Inspection of the weights 

given to the individual SNPs suggested that these results could be explained by rs653178 alone. 
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Previously, it has been shown that there is little overlap between well-validated SNPs for kidney 

disease and CHD, where only rs653178 was highly associated with both cystatin-C-based eGFR and 

CHD 21. However this was not the case in UCLEB, in which rs653178 was not associated with eGFR 

and received the smallest weight among all 17 instrument SNPs (S6 Table). Therefore, using weights 

from UCLEB diminished evidence of a causal association observed with the unweighted score.  

 

The unweighted gene score was further investigated to assess the sensitivity of the observed 

nominal evidence of a causal association. We first excluded rs1260326, which has known pleiotropic 

effects22, and observed the same association signal remaining (OR=0.991, 95%CI=0.981-1.001, 

p=0.003).  Secondly we excluded rs653178 which could have stronger effect through cystatin-based 

eGFR instead of creatinine-based eGFR22 from the gene score, and found that the evidence of causal 

effect disappeared (OR=0.994, 95%CI=0.982-1.005, p=0.291). This implies that rs653178 is driving 

the significant association of the gene score with CHD. To confirm this, we excluded each of the 17 

SNPs at a time, and observed that only the exclusion of rs653178 removed the association signal. In 

addition, instead of identifying the eGFR increasing alleles from the UCLEB data, we incorporated 

external information on the direction of effect for 9 SNPs that were available in Olden et al, to allow 

more accurate estimates due to their larger sample size.  While the eGFR increasing alleles in UCLEB 

are retained for the remaining SNPs, for 3 out of the 9 SNPs from Olden et al a different eGFR 

increasing allele was identified in comparison to UCLEB (S6 Table).  After adjusting the unweighted 

score accordingly, the evidence of a causal effect remained (OR=0.971, 95%CI=0.950-0.992, 

p=0.007). 

We further investigated the case in which eGFR<60 ml/min/1.73m2 (stage 3 nephropathy) which has 

been significantly associated with increased CHD events 23,24. If there is a causal influence of eGFR on 

CHD, it may be stronger in those for whom an increased association is observed. By conditioning on 

eGFR, a biased estimate of causal effect may result 25. However, we observed little evidence of a 
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causal association between eGFR and CHD with the unweighted score (OR=0.982, 95%CI=0.963-

1.002, p=0.083) and the weighted score (OR=0.991, 95%CI=0.974-1.008, p =0.286) when restricting 

analysis to subjects with eGFR<60. 

Since the gene scores were not specific to eGFR but also associated with other kidney function traits, 

we adjusted the regression of CHD on eGFR for creatinine and serum urea concentration in the 

UCLEB data alone.  Neither gene score was significantly associated with CHD in the UCLEB data, with 

or without adjustment for creatinine and serum urea concentration. 

Finally, the reverse MR did not show an association of the CHD gene score with eGFR (β=-0.120, 

95%CI=-1.271-0.872, p=0.715). 



13 
 

Discussion 

We applied Mendelian Randomisation to determine whether lower eGFR has a causal role in CHD. 

To improve the power of MR, we combined 17 SNPs into a single gene score. By using a richly 

phenotyped data set in the UCLEB consortium, we thoroughly examined whether our gene score 

meets the assumptions of Mendelian Randomisation studies, in that it is associated with eGFR, not 

associated with potential confounders of the eGFR-CHD association, and not associated with other 

biomarkers of CHD that might represent alternative pathways than that through eGFR.  The gene 

scores appeared to meet these assumptions although we noted associations with additional kidney 

function traits that might represent alternative pathways through kidney function to that measured 

by eGFR. 

We found significant evidence of a causal effect on CHD using an unweighted score. However, the 

weighted score revealed that this result is driven by rs653178, which was not associated with eGFR 

in UCLEB (and therefore  unreliably down-weighted the significance of the unweighted score). 

Potential reasons that could cause the discrepancy of rs653187 between UCLEB and the previous 

study by Olden et al. are random sampling, low power due to the smaller sample size in UCLEB, and 

a substantially weaker association between rs653178 and creatinine-based eGFR (p=1x10-4) 

compared to cystatin-C-based eGFR (p=3.5x10-11) 22.  Further analyses, including taking the direction 

of effect from external sources rather than the UCLEB data, and selecting study participants based 

on low eGFR, did not yield any stronger evidence of a causal effect. 

One explanation of our results is that, if a causal effect exists, it may act only through some 

pathways contributing to measured eGFR, marked by rs653178, whereas other pathways marked by 

the other 16 SNPs do not have a causal effect. However, rs653178 has been previously shown to be 

associated with a number of phenotypes, including mean arterial pressure 26, blood pressure 27, 

celiac disease 28 and peripheral artery disease, a known complication of both CHD and CKD 29. 
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Therefore the known pleiotropic effect of rs653178 restricts inference of a direct causal effect of 

eGFR on CHD.   

