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Genome-wide meta-analysis of cerebral
white matter hyperintensities in patients
with stroke

ABSTRACT

Objective: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and
Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on
data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms.

Methods: We first sought to identify genetic associations with white matter hyperintensities in a
stroke population, and then examined whether genetic loci previously linked to WMHV in community
populations are also associated in stroke patients. Having established that genetic associations are
shared between the 2 populations, we performed a meta-analysis testing which associations with
WMHV in stroke-free populations are associated overall when combined with stroke populations.

Results: There were no associations at genome-wide significance with WMHV in stroke patients. All
previously reported genome-wide significant associationswithWMHV in community populations shared
direction of effect in stroke patients. In a meta-analysis of the genome-wide significant and suggestive
loci (p, 53 1026) from community populations (15 single nucleotide polymorphisms in total) and from
stroke patients, 6 independent loci were associated with WMHV in both populations. Four of these are
novel associations at the genome-wide level (rs72934505 [NBEAL1], p 5 2.2 3 1028; rs941898
[EVL], p5 4.03 1028; rs962888 [C1QL1], p5 1.13 1028; rs9515201 [COL4A2], p5 6.93 1029).

Conclusions: Genetic associations withWMHV are shared in otherwise healthy individuals and pa-
tients with stroke, indicating common genetic susceptibility in cerebral small vessel disease.
Neurology® 2016;86:146–153

GLOSSARY
FLAIR 5 fluid-attenuated inversion recovery; ROI 5 region of interest; SNP 5 single nucleotide polymorphism; TICV 5 total
intracranial volume; WMH 5 white matter hyperintensities; WMHV 5 white matter hyperintensity volume; WTCCC2 5 Well-
come Trust Case Control Consortium–2.

White matter hyperintensities (WMH) on T2-weighted MRI are associated with increasing age
and cardiovascular risk factors, particularly hypertension, and are predictive of both stroke and
dementia in prospective community populations.1 Severe confluent WMH are often found in
patients presenting with stroke, and are more common in patients with the small vessel stroke
subtype.2 Furthermore, in these patients, WMH burden is linked to poor clinical outcomes after
stroke.3,4 Understanding disease mechanisms that contribute toWMH could lead to advances in
prevention, treatment, and rehabilitation of disability related to vascular cognitive impairment,
age-related functional decline, and stroke.

Twin and family history studies suggest a significant genetic component to WMH. Herita-
bility estimates range from 55% to 80%,5–8 suggesting that a moderate to large proportion of the
disease risk can be attributed to genetic effects. The heritability attributed to common single
nucleotide polymorphisms (SNPs) has been estimated to be between 13% and 45%.9 Previous
genome-wide analyses have focused on the genetic influence on WMH in community popu-
lations,10,11 and a recent meta-analysis identified 8 regions associated with the disease.12 One
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might expect genetic risk factors for WMH in
community populations to be similar to those
that confer increased risk of WMH in stroke
patients. However, the underlying pathology
of WMH is heterogeneous, with small punc-
tate lesions being associated with mixed
causes, whereas more confluent areas often
seen in stroke patients correspond primarily
to small vessel disease.13 Therefore, it is
unclear whether the lesions underlying
WMH in the general population are patholog-
ically distinct from the confluent lesions fre-
quently observed in patients with stroke.

In this analysis, we investigated the role of
the genetic contribution to WMH volumes
(WMHV) in patients with ischemic stroke.
We initially performed a genome-wide meta-
analysis of WMHV in stroke patients with
the aim of identifying novel associations. Sec-
ond, we determined whether similar genetic
factors contributed to WMHV in community
populations and stroke patients. Finally, hav-
ing established shared genetic factors in the 2
datasets, we performed a meta-analysis of the
published associations from community popu-
lations with our dataset to identify genetic as-
sociations that are in common in the 2
populations.

METHODS Study populations. Ischemic stroke populations

were enrolled through hospital-based studies between 1995 and

2013. Characteristics of the study populations are given in

table 1; full details are given in the supplementary material on

the Neurology® Web site at Neurology.org. Patients with cerebral

autosomal dominant arteriopathy with subcortical infarcts and

leukoencephalopathy or any other suspected monogenic cause

of stroke, vasculitis, or any other nonischemic cause of WMH

including demyelinating and mitochondrial disorders were

excluded from analyses.

