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Meta-analysis of 375,000 individuals identifies 38 susceptibility1

loci for migraine2
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Migraine is a debilitating neurological disorder affecting around 1 in 7 people worldwide,92

but its molecular mechanisms remain poorly understood. Some debate exists over93

whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction94

with secondary vascular changes. Genome-wide association (GWA) studies have thus far95

identified 13 independent loci associated with migraine. To identify new susceptibility96

loci, we performed the largest genetic study of migraine to date, comprising 59,674 cases97

and 316,078 controls from 22 GWA studies. We identified 44 independent single98

nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10-99

8) that map to 38 distinct genomic loci, including 28 loci not previously reported and the100

first locus identified on chromosome X. In subsequent computational analyses, the101

identified loci showed enrichment for genes expressed in vascular and smooth muscle102

tissues, consistent with a predominant theory of migraine that highlights vascular103

etiologies.104

105

Migraine is ranked as the third most common disease worldwide, with a lifetime prevalence of106

15-20%, affecting up to one billion people across the globe1,2. It ranks as the 7th most disabling107

of all diseases worldwide (or 1st most disabling neurological disease) in terms of years of life lost108

to disability1 and is the 3rd most costly neurological disorder after dementia and stroke3. There is109

debate about whether migraine is a disease of vascular dysfunction, or a result of neuronal110

dysfunction with vascular changes representing downstream effects not themselves causative111

of migraine4,5. However, genetic evidence favoring one theory versus the other is lacking. At the112

phenotypic level, migraine is defined by diagnostic criteria from the International Headache113

Society6. There are two prevalent sub-forms: migraine without aura is characterized by recurrent114

attacks of moderate or severe headache associated with nausea or hypersensitivity to light and115

sound. Migraine with aura is characterized by transient visual and/or sensory and/or speech116

symptoms usually followed by a headache phase similar to migraine without aura.117

118

Family and twin studies estimate a heritability of 42% (95% confidence interval [CI] = 36-47%)119

for migraine7, pointing to a genetic component of the disease. Despite this, genetic association120

studies have revealed relatively little about the molecular mechanisms that contribute to121

pathophysiology. Understanding has been limited partly because, to date, only 13 genome-wide122

significant risk loci have been identified for the prevalent forms of migraine8–11. In familial123

hemiplegic migraine (FHM), a rare Mendelian form of the disease, three ion transport-related124

genes (CACNA1A, ATP1A2 and SCN1A) have been implicated12–14. These findings suggest that125
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mechanisms that regulate neuronal ion homeostasis might also be involved in migraine more126

generally, however, no genes related to ion transport have yet been identified for these more127

prevalent forms of migraine15.128

129

We performed a meta-analysis of 22 genome-wide association (GWA) studies, consisting of130

59,674 cases and 316,078 controls collected from six tertiary headache clinics and 27131

population-based cohorts through our worldwide collaboration in the International Headache132

Genetics Consortium (IHGC). This combined dataset contained over 35,000 new migraine133

cases not included in previously published GWA studies. Here we present the findings of this134

new meta-analysis, including 38 genomic loci, harboring 44 independent association signals135

identified at levels of genome-wide significance, which support current theories of migraine136

pathophysiology and also offer new insights into the disease.137

138

Results139

Significant associations at 38 independent genomic loci140

The primary meta-analysis was performed on all migraine samples available through the IHGC,141

regardless of ascertainment. These case samples included both individuals diagnosed with142

migraine by a doctor as well as individuals with self-reported migraine via questionnaires. Study143

design and sample ascertainment for each individual study is outlined in the Supplementary144

Note (and summarized in Supplementary Table 1). The final combined sample consisted of145

59,674 cases and 316,078 controls in 22 non-overlapping case-control samples (Table 1). All146

samples were of European ancestry. Before including the largest study from 23andMe, we147

confirmed that it did not contribute any additional heterogeneity compared to the other148

population and clinic-based studies (Supplementary Table 2).149

150

The 22 individual GWA studies completed standard quality control protocols (Online Methods)151

summarized in Supplementary Table 3. Missing genotypes were then imputed into each152

sample using a common 1000 Genomes Project reference panel16. Association analyses were153

performed within each study using logistic regression on the imputed marker dosages while154

adjusting for sex and other covariates where necessary (Online Methods and Supplementary155

Table 4). The association results were combined using an inverse-variance weighted fixed-156

effects meta-analysis. Markers were filtered for imputation quality and other metrics (Online157

Methods) leaving 8,094,889 variants for consideration in our primary analysis.158
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159

Among these variants in the primary analysis, we identified 44 genome-wide significant SNP160

associations (P < 5 × 10-8) that are independent (r2 < 0.1) with regards to linkage disequilibrium161

(LD). We validated the 44 SNPs by comparing genotypes in a subset of the sample to those162

obtained from whole-genome sequencing (Supplementary Table 5). To help identify candidate163

risk genes from these, we defined an associated locus as the genomic region bounded by all164

markers in LD (r2 > 0.6 in 1000 Genomes, Phase I, EUR individuals) with each of the 44 index165

SNPs and in addition, all such regions in close proximity (< 250 kb) were merged. From these166

defined regions we implicate 38 distinct genomic loci in total for the prevalent forms of migraine,167

28 of which have not previously been reported (Figure 1).168

169

These 38 loci replicate 10 of the 13 previously reported genome-wide associations to migraine170

(Table 2). Six of the 38 loci contain a secondary genome-wide significant SNP (P < 5 × 10-8) not171

in LD (r2 < 0.1) with the top SNP in the locus (Table 2). Five of these secondary signals were172

found in known loci (at LRP1, PRDM16, FHL5, TRPM8, and TSPAN2), while the sixth was173

found within one of the 28 new loci (PLCE1). Therefore, out of the 44 LD-independent SNPs174

reported here, 34 are new associations to migraine. Three previously reported loci that were175

associated to subtypes of migraine (rs1835740 near MTDH to migraine with aura, rs10915437176

near AJAP1 to migraine clinical-samples, and rs10504861 near MMP16 to migraine without177

aura)8,11 show only nominal significance in the current meta-analysis (P = 5 × 10-3 for178

rs1835740, P = 4.4 × 10-5 for rs10915437, and P = 4.9 × 10-5 for rs10504861, Supplementary179

Table 6), however, these loci have since been shown to be associated to specific phenotypic180

features of migraine17 and therefore may require a more phenotypically homogeneous sample181

to be accurately assessed for association. Four out of 44 SNPs (at TRPM8, ZCCHC14, MRVI1,182

and CCM2L) exhibited moderate heterogeneity across the individual GWA studies (Cochran’s Q183

test p-value < 0.05, Supplementary Table 7) therefore at these markers we applied a random184

effects model18.185

186

Characterization of the associated loci187

In total, 32 of 38 (84%) loci overlap with transcripts from protein-coding genes, and 17 (45%) of188

these regions contain just a single gene (see Supplementary Figure 1 for regional plots of the189

38 genomic loci and Supplementary Table 8 for extended information on each locus). Among190

the 38 loci, only two contain ion channel genes (KCNK519 and TRPM820). Hence, despite191

previous hypotheses of migraine as a potential channelopathy5,21, the loci identified to date do192
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not support common variants in ion channel genes as strong susceptibility components in193

prevalent forms of migraine. However, three other loci do contain genes involved more generally194

in ion homeostasis (SLC24A322, ITPK123, and GJA124, Supplementary Table 9).195

196

Several of the genes have previous associations to vascular disease (PHACTR1,25,26197

TGFBR2,27 LRP1,28 PRDM16,29 RNF213,30 JAG1,31 HEY2,32 GJA133, ARMS234), or are198

involved in smooth muscle contractility and regulation of vascular tone (MRVI1,35 GJA1,36199

SLC24A3,37 NRP138). Three of the 44 migraine index SNPs have previously reported200

associations in the National Human Genome Research Institute (NHGRI) GWAS catalog at201

exactly the same SNP (rs9349379 at PHACTR1 with coronary heart disease39–41, coronary202

artery calcification42, and cervical artery dissection; rs11624776 at ITPK1 with thyroid hormone203

levels43; and rs11172113 at LRP1 with pulmonary function; Supplementary Table 10). Six of204

the loci harbor genes that are involved in nitric oxide signaling and oxidative stress (REST44,205

GJA145, YAP146, PRDM1647, LRP148, and MRVI149).206

207

From each locus we chose the nearest gene to the index SNP to assess gene expression208

activity in tissues from the GTEx consortium (Supplementary Figure 2). While we found that209

most of the putative migraine loci genes were expressed in many different tissue types, we210

could detect tissue specificity in certain instances whereby some genes showed significantly211

higher expression in a particular tissue group relative to the others. For instance four genes212

were more actively expressed in brain (GPR149, CFDP1, DOCK4, and MPPED2) compared to213

other tissues, whereas eight genes were specifically active in vascular tissues (PRDM16,214

