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Abstract 
 
Background 
New treatment options are needed to maintain and improve therapy for tuberculosis, which caused 
the death of 1.5 million people in 2013 despite potential for an 86% treatment success rate. A 
greater understanding of Mycobacterium tuberculosis (M.tb) bacilli that persist through drug therapy 
will aid drug development programs. Predictive biomarkers for treatment efficacy are also a 
research priority. 
 
Methods and Results 
Genome-wide transcriptional profiling was used to map the mRNA signatures of M.tb from the sputa 
of 15 patients before and 3, 7 and 14 days after the start of standard regimen drug treatment. The 
mRNA profiles of bacilli through the first two weeks of therapy reflected drug activity at 3 days with 
transcriptional signatures at days 7 and 14 consistent with reduced M.tb metabolic activity similar to 
the profile of pre-chemotherapy bacilli. These results suggest that a pre-existing drug-tolerant M.tb 
population dominates sputum before and after early drug treatment, and that the mRNA signature 
at day 3 marks the killing of a drug-sensitive sub-population of bacilli. Modelling patient indices of 
disease severity with bacterial gene expression patterns demonstrated that both microbiological and 
clinical parameters were reflected in the divergent M.tb responses; evidence that factors such as 
bacterial load and disease pathology influence the host-pathogen interplay and the phenotypic state 
of bacilli. Transcriptional signatures were also defined that predicted measures of early treatment 
success (rate of decline in bacterial load over three days, TB test positivity at 2 months, and bacterial 
load at 2 months). 
 
Conclusions 
This study defines the transcriptional signature of M.tb bacilli that have been expectorated in 
sputum after two weeks of drug therapy, characterizing the phenotypic state of bacilli that persist 
through treatment. We demonstrate that variability in clinical manifestations of disease are 
detectable in bacterial sputa signatures, and that the changing M.tb mRNA profiles 0-2 weeks into 
chemotherapy predict the efficacy of treatment 6 weeks later. These observations advocate assaying 
dynamic bacterial phenotypes through drug therapy as biomarkers for treatment success. 
 
 
Background 
Tuberculosis (TB) caused the death of 1.5 million people in 2013 despite potential for an 86% 
treatment success rate [1]. New drug regimens are needed to maintain and improve therapy for 
tuberculosis, shortening treatment duration and targeting drug-resistant bacilli which complicate 
3.5% of new and 20.5% of previously-treated TB cases [1]. The standard chemotherapy regimen for 
drug-sensitive TB uses combinations of 4 drugs over 6 months. The recommended treatment for 
multidrug-resistant TB lasts 18-24 months or more, with increasingly toxic combinations of second-
line drugs. Extended periods of chemotherapy are required to remove sub-populations of 
Mycobacterium tuberculosis (M.tb) bacilli that persist through the early phase of antimicrobial drug 
treatment [2]. A recent treatment shortening trial failed to show non-inferiority despite evidence 
that the experiment regimens were more bactericidal in the first four months [3]. Evidence for the 
existence of persister populations recalcitrant to treatment is accumulating; quantitation of 
mycobacteria in serial sputum samples during treatment with regimens containing isoniazid display 
a characteristic biphasic pattern of killing, indicative of the presence of multiple populations of M.tb 
[4]. The exposure of sputum-derived bacilli to resuscitation-promoting factors unmasks a previously-
unculturable drug-tolerant population of M.tb in sputum [5], and sub-populations of bacilli that only 
grow in liquid culture and not on solid media may represent 90% of bacilli in sputum [6]. Similar M.tb 
populations have also been identified in chronic murine tuberculosis models [7], and generated in 
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vitro [8]. Microfluidic systems have revealed heterogeneous mycobacterial responses to antibiotic 
exposure in genetically-homogenous populations, providing a basis for the generation of such sub-
populations in vivo [9]. It is unlikely that the duration of tuberculosis chemotherapy will be reduced 
until drug regimens are identified that can kill these persister sub-populations. 
 
Success in tuberculosis chemotherapy is measured by the proportion of patients who fail therapy or 
who relapse after treatment is completed; therapy is monitored by counting M.tb in sputum and 
assaying markers of drug toxicity. Clinical or microbiological parameters such as number of lung 
cavities or extent of lung cavitation, M.tb culture positivity at 2 months [10] or bacterial load in 
sputum before the start of treatment [11] are associated with early treatment success but are poor 
predictors of treatment outcome. For example, use of a combination of biomarkers, culture 
negativity at 2 months and low extent of cavitation by X-ray, failed to be predictive of individuals 
where treatment could be shortened from 6 to 4 months [12]. However, molecular profiling assays 
such as those used to identify tuberculosis disease from patient blood transcriptional signatures 
[13,14] have not been applied to bacteria during patient drug therapy to assess the predictive power 
of dynamic bacterial responses to antimicrobial drug exposure. 
 