Standard protocol approvals, registrations, and patient
consents. An institutional review board or regional review board

approved the use of human subjects in each of the study popula-

tions. All patients gave informed consent.

Neuroimaging analysis. MRI scans were acquired as part of

routine clinical practice for evaluation of ischemic stroke (table

e-1). Fluid-attenuated inversion recovery (FLAIR) sequences

were primarily used for WMH volumetric analysis; however, in

their absence, T2-weighted sequences were used (Wellcome

Trust Case Control Consortium–2 [WTCCC2], Oxford, and

WTCCC2, Munich, only). In all scans, to avoid confounding

by hyperintense signal due to acute stroke, WMHV was assessed

quantitatively in the hemisphere contralateral to the acute

infarction. Chronic lacunar infarcts were identified using

standard criteria as low signal on T1 or FLAIR images and

were excluded from WMHV estimates.14 Trained raters blinded

to all patient information analyzed anonymized MRI scans. All

supratentorial white matter and deep gray matter lesions were

included in WMHV with the exception of WMH

corresponding to infarcts, both lacunar and territorial.2 MRIs

with excessive movement artefact, incomplete brain coverage,

or bihemispheric infarcts (other than lacunar) were excluded.

To account for interindividual variability in head size, an esti-

mate of total intracranial volume (TICV) was derived using site-

specific volumetric methodology, as follows. MRIs from the

Massachusetts General Hospital, Ischemic Stroke Genetics Study,

and Australian Stroke Genetics Collaborative studies were analyzed

in Boston. Scans from the Siblings with Ischaemic Stroke Study

were analyzed in the same way at the University of Virginia by

the Boston-trained rater. FLAIR sequences were analyzed using

an MRIcro semiautomated method as previously described.2 Using

operator-mediated quality assurances, overlapping regions of inter-

est (ROIs) corresponding to WMH produced the final maps for

WMHV calculation. Intracranial area was derived as a validated

marker of TICV as the average of 2 midsagittal slices traced using

anatomical landmarks on T1 sequences.15

The WTCCC2, GENESIS, SGUL, Leuven, and Milan co-

horts were analyzed in London using DISPunc semiautomated

lesion drawing software.16 A seed at the lesion border was first

marked manually, and then outlined automatically based on the

signal intensity gradient. Each WMH ROI was visually inspected

and manually corrected as required. To estimate TICV, T2-

weighted and, in their absence, FLAIR sequences were analyzed

using an automated segmentation program, SIENAX,17 which

calculates the total volume of CSF and gray and white matter

volumes.

WMHV quantification agreement across the 2 main rating

centers was performed for 50 randomly selected scans; agreement

was very good (intraclass correlation coefficient 0.95, confidence

interval 0.91–0.97, n 5 50).

Phenotype definition. To calculate the phenotype used in the

genetic analysis, WMHV were doubled to obtain a whole brain

estimate. This volume was then multiplied by the ratio of TICV

(or intracranial area) to the mean TICV (or intracranial area) for

the study, thereby correcting for natural differences in head size.

The values were natural log transformed and the resulting ln

(WMHV) values were entered into a linear regression model

including age, sex, and the first 2 ancestry-informative principal

components. To ensure the phenotype was normally distributed,

the residuals from the model were then z-transformed and used

as the WMHV phenotype in the genetic analysis.

Genome-wide genotyping and imputation. Genotyping of

all cohorts was performed on commercially available arrays from

Affymetrix (Santa Clara, CA) or Illumina (San Diego, CA) (table

e-2). All cohorts performed extensive quality control steps prior to

imputation, removing SNPs showing significant departure from

Hardy-Weinberg equilibrium, high levels of missingness, or

low minor allele frequency. Individuals were removed who did

not segregate with Hapmap II European populations based on

ancestry informative principal component analysis using

EIGENSTRAT or multidimensional scaling in PLINK.18,19

Additionally, individuals showing cryptic relatedness or having

high levels of missingness or heterozygosity were excluded. All

datasets were imputed to 1000 Genomes integrated variant set

(March 2012) using IMPUTE v2.20

Genome-wide association analysis of WMHV in stroke
patients. To discover novel associations between WMHV and

each autosomal SNP, we performed linear regression of WMHV
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on genotype dosages using PLINK v1.07.19 SNPs with PLINK

INFO,0.7 or MAF,0.01 were removed from further analyses.