MEF2D, FHL5, C7orf10, YAP1, LRP1, ZCCHC14, and JAG1). Many of the other putative215

migraine loci genes were actively expressed in more than one tissue group.216

217

Genomic inflation and LD-score regression analysis218

To assess whether the 38 loci harbor true associations with migraine rather than reflecting219

systematic differences between cases and controls (such as population stratification) we220

analyzed the genome-wide inflation of test statistics in our primary meta-analysis. As expected221

for a complex polygenic trait, the distribution of test statistics deviates from the null (genomic222

inflation factor λGC = 1.24, Supplementary Figure 3) which is in line with other large GWA study223

meta-analyses50–53. Since much of the inflation in a polygenic trait arises from LD between the224

causal SNPs and many other neighboring SNPs in the local region, we LD-pruned the meta-225

analysis results to create a set of LD-independent markers (i.e. in PLINK54 with a 250-kb sliding226
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window and r2 > 0.2). The resulting genomic inflation was reduced (λGC = 1.15, Supplementary227

Figure 4) and likely reflects the inflation remaining due to the polygenic signal at many228

independent loci, including those not yet significantly associated.229

230

To confirm that the observed inflation is primarily coming from true polygenic signal, we231

analyzed the meta-analysis results from all imputed markers using LD-score regression55. This232

method tests for a linear relationship between marker test statistics and LD score, defined as233

the sum of r2 values between a marker and all other markers within a 1-Mb window. The primary234

analysis results show a linear relationship between association test statistics and LD-score235

(Supplementary Figure 5) and estimate that the majority (88.2%) of the inflation in test236

statistics can be ascribed to true polygenic signal rather than population stratification or other237

confounders. These results are consistent with the theory of polygenic disease architecture238

shown previously by both simulation and real data for GWAS samples of similar size56.239

240

Migraine subtype analyses241

To elucidate pathophysiological mechanisms underpinning the migraine aura, we performed a242

secondary analysis by creating two subsets that included only samples with the subtypes;243

migraine with aura and migraine without aura. These subsets only included those studies where244

sufficient information was available to assign a diagnosis of either subtype according to245

classification criteria standardized by the International Headache Society (IHS)6. For the246

population-based study samples this involved questionnaires, whereas for the clinic-based247

study samples the diagnosis was assigned on the basis of a structured interview by telephone248

or in person. A stricter diagnosis is required for these migraine subtypes as the migraine aura249

specifically is challenging to distinguish from other neurological features that can present as250

symptoms from unrelated conditions.251

252

As a result, the migraine subtype analyses consisted of considerably smaller sample sizes253

compared to the main analysis (6,332 cases vs. 144,883 controls for migraine with aura and254

8,348 cases vs. 139,622 controls for migraine without aura, see Table 1). As with the primary255

migraine analysis, the test statistics for migraine with aura or migraine without aura were256

consistent with underlying polygenic architecture rather than other potential sources of inflation257

(Supplementary Figure 6 and 7). For the migraine without aura subset analysis we found258

seven independent genomic loci (near TSPAN2, TRPM8, PHACTR1, FHL5, ASTN2, near259

FGF6, and LRP1) to be significantly associated (Supplementary Table 11 and Supplementary260
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Figure 8). All seven of these loci were already identified in the primary analysis of ‘all migraine’261

types, possibly reflecting the fact that migraine without aura is the most common form of262

migraine (around 2 in 3 cases) and likely drives the association signals in the primary analysis.263

Notably, no loci were associated to migraine with aura in the other subset analysis264

(Supplementary Figure 9).265

266

To investigate whether excess heterogeneity could be contributing to the lack of associations in267

migraine with aura, we performed a heterogeneity analysis between the two subgroups. First we268

created two subsets of the migraine with aura and migraine without aura datasets from which269

none of the case or control individuals were overlapping (Supplementary Table 12). Then we270

selected the 44 LD-independent SNPs associated from the primary analysis and used a271

random-effects model to combine the migraine with aura and migraine without aura samples in272

a meta-analysis that allows for heterogeneity between the two migraine groups57. We found little273

heterogeneity with only seven of the 44 SNPs (at REST, MPPED2, PHACTR1, ASTN2, MEF2D,274

PLCE1, and MED14) exhibiting some signs of heterogeneity across subtype groups275

(Supplementary Table 13).276

277

Credible sets of markers within each locus278

For each of the 38 migraine-associated loci, we defined a credible set of markers that could279

plausibly be considered as causal using a Bayesian-likelihood based approach58. This method280

incorporates evidence from association test statistics and the LD structure between SNPs in a281

locus (Online Methods). A list of the credible set SNPs obtained for each locus is provided in282

Supplementary Table 14. We found three instances (in RNF213, PLCE1, and MRVI1) where283

the association signal could be credibly attributed to exonic missense polymorphisms284

(Supplementary Table 15). However, most of the credible markers at each locus were either285

intronic or intergenic, which is consistent with the theory that most variants detected by GWA286

studies involve regulatory effects on gene expression rather than disrupting protein287

structure59,60.288

289

Overlap with eQTLs in specific tissues290

To try to identify specific migraine loci that might influence gene expression, we used previously291

published datasets that catalog expression quantitative trait loci (eQTLs) in either of two292

microarray-based studies from peripheral venous blood (N1 = 3,754) or from human brain cortex293

tissue (N2 = 550). Additionally, we used a third study based on RNAseq data from a collection of294
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42 tissues and three cell lines (N3 = 1,641) from the Genotype-Tissue Expression (GTEx)295

consortium61. While this data has the advantage of a diverse tissue catalog, the number of296

samples per tissue is relatively small (Supplementary Table 16) compared to the two297

microarray datasets, possibly resulting in reduced power to detect significant eQTLs in some298

tissues. Using these datasets we applied a method based on the overlap of migraine and eQTL299

credible sets to identify eQTLs that could explain associations at the 38 migraine loci (Online300

Methods). This approach merged the migraine credible sets defined above with credible sets301

from cis-eQTL signals within a 1-Mb window and tested if the association signals between the302

migraine and eQTL credible sets were correlated. After adjusting for multiple testing we found303

no plausible eQTL associations in the peripheral blood or brain cortex data (Supplementary304

Tables 17-18 and Supplementary Figure 10). In GTEx, however, we found evidence for305

overlap from eQTLs in three tissues (Lung, Tibial Artery, and Aorta) at the HPSE2 locus and in306

one tissue (Thyroid) at the HEY2 locus (Supplementary Table 19 and Supplementary Figure307

15).308

309

In summary, from three datasets we implicate eQTL signals at only two loci (HPSE2, and310

HEY2). This low number (two out of 38) is consistent with previous studies which have observed311

that available eQTL catalogues currently lack sufficient tissue specificity and developmental312

diversity to provide enough power to provide meaningful biological insight52. No plausibly causal313

eQTLs were observed in expression data from brain.314

315

Gene expression enrichment in specific tissues316

To understand if the 38 migraine loci as a group are enriched for expression in certain tissue317

groups, we again used the GTEx pilot data61. This time we tested whether genes near to318

credibly causal SNPs at the 38 migraine loci were significantly enriched for expression in certain319

tissues (Online Methods). We found four tissues that were significantly enriched (after320

Bonferroni correction) for expression of the migraine genes (Figure 2). The two most strongly321

enriched tissues were part of the cardiovascular system; the aorta and tibial artery. Two other322

significant tissues were from the digestive system; esophagus muscularis and esophageal323

mucosa. We replicated these enrichment results in an independent dataset using a component324

of the DEPICT62 tool that conducts a tissue-specific enrichment analysis on microarray-based325

gene expression data (Supplementary Methods). DEPICT highlighted four tissues (Figure 3326

and Supplementary Table 20) with significant enrichment of genes within the migraine loci;327
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arteries (P = 1.58 × 10-5), the upper gastrointestinal tract (P = 2.97 × 10-3), myometrium (P =328

3.03 × 10-3), and stomach (P = 3.38 × 10-3).329

330

Taken together, the expression analyses implicate arterial and gastrointestinal (GI) tissues. To331

discover if this enrichment signature could be attributed to a more specific type of smooth332

muscle, we examined the expression of the nearest genes at migraine loci in a panel of 60333

types of human smooth muscle tissue63. Overall, migraine loci genes were not significantly334

enriched in a particular class of smooth muscle (Supplementary Figures 11-13). This suggests335

that the enrichment of migraine disease variants in genes expressed in tissues with a smooth336

muscle component is not specific to blood vessels, the stomach or GI tract, but rather appears337

to be generalizable across vascular and visceral smooth muscle types.338

339

Combined, these results suggest that some of the genes affected by migraine-associated340

variants are highly expressed in vascular tissues and their dysfunction could play a role in341

migraine. Furthermore, the enrichment results suggest that other tissue types (e.g. smooth342

muscle) could also play a role and this may become evident once more migraine loci are343

discovered.344

345

Enrichment in tissue-specific enhancers346

To further assess the hypothesis that migraine variants might operate via effects on gene-347

regulation, we investigated the degree of overlap with histone modifications. We identified348

candidate causal variants underlying the 38 migraine loci, and examined their enrichment within349

cell-type specific enhancers from 56 primary human tissues and cell types from the Roadmap350

Epigenomics64 and ENCODE projects65 (Online Methods and Supplementary Table 21).351

Candidate causal variants showed highest enrichment in tissues from the mid-frontal lobe and352

duodenum smooth muscle, but these enrichments were not significant after adjusting for353

multiple testing (Figure 4).354

355

Gene set enrichment analyses356

To implicate underlying biological pathways involved in migraine, we applied a Gene Ontology357