The transcriptional signature of M.tb reflects the bacterial physiological state and offers insight into 
the mechanisms required to survive [15-17]. An increased understanding of which M.tb bacterial 
phenotypes survive chemotherapy during natural infection will aid the design of novel intervention 
strategies. To this end, M.tb bacilli have been profiled from in vitro models that mimic hypothesized 
features of M.tb persister populations [8,18,19]. Investigation of the mRNA signature of M.tb 
derived from human sputa revealed a slow/non-growing gene expression pattern alongside an 
accumulation of lipid bodies, a ‘fat and lazy’ phenotype [20]. In addition, by mapping the differential 
expression of M.tb respiratory pathways, the microenvironment surrounding bacilli was predicted to 
be, at least in part, hypoxic [20]. This observation was confirmed by 3-dimensional PET-CT imaging of 
human lungs that highlighted the hypoxic and dynamic nature of lesions within an individual [21]. 
Transcriptional profiling the response of bacilli to drug exposure in vitro has helped to define 
antimicrobial drug class of action and mechanisms that may influence drug efficacy [22-24]. These 
drug-inducible signatures, used as a bioprobe, may also identify drug-tolerant M.tb populations by 
classifying divergent responses to drug exposure [25,26]. 
 
This study profiles sputum M.tb transcriptional responses during the first 14 days of standard anti-
tuberculous therapy, testing the hypothesis that persister-type bacilli are the dominant population 
in human sputum. Drug-induced changes in M.tb gene expression were observed 3 days after the 
start of chemotherapy that were not evident at 7 or 14 days. Furthermore the profile of bacilli 
derived from sputum one or two weeks after drug therapy resembled pre-treatment sputum bacilli. 
This suggests that bacilli with a phenotype able to survive drug therapy were already present prior to 
the commencement of treatment. Bacteria with a drug-responsive phenotype during days 0 to 3 
were no-longer present by day 7 and were presumably killed. Importantly, we demonstrate for the 
first time that the diverse pathology of human disease influences the phenotype of M.tb bacilli in 
sputum. We show that microbiological (bacterial load) and clinical (number of cavities) measures of 
disease were predicted from the changing M.tb sputum signature over time, as were parameters 
with prognostic value (positive TTP or MBL TB test, and bacterial load at 2 months). 
 
 
Methods 
Patient sample collection, clinical and molecular parameters 
Subjects with active pulmonary tuberculosis (HIV negative, sputum smear-positive pulmonary TB) 
were recruited in primary healthcare tuberculosis clinics in the Western Cape Province, South Africa 
following local ethical approval (Stellenbosch University Health Research Ethics Committee, Study no 



4 
 

99/039). Patients consented to be involved in the study. Details of the patients in this cohort have 
been reported previously [11]. Clinical parameters measuring severity of disease such as average 
chest radiograph (CXR) score and number of observable cavities were recorded. Briefly, full-sized 
CXRs (postero-anterior and lateral) were obtained and read by a pulmonologist blinded to patient 
clinical history using a standardized protocol [11]. Expectorated sputum was immediately collected 
into 4M GTC solution at the clinic as previously described [27] and frozen at -80 °C. For each patient, 
samples were collected before the start of chemotherapy, and 3, 7, and 14 days after initiation of 
treatment. Standard 5 day/week clinic-based directly observed treatment (DOT) was given by 
routine clinic nurses using fixed-dose combinations, with dose adjustment based on patient body 
weight. Treatment consisted of a 2-month intensive phase of rifampicin, isoniazid, pyrazinamide, 
and ethambutol, followed by a 4-month continuation phase of rifampicin and isoniazid. Treatment 
was monitored using microbiological (BACTEC 460) time-to-positivity scores (TTP) at diagnosis (day 
0), day 7, and day 14, and by the molecular bacterial load (MBL) assay [27] at diagnosis (day 0), day 
3, 7, 14 and 56. Participants’ molecular, microbiological and clinical parameters are detailed in Table 
S1. 
 