Our study has some limitations.  Only 1.5% of the variation in eGFR was explained by the gene scores 

comprising 17 SNPs.  In the largest consortium data available, CARDIoGRAMplusC4D including 

approximately 200,000 individuals, we would have 74% and 25% power to detect causal odds ratios 

of 0.9 and 0.95 respectively 30, both in excess of the observational odds ratio of 0.98 in the UCLEB 

consortium.  Although the study was likely underpowered over the full range of eGFR, a stronger 

causal effect may exist among those with eGFR<60, but our gene scores were not associated with 

CHD among those subjects.  A score including more eGFR associated SNPs would have more power 

to detect a causal effect, though at greater risk of violating the MR assumptions.  Another limitation 

concerns the validation of the MR assumptions for our gene scores.  While UCLEB provides a richly 

phenotyped and large data set, other phenotypes not measured in those studies may be 

confounding factors or show pleiotropic effects of our gene scores.  Furthermore our power to 

detect confounding and pleiotropy was reduced by control for multiple testing, which we deemed 

necessary to avoid falsely inferring that our gene scores are invalid instruments. 

Observational studies have mainly shown increased risk of CHD among those with low MDRD eGFR 

compared to those in the normal range. Studies using newer biomarkers provide clear evidence that 

there is association even at higher eGFR 31. We have treated eGFR as a continuous variable in MR 

analysis, which may have reduced power if the causal effect is restricted to subjects with low MDRD 

eGFR.  We took this approach because the associated SNPs apparently influence eGFR over its entire 

range so that a standard MR analysis would correspond to a population-wide intervention on eGFR 

levels.  Again however, we found no association between the gene scores and CHD among subjects 

with low eGFR.  More robust methods for MR analysis in discrete exposure strata have recently 

become available 25,32 and could be applied here.  However, we believe our current results are not 

sufficiently encouraging to warrant these approaches. 
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We are not the first to observe that inflammatory and thrombotic markers associated with CHD are 

raised in people with CKD5. These potential confounding biomarkers may be a result of other life 

style associated risk factors leading to CKD, in particular overweight at younger age and subsequent 

obesity 33-35. In total we identified 27 potential confounders but upon adjustment the association 

between eGFR and CHD remained significant with a similar odds ratio.  Our power to detect 

confounders was limited by the number of cases of CHD in UCLEB, the range of phenotypes 

considered (in particular excluding socio-economic status), the limited sample size for some 

particular phenotypes and the multiple testing burden, and further confounders may exist that 

attenuate or abolish the eGFR-CHD association.  We used reverse MR to address the possibility of 

reverse causation, but did not observe significant association between a gene score for CHD and 

levels of eGFR. 

In conclusion, this study observed weak evidence for a causal effect of low eGFR on CHD risk, while 

the observational association was not explained by potential confounders nor by reverse causation. 

However, this result was highly influenced by rs653178, which has known pleiotropic effects, 

therefore restricting any inference of a direct causal effect of eGFR on CHD.  Our results leave the 

remaining unexplained association between eGFR and CHD as an open question. 
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Figure legends and tables 

 Figure 1. Association between baseline eGFR  and CHD in quintiles (left), and comparing low and 

moderate eGFR to normal/high eGFR (right), in the UCLEB data (1515 cases, 5247 controls). 

 

Figure 2. Benjamini-Hochberg adjusted P-values for CHD-trait and eGFR-trait (N range of CHD-

trait=139-13145, and N range of eGFR-trait=138-6764).  Horizontal line shows adjusted P=0.05 28 

traits significantly associated with both CHD and eGFR on dotted vertical lines are identified as 

potential confounding factors: age, alcohol, body mass index, ECG Cornell product, cotinine, CRP, D-

Dimer, Eosinophils, factor VIII, Factor IX, FEV1, fibrinogen, FVC, HDL, IL-6, Neutrophil, percentage 

body fat, peak expiratory flow rate, NT-proBNP, ECG QTc, ECG QT interval, sex, total serum protein 

concentration , Triglyceride, tPa, von Willebrand factor, waist circumference, weight. Abbreviations 

used in the figure are defined in S3 Table. 
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Figure 3. Benjamini-Hochberg adjusted P-values for unweighted and weighted gene score-trait 

associations (N range=139-15609). Only kidney function traits (eGFR, creatinine, and serum urea 

concentration) are shown to be significantly associated with either gene score (dotted vertical lines). 

See S5 Table for further details of summary statistics. 

 

Table 1 Descriptive table for CHD cases and controls in 7 studies 

 N  

(available CHD) 

N 

(available eGFR) 

Mean age % Male Mean eGFR 

(ml/min/1.73m2) 

 cases controls cases controls cases controls cases controls cases controls

BRHS 630 1823 619 1802 69.2 68.8 100 100 61.9 63.7

BWHHS 338 1686 330 1647 71.3 70.6 0 0 60.2 63.5

CAPS 354 1040 343 974 57.0 56.7 100 100 69.8 69.2

ET2D 227 830 223 826 69.0 67.6 73.1 45.5 63.6 72.1

EAS 185 670 0 0 70.8 69.7 57.8 46.3 NA NA

ELSA 316 1669 0 0 75.4 73.3 65.2 50.7 NA NA

WHII 199 3178 0 0 63.3 60.6 85.4 75.0 NA NA
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