(GO) over-representation analysis of the 38 migraine loci (Online Methods). We found nine358

vascular-related biological function categories that are significantly enriched after correction for359

multiple testing (Supplementary Table 22). Interestingly, we found little statistical support from360

the identified loci for some molecular processes that have been previously linked to migraine,361
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e.g. ion homeostasis, glutamate signaling, serotonin signaling, nitric oxide signaling, and362

oxidative stress (Supplementary Table 23). However, it is possible that the lack of enrichment363

for these functions may be explained by recognizing that current annotations for many genes364

and pathways are far from comprehensive, or that larger numbers of migraine loci need to be365

identified before we have sensitivity to detect enrichment in these mechanisms.366

367

For a more comprehensive pathway analysis we used DEPICT, which incorporates gene co-368

expression information from microarray data to implicate additional, functionally less well-369

characterized genes in known biological pathways, protein-protein complexes and mouse370

phenotypes62 (by forming so-called ‘reconstituted gene sets’). From DEPICT we identified 67371

reconstituted gene sets that are significantly enriched (FDR < 5%) for genes found among the372

38 migraine associated loci (Supplementary Table 24). Because the reconstituted gene sets373

had genes in common, we clustered them into 10 distinct groups of gene sets (Figure 5 and374

Online Methods). Several gene sets, including the most significantly enriched reconstituted375

gene set (Abnormal Vascular Wound Healing; P = 1.86 × 10-6), were grouped into clusters376

related to cell-cell interactions (ITGB1 PPI, Adherens Junction, Integrin Complex). Several of377

the other gene set clusters were also related to vascular-biology (Figure 5 and Supplementary378

Table 24).379

380

Discussion381

In what is the largest genetic study of migraine to date, we identified 38 distinct genomic loci382

harboring 44 independent susceptibility markers for the prevalent forms of migraine. We provide383

evidence that migraine-associated genes are involved both in arterial and smooth muscle384

function. Two separate analyses, the DEPICT and the GTEx gene-expression enrichment385

analyses, point to vascular and smooth muscle tissues being involved in common variant386

susceptibility to migraine. The vascular finding is consistent with known co-morbidities and387

previously reported shared polygenic risk between migraine, stroke and cardiovascular388

diseases66,67. Furthermore, a recent GWA study of Cervical Artery Dissection (CeAD) identified389

a genome-wide significant association at exactly the same index SNP (rs9349379) as is390

associated to migraine in the PHACTR1 locus, suggesting the possibility of partially shared391

genetic components between migraine and CeAD26. These results suggest that vascular392

dysfunction and possibly also other smooth muscle dysfunction likely play roles in migraine393

pathogenesis.394

395
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The support for vascular and smooth muscle enrichment of the loci is strong, with multiple lines396

of evidence from independent methods and independent datasets. However, it remains likely397

that neurogenic mechanisms are also involved in migraine. For example, several lines of398

evidence from previous studies have pointed to such mechanisms5,68–71. We found some399

support for this when looking at gene expression of individual genes at the 38 loci400

(Supplementary Figure 2 and Supplementary Table 25), where many specific genes were401

active in brain tissues. While we did not observe statistically significant enrichment in brain402

across all loci, it may be that more associated loci are needed to detect this. Alternatively, it403

could be due to difficulties in collecting appropriate brain tissue samples with enough specificity,404

or other technical challenges. Additionally, there is less clarity of the biological mechanisms for405

a brain disease like migraine compared to some other common diseases, e.g. autoimmune or406

cardio-metabolic diseases where intermediate risk factors and underlying mechanisms are407

better understood.408

409

Interestingly, some of the analyses highlight gastrointestinal tissues. Although migraine attacks410

may include gastrointestinal symptoms (e.g. nausea, vomiting, diarrhea)72 it is likely that the411

signals observed here broadly represent smooth muscle signals rather than gastrointestinal412

specificity. Smooth muscle is a predominant tissue of the intestine, yet specific smooth muscle413

subtypes were not available to test this hypothesis in our primary enrichment analyses. We414

showed instead in a range of 60 smooth muscle subtypes, that the migraine loci are expressed415

in many types of smooth muscle, including vascular (Supplementary Figure 12 and 13). These416

results, while not conclusive, suggest that the enrichment of the migraine loci in smooth muscle417

is not specific to the stomach and GI tract.418

419

Our results implicate cellular pathways and provide an opportunity to determine whether the420

genomic data supports previously presented hypotheses of pathways linked to migraine. One421

prevailing hypothesis stimulated by findings in familial hemiplegic migraine (FHM) has been that422

migraine is a channelopathy5,21. Among the 38 migraine loci only two harbor known ion channels423

(KCNK519 and TRPM820), while three additional loci (SLC24A322, ITPK123, and GJA124) can be424

linked to ion homeostasis. This further supports the findings of previous studies that in common425

forms of migraine, ion channel dysfunction is not the major pathophysiological mechanism15.426

However, more generally, genes involved in ion homeostasis could be a component of the427

genetic susceptibility. Moreover, we cannot exclude that ion channels could still be important428

contributors in migraine with aura, the form most closely resembling FHM, as our ability to429
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identify loci in this subgroup is more challenging. Another suggested hypothesis relates to430

oxidative stress and nitric oxide (NO) signaling73–75. Six genes with known links to oxidative431

stress and NO, within these 38 loci were identified (REST44, GJA145, YAP146, PRDM1647,432

LRP148, and MRVI149). This is in line with previous findings11, however, the DEPICT pathway433

analysis observed no association between NO-related reconstituted gene sets and migraine434

(FDR > 0.54, Supplementary Table 23).435

436

Notably, in the migraine subtype analyses, it was possible to identify specific loci for migraine437

without aura but not for migraine with aura. However, the heterogeneity analysis438

(Supplementary Tables 12-13) demonstrated that most of the identified loci are implicated in439

both migraine subtypes. This suggests that no loci were identified in the migraine with aura440

analysis mainly due to lack of power from the reduced sample size. Additionally, as shown by441

the LD score analysis (Supplementary Figures 5-7), the amount of heritability captured by the442

migraine with aura dataset is considerably lower than migraine without aura, such that in order443

to reach comparable power, a sample size of two- to three-times larger would be required. This444

may reflect a higher degree of heterogeneity in the clinical capture, more complex underlying445

biology, or even a larger contribution from low-frequency and rare variation to migraine risk for446

this form of the disease.447

448

In conclusion, the 38 genomic loci identified in this study support the notion that factors in449

vascular and smooth muscle tissues contribute to migraine pathophysiology and that the two450

major subtypes of migraine, migraine with aura and migraine without aura, have a partially451

shared underlying genetic susceptibility profile.452



14

URLs453

1000 Genomes Project, http://www.1000genomes.org/; BEAGLE,454

http://faculty.washington.edu/browning/beagle/beagle.html; DEPICT,455

www.broadinstitute.org/mpg/depict; Fine-mapping loci with credible sets,456

https://github.com/hailianghuang/FM-summary; GTEx, www.gtexportal.org; GWAMA,457

http://www.well.ox.ac.uk/gwama/; IMPUTE2,458

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html; International Headache Genetics459

Consortium, http://www.headachegenetics.org/; MACH,460

http://www.sph.umich.edu/csg/abecasis/MACH/tour/imputation.html; matSpD,461

http://neurogenetics.qimrberghofer.edu.au/matSpD; MINIMAC,462

http://genome.sph.umich.edu/wiki/Minimac; PLINK, http://pngu.mgh.harvard.edu/~purcell/plink/;463

ProbABEL, http://www.genabel.org/packages/ProbABEL; R, https://www.r-project.org/;464

Roadmap Epigenomics Project, http://www.roadmapepigenomics.org/; SHAPEIT,465

http://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.v778.html; SNPTEST,466

https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html.467

468

Acknowledgments469

We would like to thank the numerous individuals who contributed to sample collection, storage,470

handling, phenotyping and genotyping within each of the individual cohorts. We also thank the471

important contribution to research made by the study participants. We are grateful to Huiying472

Zhao (QIMR Berghofer Medical Research Institute) for helpful correspondence on the pathway473

analyses. We acknowledge the support and contribution of pilot data from the GTEx consortium.474

A list of study-specific acknowledgements can be found in the Supplementary Note.475

476

Author Contributions477

P.G., V.An., G.W.M., M.Ku., M.Kals., R.Mäg., K.P., E.H., E.L., A.G.U., L.C., E.M., L.M., A-L.E.,478

A.F.C., T.F.H., A.J.A., D.I.C., and D.R.N. performed the experiments. P.G., V.An., B.S.W., P.P.,479

T.E., T.H.P., K-H.F., M.Mu., N.A.F., A.I., G.McM., L.L., S.G.G., S.St., L.Q., H.H.H.A., D.A.H., J-480

J.H., R.Mal., A.E.B., E.S., C.M.v.D., E.M., D.P.S., N.E., B.M.N., D.I.C., and D.R.N. performed481

the statistical analyses. P.G., V.An., B.S.W., P.P., T.E., T.H.P., K-H.F., E.C-L., N.A.F., A.I.,482