M.tb RNA extraction and amplification 
Mycobacterial RNA was extracted from tuberculous sputa as previously described using the 
GTC/Trizol method [20]. Briefly, sputum was thawed and bacterial pellets recovered from GTC by 
centrifugation at 1800 g for 30 minutes. Bacterial pellets were resuspended in Trizol (Life 
Technologies), disrupted using a ribolyzer (MP Biomedicals) and the nucleic acid recovered in the 
aqueous phase after addition of chloroform. The RNA preparations were purified and DNase-treated 
using RNeasy columns (Qiagen). Mycobacterial RNA yield and quality were assayed using the Nano-
Drop ND-1000 Spectrophotometer (NanoDrop Technologies) and Agilent 2100 Bioanalyser (Agilent 
Technologies). RNA samples were amplified from 100 ng total RNA using the MessageAmp II Bacteria 
system (Life Technologies) [16,28]. All sputum samples were extracted and amplified together to 
minimize technical variation. 
 
Transcriptional profiling M.tb from sputa 
Amplified M.tb RNA derived from 15 subjects at multiple time intervals before and during 
chemotherapy (totaling 52 samples) was profiled alongside M.tb H37Rv RNA extracted from in vitro 
log phase bacilli (2 biological replicates hybridized in duplicate) as a standardized comparator 
[16,20]. Amplified mycobacterial RNA (2 µg) was directly labelled with Cy3 fluorophore using the 
Universal Linkage System (ULS, Kreatech Diagnostics). Microarray hybridizations were conducted as 
previously described [16,20] using an M.tb complex pan-genome microarray generated by the 
Bacterial Microarray Group at St. George’s (ArrayExpress accession number A-BUGS-41). Significantly 
differentially expressed genes were identified using moderated t-tests (p-value <0.05 with Benjamini 
and Hochberg multiple testing correction), and fold change >2 (for aerobic comparisons), and >1.5 
(for sputum temporal responses) in GeneSpring 12.6 (Agilent Technologies). Samples were 
hierarchically clustered using Cluster and Treeview [29]. Hypergeometric probability was used to 
identify significantly enriched transcriptional signatures from functional classifications or from 
published datasets. Short time-series expression miner (STEM) was used to determine significantly 
represented temporal gene expression profiles (p <0.05 after Bonferroni multiple testing correction), 
identifying time-dependent transcriptional patterns in bacilli extracted from human sputa [30]. 
Significant genes identified in each comparison are detailed in Tables S2 and S3. 
 
Quantitative RT-PCR to verify transcriptional signatures 
M.tb cDNA (20 µL) was prepared for each sample using 1 µg RNA per reaction (Maxima 1st strand 
cDNA synthesis kit for RT-qPCR, Thermo Scientific) and amplified according to the manufacturer’s 
instructions for high GC templates. For pooled patient analyses, 10 µl first strand synthesis products 
were combined for each timepoint. The two M.tb log phase samples were amplified in triplicate and 
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combined. Quantitative 5-plex PCR was performed on a Rotor-Gene Q platform using QuantiTect 
Multiplex PCR NoROX Kit (Qiagen). 5 µL pooled cDNA was added per 25 µl reaction with 2x 
QuantiTect reaction mix and 0.2 µM primer and probes (Table S4). Multiplex qPCR was run for 40 
cycles according to the manufacturer’s instructions. In each 5-plex set sigA was used to normalize 
input cDNA concentration. Reactions were run in duplicate and accepted if replicate Cq values were 
within 1 cycle. Cq values were used to determine changes in gene expression either relative to day 0 
(before treatment) or to log phase bacilli using the 2-(delta delta Cq) method [31]. 
 
Modelling associations between RNA signatures and microbiological/clinical parameters 
Gene expression data were gathered into a matrix 𝑋𝑞 ∈ ℝ52×4456 for quantile normalized and 
𝑋𝑑 ∈ ℝ37×4456 for day 0 normalized data, with samples (patient, timepoint) in rows and genes in 
columns. Both matrices were standardized so each column had a mean of 0 and standard deviation 
of 1. Unsupervised dimensionality reduction technique principal component analysis (PCA) [32] was 
applied to the gene expression matrix 𝑋𝑞  to visualise temporal movement of the samples in principal 
component space. To investigate whether the gene expression trajectories over the first two weeks 
of therapy followed classifiable patterns, the patients (k) were divided into two classes based on the 
variance of the PC data points along the principal component axis: 𝑦𝑘 = −1, 𝑖𝑖 𝑣𝑣𝑣(𝑃𝑃1) >
𝑣𝑣𝑣(𝑃𝑃2) 𝑎𝑎𝑎 𝑦𝑘 = 1, 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒. That is, the class corresponds to the principal component axis 
along which the PC data points of a patient has larger variance. These target classes were modelled 
using support vector machine (SVM) [33] with gene expression data or clinical/microbiological 
variables as the predictors to define gene signatures or clinical variables, after applying stability 
selection or forward feature selection respectively, that explained the patient trajectories. 
 