We used genomic inflation to evaluate inflation of test statistics in

each study group.21 Results across all study groups were combined

using a fixed-effects inverse variance weighted method using

METAL.22 To control for any excess signal that might result

from study-wise inflation of p values, we performed genomic

control correction, multiplying the standard errors from each

study by the square root of the genomic inflation factor.21

Heterogeneity was assessed using Cochran q statistic. Following

the meta-analysis, we considered only SNPs present in more than

12 study groups, and with heterogeneity p . 0.001, for analysis.

We set the significance threshold to p , 5 3 1028. We used

l1000 to evaluate inflation at the meta-analysis level.23 We had

80% power to detect a variant explaining 1.1% of the trait

variance (figure e-1).

Analysis of SNPs associated with WMH in community-
based populations. To determine whether SNPs contributing

to WMHV in community populations were associated with

WMHV in stroke patients, we evaluated each SNP reported as

being associated with WMH in healthy adults in a recent publi-

cation,12 testing if the SNP was associated with WMHV in ische-

mic stroke patients. All 17,936 individuals in the previous study

were stroke-free and nonoverlapping with the samples studied

here. We performed this analysis first for all genome-wide

associated loci from the publication, and second for loci

reported at p , 1 31025 in European populations or overall.

We set a significance threshold at p 5 0.0033, Bonferroni

correcting for the 15 SNPs analyzed. We had 80% power to

detect any associations that explain 0.4% of the trait variance.

In addition, we tested whether there was evidence overall that

genetic susceptibility factors were shared between the 2

populations. We used a binomial test to evaluate whether an

excess of the 8 genome-wide significant SNPs shared direction

of effect in community populations and stroke patients, and then

extended this to the 15 genome-wide significant loci and loci

reported at p , 1 3 1025 in European populations or overall.

Meta-analysis of stroke samples and published population-
based samples. Having established that genetic factors were

shared between community populations and stroke patients, we

evaluated the overall evidence that each of the 15 previously re-

ported SNPs (8 genome-wide significant, 7 suggestive) were

associated with WMHV in both populations. We combined

p values from the 2 sources using Stouffer z-score weighted

method with equal weights, classifying SNPs with p , 0.05 in

both populations and reaching p , 5 3 1028 overall as

significantly associated with WMH in both populations. We

were not able to perform the reciprocal analysis, testing if

suggestive associations with WMH in stroke patients were

associated with WMH in stroke-free individuals, due to

restrictions on access to the required summary level data. We

then evaluated novel genome-wide associations in available

databases to test for evidence that affects regulation of genes

(RegulomeDB)24 or directly affects gene expression (GTEx).25

Table 1 Cohort characteristics

Study group No. Mean age, y (SD) % Male % Hypertensive
Genomic inflation
l (l1000) No. SNPs

Milan 151 57 (14) 60 57 1.01 7,959,374

WTCCC2-Edinburgh 64 68 (13) 50 62 0.99 7,875,762

WTCCC2-Munich FLAIR 447 66 (12) 66 72 1.00 8,287,283

WTCCC2-Munich T2 203 67 (12) 55 67 0.99 8,194,948

WTCCC2-Oxford FLAIR 65 65 (15) 54 65 1.03 7,891,788

WTCCC2-Oxford T2 75 67 (13) 59 68 1.02 7,979,101

WTCCC2-SGUL 323 70 (14) 63 77 0.99 8,256,772

GENESIS 1 121 67 (14) 67 62 0.99 7,554,414

GENESIS 2 228 69 (15) 58 76 0.99 7,663,158

SGUL 1 70 70 (13) 61 61 0.98 7,278,977

SGUL 2 57 68 (14) 58 72 0.97 7,399,139

DNA lacunar 303 57 (9) 72 68 0.99 7,679,415

Leuven 361 66 (15) 58 59 1.01 8,741,082

MGH-Affymetrix 476 67 (14) 60 64 1.09 7,973,366

MGH-Omni 84 64 (15) 63 68 1.02 8,234,605

MGH-Illumina 228 66 (15) 64 61 1.00 8,144,043

ASGC 96 65 (13) 57 77 1.01 8,113,545

ISGS 207 68 (14) 62 61 1.01 7,985,259

SWISS 111 66 (11) 48 74 1.02 7,927,980

Overall 3,670 1.04 (1.01) 7,567,914

Abbreviations: l 5 genomic inflation level; ASGC 5 Australian Stroke Genetics Collaborative; FLAIR 5 fluid-attenuated
inversion recovery; ISGS 5 Ischemic Stroke Genetics Study; MGH 5 Massachusetts General Hospital; SGUL 5 St.
George’s University of London; SNP 5 single nucleotide polymorphism; SWISS 5 Siblings With Ischaemic Stroke Study;
WTCCC2 5 Wellcome Trust Case Control Consortium–2.
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RESULTS Study populations. Clinical characteristics
of all participating cohorts are given in table 1. In
total, 3,670 individuals of European ancestry were
included in the 19 study groups.