G.McM., L.L., M.Kall., T.M.F., S.G.G., S.St., M.Ko., L.Q., H.H.H.A., T.L., J.W., D.A.H., S.M.R.,483

http://www.1000genomes.org/
http://faculty.washington.edu/browning/beagle/beagle.html
http://www.broadinstitute.org/mpg/depict
https://github.com/hailianghuang/FM-summary
http://www.gtexportal.org/
http://www.well.ox.ac.uk/gwama/
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://www.headachegenetics.org/
http://www.sph.umich.edu/csg/abecasis/MACH/tour/imputation.html
http://neurogenetics.qimrberghofer.edu.au/matSpD
http://genome.sph.umich.edu/wiki/Minimac
http://pngu.mgh.harvard.edu/~purcell/plink/
http://www.genabel.org/packages/ProbABEL
https://www.r-project.org/
http://www.roadmapepigenomics.org/
http://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.v778.html
https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html


15

M.F., V.Ar., M.Kau., S.V., R.Mal., M.Ku., M.Kals., R.Mäg., K.P., H.H., A.E.B., J.H., E.S., C.S.,484

C.W., Z.C., K.H., E.L., L.M.P, A-L.E., A.F.C., T.F.H., J.K., A.J.A., O.R., M.A.I., M-R.J., D.P.S.,485

M.W., G.D.S., N.E., M.J.D., B.M.N., J.O., D.I.C., D.R.N., and A.P. participated in data486

analysis/interpretation. P.G., V.An., B.S.W., T.H.P., K-H.F., E.C-L., T.K., G.M.T, M.Kall., C.R.,487

A.H.S., G.B., M.Ko., T.L., M.S., M.G.H., M.F., V.Ar., M.Kau., S.V., R.Mal., A.C.H., P.A.F.M.,488

N.G.M., G.W.M., H.H., A.E.B., L.F., J.H., P.H.L., C.S., C.W., Z.C., B.M-M., S.Sc., T.M., J.G.E.,489

V.S., A.G.U., C.M.v.D., A.S., C.S.N., H.G., A-L.E., A.F.C., T.F.H., T.W., A.J.A., O.R., M-R.J.,490

C.K., M.D.F., A.C.B., M.D., M.W., J-A.Z., B.M.N., J.O., D.I.C., D.R.N., and A.P. contributed491

materials/analysis tools. T.E., T.K., T.L., H.S., B.W.J.H.P., A.C.H., P.A.F.M., N.G.M., G.W.M.,492

L.F., A.H., A.S., C.S.N., M.Mä., T.W., J.K., O.R., M.A.I., T.S., M-R.J., A.M., C.K., D.P.S., M.D.F.,493

A.M.J.M.v.d.M., J-A.Z., D.I.B., G.D.S., K.S., N.E., B.M.N., J.O., D.I.C., D.R.N., and A.P.494

supervised the research. T.K., G.M.T, G.B., T.L., J.E.B., M.S., P.M.R., H.S., B.W.J.H.P., A.C.H.,495

P.A.F.M., N.G.M., G.W.M., L.F., V.S., A.H., L.C., A.S., C.S.N., H.G., J.K., A.J.A., O.R., M.A.I.,496

M-R.J., A.M., C.K., D.P.S., M.D., A.M.J.M.v.d.M., D.I.B., G.D.S., N.E., M.J.D., B.M.N., D.I.C.,497

D.R.N., and A.P. conceived and designed the study. P.G., V.An., B.S.W., P.P., T.E., T.H.P.,498

E.C-L., H.H., B.M.N., J.O., D.I.C., D.R.N., and A.P. wrote the paper. All authors contributed to499

the final version of the manuscript.500

501

Data access502

All genome-wide significant and suggestive SNP associations (P < 1 × 10-5) from the meta-503

analysis can be obtained directly from the IHGC website (http://www.headachegenetics.org/).504

For access to deeper-level data please contact the data access committee (fimm-505

dac@helsinki.fi).506

507

References508

1. Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and509
injuries 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010.510
Lancet 380, 2163–2196 (2012).511

2. Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with512
disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a513
systematic analysis for the Global Burden of Disease Study 2013. Lancet (2015).514
doi:10.1016/S0140-6736(15)60692-4515

3. Gustavsson, A. et al. Cost of disorders of the brain in Europe 2010. Eur.516
Neuropsychopharmacol. 21, 718–779 (2011).517

http://www.headachegenetics.org/
mailto:fimm-dac@helsinki.fi
mailto:fimm-dac@helsinki.fi


16

4. Pietrobon, D. & Striessnig, J. Neurological diseases: Neurobiology of migraine. Nature518
Reviews Neuroscience 4, 386–398 (2003).519

5. Tfelt-Hansen, P. C. & Koehler, P. J. One hundred years of migraine research: Major520
clinical and scientific observations from 1910 to 2010. Headache 51, 752–778 (2011).521

6. Society, H. C. C. of the I. H. The International Classification of Headache Disorders: 2nd522
edition. Cephalalgia 24, 1–160 (2004).523

7. Polderman, T. J. C. et al. Meta-analysis of the heritability of human traits based on fifty524
years of twin studies. Nat. Genet. 47, 702–709 (2015).525

8. Anttila, V. et al. Genome-wide association study of migraine implicates a common526
susceptibility variant on 8q22.1. Nat. Genet. 42, 869–873 (2010).527

9. Chasman, D. I. et al. Genome-wide association study reveals three susceptibility loci for528
common migraine in the general population. Nat Genet 43, 695–698 (2011).529

10. Freilinger, T. et al. Genome-wide association analysis identifies susceptibility loci for530
migraine without aura. Nat. Genet. 44, 777–782 (2012).531

11. Anttila, V. et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine.532
Nat. Genet. 45, 912–7 (2013).533

12. Ophoff, R. A. et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by534
mutations in the Ca2+ channel gene CACNL1A4. Cell 87, 543–552 (1996).535

13. De Fusco, M. et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2536
subunit associated with familial hemiplegic migraine type 2. Nat. Genet. 33, 192–196537
(2003).538

14. Dichgans, M. et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in539
familial hemiplegic migraine. Lancet 366, 371–377 (2005).540

15. Nyholt, D. R. et al. A high-density association screen of 155 ion transport genes for541
involvement with common migraine. Hum. Mol. Genet. 17, 3318–3331 (2008).542

16. Altshuler, D. M. et al. An integrated map of genetic variation from 1,092 human genomes.543
Nature 491, 56–65 (2012).544

17. Chasman, D. I. et al. Selectivity in Genetic Association with Sub-classified Migraine in545
Women. PLoS Genet. 10, (2014).546

18. Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-547
analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).548

19. Morton, M. J., Abohamed, A., Sivaprasadarao, A. & Hunter, M. pH sensing in the two-549
pore domain K+ channel, TASK2. Proc. Natl. Acad. Sci. U. S. A. 102, 16102–16106550
(2005).551



17

20. Ramachandran, R. et al. TRPM8 activation attenuates inflammatory responses in mouse552
models of colitis. Proc. Natl. Acad. Sci. U. S. A. 110, 7476–81 (2013).553

21. Hanna, M. G. Genetic neurological channelopathies. Nat. Clin. Pract. Neurol. 2, 252–263554
(2006).555

22. Kraev, A. et al. Molecular cloning of a third member of the potassium-dependent sodium-556
calcium exchanger gene family, NCKX3. J. Biol. Chem. 276, 23161–72 (2001).557

23. Ismailov, I. I. et al. A biologic function for an ‘orphan’ messenger: D-myo-inositol 3,4,5,6-558
tetrakisphosphate selectively blocks epithelial calcium-activated chloride channels. Proc.559
Natl. Acad. Sci. U. S. A. 93, 10505–9 (1996).560

24. De Bock, M. et al. Connexin channels provide a target to manipulate brain endothelial561
calcium dynamics and blood-brain barrier permeability. J. Cereb. Blood Flow Metab. 31,562
1942–1957 (2011).563

25. Kathiresan, S. et al. Genome-wide association of early-onset myocardial infarction with564
single nucleotide polymorphisms and copy number variants. Nat. Genet. 41, 334–341565
(2009).566

26. Debette, S. et al. Common variation in PHACTR1 is associated with susceptibility to567
cervical artery dissection. Nat. Genet. 47, 78–83 (2015).568

27. Law, C. et al. Clinical features in a family with an R460H mutation in transforming growth569
factor beta receptor 2 gene. J Med Genet 43, 908–916 (2006).570

28. Bown, M. J. et al. Abdominal aortic aneurysm is associated with a variant in low-density571
lipoprotein receptor-related protein 1. Am. J. Hum. Genet. 89, 619–627 (2011).572

29. Arndt, A. K. et al. Fine mapping of the 1p36 deletion syndrome identifies mutation of573
PRDM16 as a cause of cardiomyopathy. Am. J. Hum. Genet. 93, 67–77 (2013).574

30. Fujimura, M. et al. Genetics and Biomarkers of Moyamoya Disease: Significance of575
RNF213 as a Susceptibility Gene. J. stroke 16, 65–72 (2014).576