The relationships between M.tb transcriptional profile and patient clinical/microbiological variables 
were defined using machine learning methods. Time-to-positivity was modelled with 𝑋𝑞 and other 
clinical variables with 𝑋𝑑. Firstly, stability selection [34], implemented according to the SCoRS 
framework, was used for feature selection [35]. 500 sub-sampling iterations were performed with a 
sub-sample that consisted of 500 features (columns in 𝑋) and 2/3 of the samples (rows in 𝑋). 
Stability selection yielded a set of stable, most predictive features of a particular clinical variable, 
which was used to train a regression or classification model. To optimize the number of features and 
to determine the predictive performance of the models, nested leave-one-out cross-validation was 
carried out, in which the inner loop determined the optimal number of variables and the outer loop 
the error of the model (Fig. S1). The reported errors are the average prediction errors of the test 
samples in the outer loop. Continuous clinical variables time-to-positivity and average chest X-ray 
score were modelled with L1-norm regression (Lasso) [36], and the performance evaluated with root 
mean squared error (RMSE) and Pearson correlation coefficient between the fitted and true values. 
Binary clinical variables TB test positivity at week 8 (MBL or TTP positive test vs. negative tests at 
wk8), bacterial load at day 0 (MBL >= 106 bacilli defined as high, MBL< 106 classed as low), and rate 
of decline in bacterial load from day 0 to 3 (ratio of MBL at day 3 relative to day 0, MBL ratio >= 10 
defined as high, MBL ratio < 10 classed as low) were modelled with SVM. Molecular bacterial load at 
week 8 was modelled with binary SVM by dividing the response values into two bins based on the 
distribution of the values (MBL week 8 <300 defined as low, MBL week 8 is >=300 classed as high). 
Performance of the SVM models was measured with average classification error, the fraction of 
misclassified test samples in cross-validation. All analyses, except the SCoRS algorithm, were 
implemented with Matlab and R using their built-in functions. 
 
 
Results 
The transcriptional states of M.tuberculosis bacilli derived from human sputa were mapped through 
the early stages of chemotherapy. M.tb bacilli were isolated from the sputa of 15 patients before 
chemotherapy was begun and then at 3 days, 7 days and 14 days of therapy with the standard 
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regimen (isoniazid, ethambutol, rifampicin and pyrazinamide). All patients had non recurrent active 
tuberculosis and were treated successfully for drug-sensitive tuberculosis and all patients were 
culture negative at 3 months. 
 