Genome-wide association analysis of WMHV in stroke

patients. With the exception of one study group,
genomic inflation was well-controlled (l # 1.03,
table 1). Following quality control procedures,
7,567,914 autosomal SNPs remained for analysis.
Genomic inflation was well-controlled at the meta-
analysis level (l 5 1.04, l1000 5 1.01; figure e-2).
No SNP reached the significance level (figure 1),
although a number of loci reached p , 5 3 1026.
These are detailed in table e-3, and regional plots of
these loci are provided in figure e-3. All odds ratios
reported are per 1 SD change in normally distributed
WMHV after accounting for age, sex, and ancestry-
informative principal components.

Analysis of SNPs associated with WMH in community-

based populations. Eight independent SNPs have been
associated with WMH in community populations.12

We evaluated each of these in our dataset of stroke
patients. The direction of effect of all 8 associations
was consistent with the direction in our study. This
alone is unlikely to be due to chance (p5 7.83 1023

from binomial test). For specific SNPs, no genome-
wide associations from community populations
reached our significance threshold, although all had
p # 0.24 for association with WMH in stroke
patients, and 3 loci reached a nominal significance
level (p , 0.05) in stroke patients (rs7214628
[TRIM65], p 5 0.015; rs78857879 [EFEMP1], p 5

0.0056; rs2984613 [PMF1-BGLAP], p 5 0.017).
Additionally, 10 loci were reported as suggestively

significant in the same recent publication,12 with

p, 13 1025 in Europeans or overall. Three of these
were rare (MAF# 0.02), and were not imputed with
enough accuracy to be analyzed in our dataset
(rs186314186, rs150695384, rs117126031). We
evaluated each of the 7 remaining associations in
our population. Of these, 4 passed our significance
threshold (table 2). One locus was nonsignificant and
in the opposite direction in our study (rs2883428,
p 5 0.17). In total, 14 of the 15 genome-wide and
suggestively significant loci shared direction between
community individuals and stroke patients (p 5

9.8 3 1024 from binomial test).
In addition, we searched for other publications

describing associations with any of the SNPs or genes
studied using the following search terms in PubMed:
(SNP or gene) and (white matter or leukoaraiosis
or small vessel disease). No relevant publications were
identified.

Meta-analysis of stroke samples and published population-

based samples. When combining our results in stroke
patients with the 15 previously reported associations
using Stouffer z-score meta-analysis, 6 associations
reached genome-wide significance overall and had
p , 0.05 in both studies (table 2). Four of these are
novel associations at genome-wide significance
(rs72934505 [NBEAL1], p 5 2.2 3 1028; rs941898
[EVL], p 5 4.03 1028; rs962888 [C1QL1], p 5 1.1
3 1028; rs9515201 [COL4A2], p 5 6.9 3 1029), all
of which showed good consistency across the 19
cohorts (figure e-4). The same 6 associations reached
genome-wide significance using an alternative meta-
analysis approach (Fisher method). The association
with COL4A2 (rs9515201) is in strong LD (r2 .

0.8) with SNPs previously reported to be associated
with cerebral small vessel disease, and is therefore
likely to represent the same locus.26

Figure 1 Association of genome-wide single nucleotide polymorphisms with white matter hyperintensity volume in ischemic stroke patients
by genomic position
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For each of these 4 novel associations, we queried
the RegulomeDB database and GTEx portal for evi-
dence that the SNPs affect DNA binding or expres-
sion of any mRNA molecule (figure e-5).24,25

rs962888 lies 25 Kb downstream from C1QL1; how-
ever, interrogation of GTEx portal showed that the
common allele (G, risk allele) of the SNP decreases
expression of elongation factor tu GTP binding
domain containing 2 (EFTUD2) in tibial arteries,
100 kb away (p 5 5.3 3 1026). Data from Regulo-
meDB support this observation, as the SNP overlies
DNase-seq, FAIRE-seq, and CHIP-seq peaks in
numerous tissues from ENCODE.27 Similarly, the
common allele (T, risk allele) of rs72934505 increases
expression of the nearby gene NBEAL1 in tibial arter-
ies in GTEx (p 5 2.5 3 10211), and also decreases
expression of islet cell autoantigen 1.69 kDa-Like
(ICA1L) in the thyroid (p 5 6.6 3 1026), 200 kb
away. No significant eQTLs were identified for
rs941898 or rs9515201, but both overlap numerous
CHIP-seq and DNAse-seq peaks from ENCODE,
indicating they may have a regulatory function.