31. McElhinney, D. B. et al. Analysis of cardiovascular phenotype and genotype-phenotype577
correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation 106,578
2567–2574 (2002).579

32. Bezzina, C. R. et al. Common variants at SCN5A-SCN10A and HEY2 are associated with580
Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet.581
45, 1044–9 (2013).582

33. Sinner, M. F. et al. Integrating genetic, transcriptional, and functional analyses to identify583
five novel genes for atrial fibrillation. Circulation (2014).584
doi:10.1161/CIRCULATIONAHA.114.009892585



18

34. Neale, B. M. et al. Genome-wide association study of advanced age-related macular586
degeneration identifies a role of the hepatic lipase gene (LIPC). Proc. Natl. Acad. Sci. U.587
S. A. 107, 7395–7400 (2010).588

35. Desch, M. et al. IRAG determines nitric oxide- and atrial natriuretic peptide-mediated589
smooth muscle relaxation. Cardiovasc. Res. 86, 496–505 (2010).590

36. Lang, N. N., Luksha, L., Newby, D. E. & Kublickiene, K. Connexin 43 mediates591
endothelium-derived hyperpolarizing factor-induced vasodilatation in subcutaneous592
resistance arteries from healthy pregnant women. Am. J. Physiol. Heart Circ. Physiol.593
292, H1026–H1032 (2007).594

37. Dong, H., Jiang, Y., Triggle, C. R., Li, X. & Lytton, J. Novel role for K+-dependent595
Na+/Ca2+ exchangers in regulation of cytoplasmic free Ca2+ and contractility in arterial596
smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 291, H1226–H1235 (2006).597

38. Yamaji, M., Mahmoud, M., Evans, I. M. & Zachary, I. C. Neuropilin 1 is essential for598
gastrointestinal smooth muscle contractility and motility in aged mice. PLoS One 10,599
e0115563 (2015).600

39. Lu, X. et al. Genome-wide association study in Han Chinese identifies four new601
susceptibility loci for coronary artery disease. Nature Genetics 44, 890–894 (2012).602

40. Hager, J. et al. Genome-wide association study in a Lebanese cohort confirms PHACTR1603
as a major determinant of coronary artery stenosis. PLoS One 7, (2012).604

41. Coronary, T., Disease, A. & Consortium, G. A genome-wide association study in605
Europeans and South Asians identifies five new loci for coronary artery disease. Nat.606
Genet. 43, 339–44 (2011).607

42. Odonnell, C. J. et al. Genome-wide association study for coronary artery calcification with608
follow-up in myocardial infarction. Circulation 124, 2855–2864 (2011).609

43. Porcu, E. et al. A meta-analysis of thyroid-related traits reveals novel loci and gender-610
specific differences in the regulation of thyroid function. PLoS Genet. 9, e1003266 (2013).611

44. Lu, T. et al. REST and stress resistance in ageing and Alzheimer disease. Nature Epub612
ahead, 448–54 (2014).613

45. Kar, R., Riquelme, M. A., Werner, S. & Jiang, J. X. Connexin 43 channels protect614
osteocytes against oxidative stress-induced cell death. J. Bone Miner. Res. 28, 1611–615
1621 (2013).616

46. Dixit, D., Ghildiyal, R., Anto, N. P. & Sen, E. Chaetocin-induced ROS-mediated apoptosis617
involves ATM-YAP1 axis and JNK-dependent inhibition of glucose metabolism. Cell618
Death Dis. 5, e1212 (2014).619



19

47. Chuikov, S., Levi, B. P., Smith, M. L. & Morrison, S. J. Prdm16 promotes stem cell620
maintenance in multiple tissues, partly by regulating oxidative stress. Nat. Cell Biol. 12,621
999–1006 (2010).622

48. Castellano, J. et al. Hypoxia stimulates low-density lipoprotein receptor-related protein-1623
expression through hypoxia-inducible factor-1α in human vascular smooth muscle cells. 624
Arterioscler. Thromb. Vasc. Biol. 31, 1411–1420 (2011).625

49. Schlossmann, J. et al. Regulation of intracellular calcium by a signalling complex of626
IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404, 197–201 (2000).627

50. Nalls, M. a et al. Large-scale meta-analysis of genome-wide association data identifies628
six new risk loci for Parkinson’s disease. Nat. Genet. 056, 1–7 (2014).629

51. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility630
loci for Alzheimer’s disease. Nat. Genet. 45, 1452–8 (2013).631

52. Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature632
511, 421–427 (2014).633

53. Wood, A. R. et al. Defining the role of common variation in the genomic and biological634
architecture of adult human height. Nat. Genet. 46, 1173–86 (2014).635

54. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based636
linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).637

55. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from638
polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).639

56. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet.640
19, 807–812 (2011).641

57. Magi, R., Lindgren, C. M. & Morris, A. P. Meta-analysis of sex-specific genome-wide642
association studies. Genet. Epidemiol. 34, 846–853 (2010).643

58. Maller, J. B. et al. Bayesian refinement of association signals for 14 loci in 3 common644
diseases. Nat. Genet. 44, 1294–301 (2012).645

59. Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: Annotation to646
enhance discovery from GWAS. PLoS Genet. 6, (2010).647

60. Maurano, M. T. et al. Systematic Localization of Common Disease-Associated Variation648
in Regulatory DNA. Science 337, 1190–1195 (2012).649

61. Consortium, T. G. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–650
5 (2013).651

62. Pers, T. H. et al. Biological interpretation of genome-wide association studies using652
predicted gene functions. Nat. Commun. 6, 5890 (2015).653



20

63. Chi, J. T. et al. Gene expression programs of human smooth muscle cells: Tissue-654
specific differentiation and prognostic significance in breast cancers. PLoS Genet. 3,655
1770–1784 (2007).656

64. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat.657
Biotechnol. 28, 1045–1048 (2010).658

65. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the659
human genome. Nature 489, 57–74 (2012).660

66. Winsvold, B. S. et al. Genetic analysis for a shared biological basis between migraine and661
coronary artery disease. Neurol. Genet. 1, e10–e10 (2015).662

67. Malik, R. et al. Shared genetic basis for migraine and ischemic stroke: A genome-wide663
analysis of common variants. Neurology 84, 2132–45 (2015).664

68. Ferrari, M. D., Klever, R. R., Terwindt, G. M., Ayata, C. & van den Maagdenberg, A. M. J.665
M. Migraine pathophysiology: lessons from mouse models and human genetics. Lancet.666
Neurol. 14, 65–80 (2015).667

69. Olesen, J., Burstein, R., Ashina, M. & Tfelt-Hansen, P. Origin of pain in migraine:668
evidence for peripheral sensitisation. Lancet Neurol. 8, 679–690 (2009).669

70. Hadjikhani, N. et al. Mechanisms of migraine aura revealed by functional MRI in human670
visual cortex. Proc. Natl. Acad. Sci. 98, 4687 –4692 (2001).671

71. Lauritzen, M. Pathophysiology of the migraine aura. The spreading depression theory.672
Brain 117 ( Pt 1, 199–210 (1994).673

72. Headache Classification Committee of the International Headache Society (IHS). The674
International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia675
33, 629–808 (2013).676

73. Olesen, J. The role of nitric oxide (NO) in migraine, tension-type headache and cluster677
headache. Pharmacol Ther 120, 157–171 (2008).678

74. Ashina, M., Hansen, J. M. & Olesen, J. Pearls and pitfalls in human pharmacological679
models of migraine: 30 years’ experience. Cephalalgia 33, 540–53 (2013).680

75. Read, S. J. & Parsons, A. A. Sumatriptan modifies cortical free radical release during681
cortical spreading depression: A novel antimigraine action for sumatriptan? Brain Res.682
870, 44–53 (2000).683

684



21

685

Figure 1. Manhattan plot of the primary meta-analysis of all migraine (59,674 cases vs. 316,078 controls). Each marker was tested686

for association using an additive genetic model by logistic regression adjusted for sex. A fixed-effects meta-analysis was then used to687

combine the association statistics from all 22 clinic and population-based studies from the IHGC. The horizontal axis shows the688

chromosomal position and the vertical axis shows the significance of tested markers from logistic regression. Markers with test689

statistics that reach genome-wide significance (P < 5 × 10-8) at previously known and newly identified loci are highlighted according690

to the color legend.691

692

693

694

695

696

697
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698

Figure 2. Gene expression enrichment of genes from the 38 migraine loci in GTEx tissues.699

Expression data from 1,641 samples was obtained using RNAseq for 42 tissues and three cell700

lines from the GTEx consortium. Enrichment P-values were assessed empirically for each tissue701

using a permutation procedure (100,000 replicates) and the red vertical line shows the702

significance threshold after adjusting for multiple testing by Bonferroni correction (see Online703

Methods).704

705
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706

707

Figure 3. Gene expression enrichment of genes from the 38 migraine loci in 209 tissue/cell type708

annotations by DEPICT. Expression data was obtained from 37,427 human microarray samples709

and then genes in the migraine loci were assessed for high expression in each of the annotation710

categories. Enrichment P-values were determined by comparing the expression pattern from the711

migraine loci to 500 randomly generated loci and the false discovery rate (horizontal dashed712

line) was estimated to control for multiple testing (see Online Methods). A full list of these713

enrichment results are provided in Supplementary Table 20.714



24

715

Figure 4. Enrichment of the migraine loci in sets of tissue-specific enhancers. We mapped716

credible sets from the migraine loci to sets of enhancers under active expression in 56 tissues717

and cell lines (identified by H3K27ac histone marks from the Roadmap Epigenomics64 and718