The ‘fat and lazy’ transcriptome of pre-chemotherapy sputum-derived bacilli 
The transcriptional profile of M.tb bacilli from sputa before the start of chemotherapy (day 0) was 
defined relative to bacilli grown in vitro in axenic log phase culture. 1083 genes were significantly 
differentially expressed in sputum-derived bacilli (day 0) compared to log phase growth, which 
revealed adaptations to respiratory and metabolic pathways (Fig. 1a/b, Fig. S2 and S3, Table S2). 
The sputum transcriptional signature was dominated by the repression of genes involved in 
intermediate metabolism (II.A) and ribosome synthesis (II.A.1). These functional categories (defined 
by Cole et al. [37]) were significantly over-represented amongst down-regulated genes 
(hypergeometric probabilities of 9.4x10-15 and 3.1x10-30 respectively). This drop in markers of cellular 
activity was accompanied with the repression of central metabolism and lipid biosynthesis, including 
the citric acid cycle (gltA2, kgd, mdh, korA/B, sucC, rv0247c/48c, fumC, mqo), FAS-1 (fas), FAS-II 
(fabD, acpM, kasA/B, fabG1, inhA), and mycolic acid synthesis and modification (mmaA2/3/4, 
cmaA2, pcaA, fadD32, pks13) pathways [38, 39]. Conversely, genes involved in the glyoxylate shunt 
pathway and methylcitrate cycle (icl, prpC, rv1129c), catabolism of cholesterol and fatty acids [40], 
and the predicted triacylglycerol synthases (rv1425, rv1760, rv3087, rv3371) [41] were induced in 
sputum-derived bacilli. Thus, the M.tb sputum transcriptome suggests that central carbon 
metabolism and general metabolic activity is reduced in bacilli expectorated from the lungs of 
tuberculosis patients, with an increased emphasis on lipolytic pathways. The transcriptomic 
evidence also predicted that the respiratory state of bacilli was altered in sputum with the down-
regulation of NADH dehydrogenase I (nuoD/E/F/G/K), cytochrome C reductase (qcrA/B/C) and aa3 
cytochrome C reductase (ctaC/D/E) pathways that are utilized in aerobic and microaerophilic 
conditions [42]. Correspondingly, genes involved in nitrate reduction (narK2/3) were induced, 
indicating the potential for a switch to alternative electron acceptors and anaerobic respiration. 
These adaptations are likely to be mediated in part by the transcriptional regulator DosR (DevR) that 
is induced by hypoxia and nitric oxide [43], with several DosR-regulated genes significantly up-
regulated in sputa (nrdZ, narK2, rv1738, pfkB, hspX, hrp1, rv3126c, rv3128c). Energy metabolism was 
also affected as ATP synthase genes (atpA-G) were repressed in sputum-derived bacilli; 
unsurprisingly the functional categories for aerobic respiration (1.B.6.a) and ATP-proton motive 
force (1.B.8) [37] were significantly enriched in those genes down-regulated in sputum (hg p-values 
6.5x10-5 and 3.2x10-8 respectively). The differential expression of these pathways and gene families 
are summarized in Fig. 1a and Fig. S3. In addition, mRNA profiles of 10 metabolic and respiratory 
indicator genes (icl, hspX, sigG, tgs1, prpC, atpE, kasA, nuoA, qcrC and ctaD) were confirmed by 
quantitative RT-PCR (Fig. 1b); the high concordance of expression ratios between contrasting assays 
validating our approach. 
 
The M.tb mRNA signature 7 and 14 days into chemotherapy resembles untreated bacilli 
We were able to successfully extract, amplify and profile mycobacterial RNA from sputa, after 3, 7 
and 14 days of standard chemotherapy despite falling bacterial viable counts. Hierarchical clustering 
revealed that the M.tb signatures from sputum-derived bacilli 14 days after the start of drug therapy 
were most similar to pre-chemotherapy (day 0) bacilli and day 7 bacilli, and that profiles from day 3 
clustered away from the other time intervals (Fig. 2a, Fig. S4). These observations from unsupervised 
hierarchical clustering were supported by the results of pairwise significance testing. 109 genes were 
identified as significantly differentially expressed at day 3 compared to day 0; in comparison to 37 or 
42 genes that were significantly different between day 0 and days 7 or 14 respectively (Fig. 2b/c, 
Table S3). No genes were significantly divergently expressed between day 7 and day 14 time 
intervals. The variation between sample profiles at each time point were similar (Spearman’s rank 
correlations of 0.871 to 0.901, Fig. 2c), suggesting that the number of statistically significant genes 
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identified in each comparison could be used reliably as a measure of similarity. A pattern emerged, 
analogous to the unsupervised hierarchical clustering, demonstrating that M.tb responses at 7 and 
14 days during chemotherapy were most similar to that of bacilli before drug therapy had begun. 
 
The transcriptional signature from M.tb bacilli that have persisted in patients through 14 days of 
standard drug therapy was similar to the pre-chemotherapy profile; for example, 501 of the 528 
genes induced in sputum at day 0 relative to log phase bacilli were also up-regulated in sputum at 
day 14 (Fig. 1a, Table S2). Thus, the gross changes to metabolic and respiratory pathways are 
comparable between sputum-derived bacilli before and during chemotherapy. However, the 
magnitude of transcriptional adaptations was elevated at day 14 compared to day 0; using aerobic 
log phase bacilli as a comparator 594 genes were significantly induced (605 genes repressed) at 14 
days in contrast to 528 up-regulated genes (555 down-regulated genes) at day 0 (Fig. S2, Table S2). A 
direct comparison of day 7 or day 14 transcriptional profiles to day 0 revealed that M.tb gene 
expression was predominately repressed with time (Fig. 2b/c); 37 genes were significantly down-
regulated at day 7 compared to day 0, and 37 genes were repressed at day 14 (29 overlapping with 
day 7 signature), with 5 genes induced (Fig. 2b/c, Table S3). 88% of genes that were down-regulated 
over time were also repressed in sputum relative to log phase bacilli, suggesting that the non/slow-
growing phenotype of sputum-derived bacilli was further enhanced over time and through 
chemotherapy. These genes encode ribosomal proteins (rpmH, rpsJ), ribonucleotide reductase 
subunits (nrdH, nrdI) involved in the generation of precursors for DNA synthesis, and type VII 
secretion system elements (esxA, esxB, esxH, esxN, esxO, esxV, espD, espG3). In contrast, prpC, a 
methylcitrate synthase up-regulated in day 0 bacilli relative to log phase bacilli was down-regulated 
with drug therapy, indicating that specific modifications to metabolic pathways may occur over time.  
 