DISCUSSION We report the first phase of a collabo-
rative genome-wide meta-analysis of WMHV in

stroke patients. We did not identify any associations
with WMHV in ischemic stroke patients at the
genome-wide significance level. The most likely
explanation for this is lack of power. We had 80%
power to identify a variant explaining 1.1% of the
trait variance (supplementary material), suggesting
that it is unlikely that any common variants explain
more than this proportion of the variance of WMH
in stroke patients. However, we cannot rule out the
existence of rare variants conferring a considerable
proportion of disease risk.

We found strong evidence that many of the same
genome-wide associations with WMHV in healthy
individuals influence WMHV in stroke patients. All
genome-wide significant associations with WMHV
shared direction of effect in our study and 3 reached
a nominal significance threshold. More convincing is
that of the 7 suggestive associations reported with
WMH in healthy individuals, 4 were significantly
associated with WMH in stroke patients. A meta-
analysis of these SNPs in 21,606 subjects suggests
that 4 of these loci are linked toWMH in community
populations and stroke patients at genome-wide sig-
nificance. Two of these associations influence
expression of nearby gene products (NBEAL1/ICA1L

Table 2 Association of WMH-associated SNPs from community populations in stroke patients

SNP CHR:BP Nearest gene RA OA RAF

OR (95% CI)
in stroke
patients

p Value in
stroke
patients

p Value for
Europeans in
community
populations12

Overall
p value

rs7214628 17:73,882,148 TRIM65 G A 0.20 1.08 (1.01–1.14) 0.015 2.7 3 10219 2.4 3 10215a

rs72848980 10:105,319,409 NEURL G A 0.83 1.04 (0.97–1.11) 0.25 6.3 3 1029 3.4 3 1026

rs7894407 10:105,176,179 PDCD11 T C 0.65 1.02 (0.97–1.07) 0.34 1.6 3 1029 3.8 3 1026

rs12357919 10:105,438,112 SH3PXD2A T C 0.83 1.07 (1.00–1.13) 0.068 1.9 3 1028 3.8 3 1027

rs7909791 10:105,613,178 SH3PXD2A A C 0.36 1.05 (0.99–1.09) 0.069 1.7 3 1028 3.7 3 1028

rs78857879 2:56,135,099 EFEMP1 A G 0.10 1.11 (1.03–1.21) 0.0056 2.9 3 1027 5.0 3 1028a

rs2984613 1:156,197,380 PMF1-BGLAP C T 0.66 1.06 (1.01–1.12) 0.017 1.4 3 1025 4.1 3 1026

rs11679640 2:43,141,485 HAAO C G 0.80 1.04 (0.99–1.11) 0.13 4.4 3 1028 2.3 3 1026

rs72934505 2:203,916,487 NBEAL1 T G 0.88 1.10 (1.03–1.18) 0.0076 5.4 3 1028 2.2 3 1028b

rs17148926 5:121,510,586 LOC10050584 A C 0.83 1.11 (1.04–1.18) 0.0010 1.0 3 1025 9.9 3 1028

rs941898 14:100,599,437 EVL G T 0.26 1.10 (1.05–1.16) 2.3 3 1024 1.6 3 1026 4.0 3 1028b

rs6942756 7:128,886,821 AHCYL2 G T 0.26 1.03 (0.98–1.09) 0.24 8.0 3 1027 5.0 3 1025

rs2883428 1:239,571,364 XM_0039600 G A 0.25 0.96 (0.91–1.02) 0.17 4.0 3 1027 1.6 3 1025

rs962888 17:43,059,071 C1QL1 G A 0.71 1.09 (1.03–1.15) 0.0021 2.2 3 1027 1.1 3 1028b

rs9515201 13:111,040,798 COL4A2 A C 0.32 1.09 (1.04–1.15) 7.0 3 1024 6.7 3 1027 6.9 3 1029b