ENCODE65 projects). Enrichment P-values were assessed empirically by randomly generating a719

background set of matched loci for comparison (10,000 replicates) and the vertical dotted line is720

the significance threshold after adjusting for 56 separate tests by Bonferroni correction (see721

Online Methods).722
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723

Figure 5. DEPICT network of the reconstituted gene sets that were found to be significantly enriched (false discovery rate < 0.05) for724

genes at the migraine loci (Online Methods). Enriched gene sets are represented as nodes with pairwise overlap denoted by the725

width of the connecting lines and empirical enrichment P-value is indicated by color intensity (darker is more significant). The 67726

significantly enriched gene sets were then clustered by similarity into 10 group nodes as shown in (a) where each group node is727

named after the most representative gene set in the group. (b) Shows one example of the enriched reconstituted gene sets that were728

clustered within the now expanded ITGB1 PPI group. A full list of the 67 significantly enriched reconstituted gene sets can be found729

in Supplementary Table 24.730
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Table 1. Individual IHGC GWA studies listed with cases and control numbers used in the primary analysis (all migraine) and in the731

subtype analyses (migraine with aura and migraine without aura). Note that chromosome X genotype data was unavailable from732

three of the individual GWA studies (EGCUT, Rotterdam III, and TwinsUK) and also partially unavailable from some of the control733

samples (specifically the GSK controls) used for the ‘German MO’ study, meaning that the number of samples analyzed on734

chromosome X was 57,756 cases and 299,109 controls. Complete data was available on the autosomes for all samples.735

736

GWA Study ID Full Name of GWA Study
All migraine Migraine with aura Migraine without aura

Cases Controls Cases Controls Cases Controls

23andMe 23andMe Inc. 30,465 143,147 - - - -

ALSPAC Avon Longitudinal Study of Parents and Children 3,134 5,103 - - - -

ATM Australian Twin Migraine 1,683 2,383 - - - -

B58C 1958 British Birth Cohort 1,165 4,141 - - - -

Danish HC Danish Headache Center 1,771 1,000 775 1,000 996 1,000

DeCODE deCODE Genetics Inc. 3,135 95,585 366 95,585 608 95,585

Dutch MA Dutch migraine with aura 734 5,211 734 5,211 - -

Dutch MO Dutch migraine without aura 1,115 2,028 - - 1,115 2,028

EGCUT Estonian Genome Center, University of Tartu 813 9,850 76 9,850 94 9,850

Finnish MA Finnish migraine with aura 933 2,715 933 2,715 - -

German MA German migraine with aura 1,071 1,010 1,071 1,010 - -

German MO German migraine without aura 1,160 1,647 - - 1,160 1,647
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Health 2000 Health 2000 136 1,764 - - - -

HUNT Nord-Trøndelag Health Study 1,395 1,011 290 1,011 980 1,011

NFBC Northern Finnish Birth Cohort 756 4,393 - - - -

NTR/NESDA
Netherlands Twin Register and the Netherlands
Study of Depression and Anxiety

1,636 3,819 544 3,819 615 3,819

Rotterdam III Rotterdam Study III 487 2,175 106 2,175 381 2,175

Swedish Twins Swedish Twin Registry 1,307 4,182 - - - -

Tromsø The Tromsø Study 660 2,407 - - - -

Twins UK Twins UK 618 2,334 202 2,334 416 2,334

WGHS Women’s Genome Health Study 5,122 18,108 1,177 18,108 1,826 18,108

Young Finns Young Finns 378 2,065 58 2,065 157 2,065

Total: 59,674 316,078 6,332 144,883 8,348 139,622

737
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Table 2. Summary of the 38 genomic loci associated with the prevalent types of migraine. Ten loci were previously reported738

(PubMed IDs listed) and 28 are newly found in this study. For each locus, the nearest coding gene to the index SNP is given. Effect739

sizes and P-values for each SNP were calculated for each study with an additive genetic model using logistic regression adjusted for740

sex and then combined in a fixed-effects meta-analysis. For loci that contain a secondary LD-independent signal passing genome-741

wide significance, the secondary index SNP and P-value is given. For the seven loci reaching genome-wide significance in the742

migraine without aura sub-type analysis, the corresponding index SNP and P-value are also given. Evidence for significant743

heterogeneity was found at four loci (TRPM8, MRVI1, ZCCHC14, and CCM2L) so for those we present the results of a random-744

effects model.745

746

Locus
Rank

Nearest
coding gene

Chr Index SNP
Minor
Allele

MAF
All Migraine Secondary signal Migraine without aura Previous

Publication
PMIDOR [95% CI] P Index SNP P Index SNP P

1 LRP1 12 rs11172113 C 0.42 0.90 [0.89-0.91] 5.6 x 10-49 rs7961602 2.1 x 10-11 rs11172113 4.3 x 10-16 21666692

2 PRDM16 1 rs10218452 G 0.22 1.11 [1.10-1.13] 5.3 x 10-38 rs12135062 3.7 x 10-10 - - 21666692

3 FHL5 6 rs67338227 T 0.23 1.09 [1.08-1.11] 2.0 x 10-27 rs2223239 3.2 x 10-10 rs7775721 1.1 x 10-12 23793025

4 TSPAN2 1 rs2078371 C 0.12 1.11 [1.09-1.13] 4.1 x 10-24 rs7544256 8.7 x 10-09 rs2078371 7.4 x 10-09 23793025

5 TRPM8 2 rs10166942 C 0.20 0.94 [0.89-0.99] 1.0 x 10-23 rs566529 2.5 x 10-09 rs6724624 1.1 x 10-09 21666692

6 PHACTR1 6 rs9349379 G 0.41 0.93 [0.92-0.95] 5.8 x 10-22 - - rs9349379 2.1 x 10-09 22683712

7 MEF2D 1 rs1925950 G 0.35 1.07 [1.06-1.09] 9.1 x 10-22 - - - - 22683712

8 SLC24A3 20 rs4814864 C 0.26 1.07 [1.06-1.09] 2.2 x 10-19 - - - - -

9 FGF6 12 rs1024905 G 0.47 1.06 [1.04-1.08] 2.1 x 10-17 - - rs1024905 2.5 x 10-09 -

10 C7orf10 7 rs186166891 T 0.11 1.09 [1.07-1.12] 9.7 x 10-16 - - - - 23793025

11 PLCE1 10 rs10786156 G 0.45 0.95 [0.94-0.96] 2.0 x 10-14 rs75473620 5.8 x 10-09 - - -

12 KCNK5 6 rs10456100 T 0.28 1.06 [1.04-1.07] 6.9 x 10-13 - - - - -

13 ASTN2 9 rs6478241 A 0.36 1.05 [1.04-1.07] 1.2 x 10-12 - - rs6478241 1.2 x 10-10 22683712

14 MRVI1 11 rs4910165 C 0.33 0.94 [0.91-0.98] 2.9 x 10-11 - - - - -

15 HPSE2 10 rs12260159 A 0.07 0.92 [0.89-0.94] 3.2 x 10-10 - - - - -

16 CFDP1 16 rs77505915 T 0.45 1.05 [1.03-1.06] 3.3 x 10-10 - - - - -

17 RNF213 17 rs17857135 C 0.17 1.06 [1.04-1.08] 5.2 x 10-10 - - - - -

18 NRP1 10 rs2506142 G 0.17 1.06 [1.04-1.07] 1.5 x 10-09 - - - - -



29

19 GPR149 3 rs13078967 C 0.03 0.87 [0.83-0.91] 1.8 x 10-09 - - - - -

20 JAG1 20 rs111404218 G 0.34 1.05 [1.03-1.07] 2.0 x 10-09 - - - - -

21 REST 4 rs7684253 C 0.45 0.96 [0.94-0.97] 2.5 x 10-09 - - - - -

22 ZCCHC14 16 rs4081947 G 0.34 1.03 [1.00-1.06] 2.5 x 10-09 - - - - -

23 HEY2 6 rs1268083 C 0.48 0.96 [0.95-0.97] 5.3 x 10-09 - - - - -

24 WSCD1 17 rs75213074 T 0.03 0.89 [0.86-0.93] 7.1 x 10-09 - - - - -

25 GJA1 6 rs28455731 T 0.16 1.06 [1.04-1.08] 7.3 x 10-09 - - - - -

26 TGFBR2 3 rs6791480 T 0.31 1.04 [1.03-1.06] 7.8 x 10-09 - - - - 22683712

27 ITPK1 14 rs11624776 C 0.31 0.96 [0.94-0.97] 7.9 x 10-09 - - - - -

28 ADAMTSL4 1 rs6693567 C 0.27 1.05 [1.03-1.06] 1.2 x 10-08 - - - - -

29 CCM2L 20 rs144017103 T 0.02 0.85 [0.76-0.96] 1.2 x 10-08 - - - - -

30 YAP1 11 rs10895275 A 0.33 1.04 [1.03-1.06] 1.6 x 10-08 - - - - -

31 MED14 X rs12845494 G 0.27 0.96 [0.95-0.97] 1.7 x 10-08 - - - - -

32 DOCK4 7 rs10155855 T 0.05 1.08 [1.05-1.12] 2.1 x 10-08 - - - - -

33 LRRIQ3 1 rs1572668 G 0.48 1.04 [1.02-1.05] 2.1 x 10-08 - - - - -

34 CARF 2 rs138556413 T 0.03 0.88 [0.84-0.92] 2.3 x 10-08 - - - - -

35 ARMS2 10 rs2223089 C 0.08 0.93 [0.91-0.95] 3.0 x 10-08 - - - - -

36 IGSF9B 11 rs561561 T 0.12 0.94 [0.92-0.96] 3.4 x 10-08 - - - - -

37 MPPED2 11 rs11031122 C 0.24 1.04 [1.03-1.06] 3.5 x 10-08 - - - - -

38 NOTCH4 6 rs140002913 A 0.06 0.91 [0.88-0.94] 3.8 x 10-08 - - - - -
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Online Methods747