Abbreviations: BP 5 base position (hg19); CHR 5 chromosome; CI 5 confidence interval; OA 5 other allele; OR 5 odds ratio; RA 5 reference allele; RAF 5

reference allele frequency; SNP 5 single nucleotide polymorphism; WMH 5 white matter hyperintensities.
The top 8 SNPs are genome-wide significant in community populations overall (including all ancestries) in a previous publication,12 while the bottom 7 are
suggestively significant in community populations. The p values reported here are for Caucasian populations only. The reported reference allele is the
effect allele in community populations.
a Associated at p , 5 3 1028 overall and with p , 0.05 in both populations.
bNovel association at genome-wide level. The overall p value gives the results of Fisher meta-analysis of the p values from community populations and
stroke patients.
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[rs72934505] and EFTUD2 [rs962888]). A genome-
wide significant association with rs9515201, located
in an intron of COL4A2, which encodes collagen 4
subunit 2, was also identified. This association is par-
ticularly interesting as rare mutations in COL4A2 and
the closely related COL4A1 protein lead to small ves-
sel disease and hemorrhagic stroke,28–30 and common
variants in close LD with this SNP (r2 . 0.8) have
been linked to sporadic small vessel disease.26

The observation that genetic risk factors for
WMH in community populations also influence
WMH in stroke patients has implications. It suggests
that the white matter changes seen on the brain MRI
scans of otherwise healthy elderly reflect a similar dis-
ease process as the more severe forms that underlie
cerebral small vessel disease in patients with stroke.
Previous studies have indicated heterogeneity in
WMH pathology: our results do not preclude this
possibility, but suggest that many of the same genetic
factors contribute to both pathologies.

Our study has several strengths. Protocols were
uniformly employed across analyses, including
imputation to the same reference build across all
study groups, using the same software. Similarly,
analyses were performed using the same software
on the same phenotype, derived in the same way.
We performed volumetric analysis of all MRI scans
to quantify WMHV, which has strengths over rating
scales, which are known to have ceiling effects.14

Inter-rater agreement between the 2 coordinating
centers was shown to be good. WMHV was quan-
tified using semiautomated volumetric protocols val-
idated for use in patients with stroke and clinical
grade MRI scans.

Our study also has limitations. Large-scale collabo-
rative GWAS such as that undertaken here necessarily
combine studies with some degree of phenotypic vari-
ability. Differences in environmental exposures, possi-
bly resulting in epigenetic modifications, may
contribute to such variability, which could alter the
results. We identified 4 novel associations at genome-
wide significance when combined with previous publi-
cations. However, we have not provided replication of
these findings and therefore further evidence will be
necessary to verify these associations with WMHV.
MRI used in the analyses were drawn from a number
of centers, with varying image quality. Therefore,
to minimize bias arising from differing image quality,
we quantified WMHV per study group and meta-
analyzed the results. This approach may limit our abil-
ity to detect associations with low frequency variants
due to small sample sizes in some study groups. The
majority of MRI scans used were from FLAIR sequen-
ces. However, where these were unavailable, we used
T2-weighted images, which are less sensitive to white
matter changes. Such differences in sensitivity may

affect quantification of WMHV across study groups,
although future studies that involve centralized volu-
metric MRI analysis pipelines, such as those currently
in development, may account for this variability. In
this analysis, we considered all subtypes of stroke
together as we were underpowered to investigate
subtype-specific influences on WMH. It is possible
that causes of WMH may differ by stroke subtype,
but larger studies with sufficient power will be required
before this issue can be addressed adequately. Similarly,
it has been hypothesized that periventricular and deep
WMH might have distinct underlying pathophysiol-
ogy. In this analysis, we considered total WMHV,
rather than treating these regions separately; our lesion
volume analysis did not differentiate into these 2 re-
gions. Further analyses should address this area.

We have shown that the age-related white matter
changes seen in otherwise healthy populations share
genetic susceptibility with the extensive lesions that
underlie cerebral small vessel disease. We report 6
independent loci that are associated with WMHV
in healthy individuals as well as stroke patients, 4 of
which are novel associations at the genome-wide level.
Our results suggest that a full genome-wide meta-
analysis of available cohorts of WMH in ischemic
stroke patients and community populations is likely
to uncover further associations.
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