Quality Control. The 22 individual GWA studies were subjected to pre-established quality748

control (QC) protocols as recommended elsewhere76,77. Differences in genotyping chips, DNA749

quality and genotype calling pipelines necessitated that QC parameters were tuned separately750

to be appropriate for each individual study. At a minimum, we excluded markers with751

excessively high missingness rates (> 5%), low minor allele frequency (< 1%), and failing a test752

of Hardy-Weinberg equilibrium. We also excluded individuals with a high proportion of missing753

genotypes (> 5%) and used identity-by-descent (IBD) estimates to remove individuals that were754

highly related (IBD>0.185) to others in the sample. A summary of the genotyping platforms,755

quality control, imputation protocols and association analysis methods used in each individual756

GWA study is provided in Supplementary Table 3. All case/control sets that were genotyped757

separately were first quality controlled independently and then again after merging the data.758

759

To control for population stratification within each individual GWA study, we merged the760

genotypes passing quality control filters with HapMap III genotype data from three populations;761

European (CEU), Asian (CHB + JPT) and African (YRI). We then performed a principal762

components analysis on the merged dataset and excluded any (non-European) population763

outliers from our studies. To control for any further (sub-European) population structure, we764

performed a second principal components analysis on the genotype data from each GWA study765

separately to ensure that cases and controls were clustering together. We then tested whether766

any principal components were significantly associated with the phenotype using logistic767

regression. Any principal components that were significantly associated were then included as768

covariates in the model when generating the final association test statistics for the migraine769

meta-analysis. The specific principal components adjusted for in each individual GWA study are770

listed in Supplementary Table 4.771

772

Imputation. Following GWA study-level QC, the data underwent a phasing step whereby773

haplotypes for each individual were statistically estimated using (in most instances) the program774

SHAPEIT78. Missing genotypes were then imputed into these haplotypes using the program775

IMPUTE279 and a mixed-population reference panel provided by the 1000 Genomes Project16.776

All study samples were imputed using the March 2012 (phase I, v3 release or later) 1000777

Genomes reference panel. A minority of contributing GWA studies used alternative programs for778

phasing and imputation such as BEAGLE80, MACH81, and MINIMAC82 or some in-house custom779

software. A full list of software and procedures used are provided in Supplementary Table 3.780
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781

Statistical Analysis. Individual study association analyses were implemented using logistic782

regression with an additive model on the imputed dosage of the effect allele. All models were783

adjusted for sex and other relevant covariates. Age information was not available for individuals784

from all studies therefore we were not able to adjust for it in our models. However, we note that785

all of the GWA studies were comprised of adults past the typical age of onset, hence age is at786

most a non-confounding factor and false positive rates would not be affected by its787

inclusion/exclusion. Furthermore, including such covariates can be sub-optimal, reducing power788

to detect genetic associations. To control for sub-European population structure, we also789

included in the model any principal components that were significantly associated with the790

phenotype (Supplementary Table 4). The programs used for performing the association791

analyses were either SNPTEST, PLINK or R (see URLs). To combine association summary792

statistics from all individual studies we used the program GWAMA (URLs) to perform a fixed-793

effects meta-analysis weighted by the inverse variance to obtain a combined effect size,794

standard error and p-value at each marker. We excluded markers in any individual study that795

had low imputation quality scores (IMPUTE2 INFO < 0.6 or MACH r2 < 0.6) or low minor allele796

frequency (MAF < 0.01). Additionally, we filtered out any marker that was missing from more797

than half the individual studies (missing from 12 or more out of 22 studies) and also markers798

exhibiting high levels of heterogeneity as identified by a high heterogeneity index (i2 > 0.75).799

After applying all filters, this left 8,045,569 total markers tested in the meta-analysis.800

801

Chromosome X meta-analysis. Due to the different ploidy of males and females, the X802

chromosome required a different statistical model; we applied a model of X-chromosome803

inactivation (XCI) that assumes an equal effect of alleles in both males and females. This XCI804

model was achieved by scaling male dosages to the range 0-2 to match that of females. In total,805

57,756 cases and 299,109 controls were available for the X-chromosome analysis806

(Supplementary Table 1). The reduced sample size compared to the autosomal data occurred807

because some of the individual GWA studies (EGCUT, Rotterdam III, Twins UK, and 846808

controls from GSK for the ‘German MO’ study) did not contribute chromosome X data.809

810

Defining Credible Sets. Within each migraine-associated locus, we defined a credible set of811

variants that could be considered 99% likely to contain a causal variant. The method has been812

introduced in detail elsewhere52,58 and a full derivation is outlined again briefly in the813

Supplementary Note. This method assumes that there is one and only one causal variant in the814
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locus. For loci that contain a secondary independent signal, we conservatively mapped only the815

primary signal.816

817

LD score regression analysis. We conducted a univariate heritability analysis based on818

summary statistics using LD score regression (LDSC) v1.0.055. For this analysis, high-quality819

common SNPs were extracted from the summary statistics by filtering the data using the820

following criteria: presence among the HapMap Project Phase 3 SNPs83, allele matching to821

1000 Genomes data, no strand ambiguity, INFO score > 0.9, MAF >= 1%, and missingness less822

than two thirds of the 90th percentile of total sample size. The HLA region (chromosome 6, from823

25 - 35 Mb) was excluded from the analysis. From this data, we used LDSC to quantify the824

proportion of the total inflation in chi-square statistics that can be ascribed to polygenic825

heritability by calculating the ratio of the LDSC intercept estimate and the chi-square mean826

using the formula described in the original publication55.827

828

eQTL Credible Set Overlap Analysis. To test whether the association statistics across each of829

the 38 migraine loci could be explained by credible overlapping eQTL signals, we used two830

previously published eQTL microarray datasets. The first dataset consisted of 3,754 samples831

from peripheral venous blood84 and the second was from a meta-analysis of human brain cortex832

studies of 550 samples85. From both studies we obtained summary statistics from an833

association test of putative cis-eQTLs between all SNP-transcript pairs within a 1-Mb window of834

each other. To test for overlapping eQTLs, we used credible sets of markers (see Defining835

Credible Sets) at each of the 38 distinct migraine loci. Then for the most significant eQTLs (P <836

1x10-4) found to genes within a 1Mb window of each migraine credible set, we created an837

additional credible set of markers for each eQTL. We then tested (using Spearman’s rank838

correlation) whether there was a significant correlation between the association test-statistics in839

each migraine credible set compared to the expression test-statistics in each overlapping eQTL840

credible set. Significant correlation between a migraine credible set and an eQTL credible set841

was taken as evidence of the migraine locus tagging a real eQTL. We determined the842

significance threshold to account for multiple testing by Bonferroni correction.843

844

Enhancer Enrichment Analysis. Markers of gene regulation were defined using ChIP-seq845

datasets produced at the Broad Institute and the University of California at San Diego as part of846

ENCODE65 and the NIH Roadmap Epigenome64 projects. Based on the histone H3K27ac847

signal, which identifies active enhancers, we processed data from 56 cell lines and tissue848
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samples to identify celltype- or tissue-specific enhancers, which we define as the 10% of849

enhancers with the highest ratio of reads in that cell or tissue type divided by the total reads86. A850

description of all 56 tissues/cell types is provided in Supplementary Table 21 and the raw851

enhancer data can be downloaded at http://www.epigenomeatlas.org.852

853

We mapped the candidate causal variants at each migraine associated locus to these enhancer854

sequences, and compared the overlap observed with tissue specific enhancers relative to all855

enhancers using a background of 10,000 randomly selected sets of SNPs of equal size as the856

original locus. We restricted the background selection to common variants (MAF>1%) from857

1000 Genomes that also passed our quality control filters in the meta-analysis (in other words,858

to only allow the selection of SNPs that had an a priori chance of being associated). The859

selection procedure then involved randomly selecting regions of the genome that were of860

equivalent length and containing an equivalent density of enhancers as found in the original861

locus. Once an appropriate region was found, a set of SNPs was randomly selected to match862

the number of SNPs in the credible set for that locus. If the selected SNPs happened to fall in863

an equal number of enhancer sites (of any tissue type) as that of the credible set of SNPs from864

the original locus, then the selected set of SNPs was accepted and added to the background set865

of SNPs for comparison. If the number of enhancers overlapping with the selected SNPs didn’t866

match, the randomized selection procedure was repeated until an appropriate comparison set of867

SNPs was selected. This selection procedure was repeated for each locus 10,000 times to868

obtain an empirical null distribution. The significance of the observed enrichment was then869

estimated from the empirical distribution by calculating the proportion of replicates that were870

greater than the observed value (i.e. Empirical P-value = [R + 1]/[N + 1] where R is the number871

out of all N replicates that were higher than the observed enrichment). Finally, we used872

Bonferroni correction to adjust for multiple testing of 56 tissue/cell types (P < 8.9 x 10-4).873

874

DEPICT reconstituted gene-set enrichment analysis. DEPICT62 (Data-driven Expression875

Prioritized Integration for Complex Traits) is a computational tool, which, given a set of GWAS876

summary statistics, allows prioritization of genes in associated loci, enrichment analysis of877

reconstituted gene sets, and tissue enrichment analysis. DEPICT was run using as input 124878

independent genome-wide significant SNPs (PLINK clumping parameters: --clump-p1 5e-8 --879

clump-p2 1e-5 --clump-r2 0.6 --clump-kb 250. Note - rs12845494 and rs140002913 could not be880

mapped). LD distance (r2 > 0.5) was used to define locus boundaries (note that this locus881

definition is different than used elsewhere in the text) yielding 37 autosomal loci comprising 78882

http://www.epigenomeatlas.org/
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genes. DEPICT was run using default settings, that is, 500 permutations for bias adjustment, 20883

replications for false discovery rate estimation, normalized expression data from 77,840884

Affymetrix microarrays for gene set reconstitution (see reference87), 14,461 reconstituted gene885

sets for gene set enrichment analysis, and testing 209 tissue/cell types assembled from 37,427886

Affymetrix U133 Plus 2.0 Array samples for enrichment in tissue/cell type expression.887

888

DEPICT identified 76 reconstituted gene sets that are significantly enriched (FDR < 5%) for889

genes found among the 38 migraine associated loci. Post-analysis, we omitted reconstituted890

gene sets in which genes in the original gene set were not nominally enriched (Wilcoxon rank-891

sum test) because, by design, genes in the original gene set are expected to be enriched in the892

reconstituted gene set; lack of enrichment therefore complicates interpretation of the893

reconstituted gene set because the label of the reconstituted gene set will be inaccurate.894

Therefore the following reconstituted gene sets were removed from the results (Wilcoxon rank-895

sum P-values in parentheses): MP:0002089 (0.01), MP:0002190 (0.16), ENSG00000151577896

(0.21), ENSG00000168615 (0.94), ENSG00000143322 0.70), ENSG00000112531 (0.04),897

ENSG00000161021 (0.10), ENSG00000100320 (0.43). We also removed an association898

identified to another gene set (ENSG00000056345 PPI, P = 1.7×10-4, FDR = 0.04) because it is899

no longer part of the Ensembl database. These post-analysis filtering steps left us with 67900

significantly enriched reconstituted gene sets. The Affinity Propagation tool88 was finally used to901

cluster related reconstituted gene sets into 10 groups (script to produce the network diagram902

can be downloaded from https://github.com/perslab/DEPICT).903

904

DEPICT tissue enrichment analysis. For the tissue enrichment analysis, DEPICT incorporates905

data from 37,427 human microarray samples captured on the Affymetrix HGU133a2.0 platform.906

These are used to test whether genes in the 38 migraine loci are highly expressed in 209907

tissues/cell types with Medical Subject Heading (MeSH) annotations. The annotation procedure908

and method for normalizing expression profiles across annotations is outlined in the original909

publication62. The tissue/cell type enrichment analysis algorithm is conceptually identical to the910

gene set enrichment analysis algorithm whereby enrichment P-values are calculated empirically911

using 500 permutations for bias adjustment and 20 replications for false discovery rate912

estimation.913

914

GTEx tissue enrichment analysis. Credible sets were generated for all 38 migraine loci (with915

P < 5 x 10-8) and corresponding gene sets for each locus were then generated by taking all916

https://github.com/perslab/DEPICT
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genes within 50 kilobases of a credible set SNP. Genes identified in this way were then917

analyzed for tissue enrichment using publicly available expression data from pilot phase of the918

Genotype-Tissue Expression project (GTEx)61, version 3. In the pilot phase dataset, postmortem919

samples from 42 human tissues and three cell lines across 1,641 samples (Supplementary920

Table 16) have been used for bulk RNA sequencing according to a unified protocol. All samples921

were sequenced using Illumina 76 base-pair paired-end reads.922

923

Collapsed reads per kilobase per million mapped reads (RPKM) values for each of the 52,577924

included transcripts, filtered for unique HGNC IDs (n = 20,932), were organized by tissue and925

individual (ntissues = 45, nsamples = 1,641). By this process we also excluded transcripts from any926

non-coding RNAs. All transcripts were ranked by mean RPKM across all samples, and 100,000927

permutations of each credible set gene list were generated by selecting a random transcript for928

each entry in the credible set within +/-100 ranks of the transcript for that gene. For each929

sample, the RPKM values were converted into ranks for that transcript, and sums of ranks930

within each tissue were computed for each gene. P-values for each tissue were calculated by931

taking the total number of cases where the gene list of interest had a lower sum of ranks than932

the permuted sum of ranks, and dividing by the total number of permutations. To assess the933

significance of the enrichment after testing multiple tissues, we used a Bonferroni correction934

adjusted for the number of independent tissues, estimated via the matSpD tool89 to arrive at 27935

independent tests and a significance threshold of P < 1.90 x 10-3.936

937

Specificity of individual gene expression in GTEx tissues. For the individual-gene938

expression analysis, we selected the closest gene to the index SNP at each migraine locus and939

then investigated expression activity of each of these genes in the collection of available940

tissues. As the number of samples for some tissues was small, we grouped individual tissues941

into four categories; brain, vascular, gastrointestinal, and other tissues (Supplementary Table942

16). Then for each selected gene, we tested whether the average expression (mean RPKM)943

was significantly higher in a particular tissue group compared to the “other tissues” category.944

We assessed significance using a one-tailed t-test and used Bonferroni correction to control for945

multiple testing for all 114 tests (38 genes × 3 tissue groups). While some genes were observed946

to be significantly expressed in multiple tissue groups, we determined that a gene was tissue-947

specific if it was only expressed highly in one tissue group (i.e. brain, vascular, or948

gastrointestinal, Supplementary Table 25).949

950
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eQTL credible set analysis in GTEx tissues. For all tissues and transcripts, we identified951

genome-wide significant (P < 2 x 10-13) cis-eQTLs within a 1Mb window of each transcript and952

created credible sets (see Defining Credible Sets) for each eQTL locus identified in each953

tissue. Then, for each eQTL credible set that contained markers that overlapped with a migraine954

credible set, we tested using Spearman’s rank correlation if the test statistics between the two955

overlapping credible sets were significantly correlated. Significant correlation between a956

migraine credible set and an eQTL credible set was taken as evidence of the migraine locus957

tagging a real eQTL. Multiple testing was controlled for using Bonferroni correction.958

959

Across the GTEx collection of tissues we found 35 significant cis-eQTLs within a 1Mb window of960

the 38 migraine loci, however, upon creating credible sets, seven of these still contained SNPs961

that overlapped with any of the migraine credible sets. Testing these seven eQTL credible sets962

as described above found that the correlation was significant (P < 7.1 x 10-3) for eQTLs to four963

tissues (Lung, Thyroid, Tibial Artery, and Aorta) at two migraine loci (HPSE2 and HEY2)964

Supplementary Table 19 and Supplementary Figure 15.965

966

Heterogeneity analysis of migraine subtypes. To discover if heterogeneity between the967

migraine subtypes might have affected our ability to identify new loci, we performed an968

additional meta-analysis using a subtype-differentiated approach that allows for different allelic969

effects between the two groups57. Since a large proportion of the controls were shared in the970

original migraine with aura and migraine without aura samples (see Table 1), for this analysis971

we created two additional subsets of the migraine subtype data that contained no overlapping972

controls between the two new subsets (Supplementary Table 12). The new migraine with aura973

subset consisted of 4,837 cases and 49,174 controls and the new migraine without aura subset974

consisted if 4,833 cases and 106,834 controls. Then using the association test statistics from975

each of the individual GWA studies listed, we performed the subtype-differentiated meta-976

analysis as implemented in GWAMA (see URLs).977

978

To assess the amount of heterogeneity observed, we chose the 44 LD independent SNPs that979

were associated with migraine and examined the results of the subtype-differentiated meta-980

analysis. We observed that only seven out of the 44 SNPs showed evidence for heterogeneity981

in the subtype-differentiated test (Heterogeneity P-value < 0.05, Supplementary Table 13).982

This suggests that most of the identified loci are truly affecting risk for both migraine with aura983
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and migraine without aura even though we may not yet have power to detect their association in984

the subset meta-analyses.985

986
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