Evidence of anti-mycobacterial drug action 3 days into treatment 
An inflection point at day 3 of chemotherapy was identified by mapping significantly represented 
temporal gene expression profiles (Fig. 3a). 6 of the 8 significantly represented gene curves 
describing the M.tb response to early drug therapy were modified at day 3 in comparison to day 0, 7 
or 14 time intervals. The inference from this observation, that the mRNA signature 3 days after the 
start of chemotherapy was distinct from the other sputa time points, was reinforced by hierarchical 
clustering (Fig. 2a, Fig. S4) and significance testing (Fig. 2b/c). 83 genes were significantly up-
regulated 3 days after the start of drug treatment compared to pre-chemotherapy bacilli. The 
majority of these genes were also induced at day 3 relative to both 7 and 14 days drug therapy (Fig. 
S5) suggesting that the day 3 transcriptional pattern represented a short-lived response to the start 
of drug treatment. This mRNA signature consisted of a diverse subset of genes involved in 
intermediary metabolism (argF, bkdC, galU, hisA, hisF, icl1, moaD1, pfkB, phoT, pstC1), cell wall 
metabolism (alr, fbpD, murC) and response to oxidative stress (alkB, cyp136, rv0547c). The 
alternative sigma factor sigG, induced as part of the RecA-independent DNA damage response and 
implicated in the regulation of detoxification systems [44], was also up-regulated. Perhaps 
importantly, 3 genes involved in the export of antimicrobial drugs were induced at day 3; rv1218c, 
encoding a putative ATP-dependent efflux pump regulated by RaaS (rv1219c) that is functionally 
significant in the response to antimicrobial drugs in non-permissive growth conditions [45]; rv2688c, 
a predicted ABC fluoroquinolone efflux pump [46]; and rv3066, a mycobacterial transcriptional 
regulator of the multidrug efflux pump Mmr (Rv3065) demonstrated to influence mycobacterial 
resistance to multiple toxic compounds [47]. Quantitative RT-PCR confirmed the induction of bkdC, 
involved in branched amino acid metabolism, ndhA, encoding a, nonproton-pumping type II NADH 
dehydrogenase, and nadA, a quinolinate synthetase involved in NAD biosynthesis, at day 3 relative 
to day 0 (Fig. 3b). The maximal induction of sigG, hspX, and tgs1 at day 3 were also verified by qRT-
PCR (Fig. 1b). 
 



8 
 

To further explore the relationship between sputum mRNA signatures and drug action in vivo, the 
transcriptional adaptations to a range of antimicrobial drugs in vitro [23] were mapped to the M.tb 
sputa profiles (Fig. 3c). Ten gene clusters (responsive to drug exposure) were identified to overlap 
with sputum transcriptional signatures exclusively after drug treatment had started. Transcriptional 
patterns reflecting exposure of bacilli to pyrazinamide and rifampicin were observed providing 
molecular evidence of in vivo drug action. Six of the ten enriched drug responsive gene clusters were 
only significant at day 3. Quantitative RT-PCR of genes that are highly up-regulated after M.tb 
exposure to cell-wall inhibitors [22, 23], exemplified by iniB and efpA, were specifically induced at 
day 3 compared to drug-free day 0 bacilli (Fig. 3b). The expression of these benchmark genes for the 
activity of isoniazid and ethambutol decreased at 7 and 14 days relative to day 3. Thus, the 
transcriptional signature of bacilli 3 days into chemotherapy may reflect in vivo drug-induced 
changes, however many of these responses to drug action were short-lived and were not evident 7 
or 14 days after the start of drug therapy. We hypothesize that these signatures represent the killing 
of a drug-sensitive M.tb population after 3 days chemotherapy, and reveal the presence of a pre-
existing drug-tolerant M.tb population that persists through early drug treatment. 
 
M.tb transcriptional signatures reflect patient disease and predict treatment progress 
All patients in this cohort were treated successfully for tuberculosis: 9 of 15 patients were culture 
negative at 2 months, and all patients were culture negative at 3 months. Microbiological time-to-
positivity scores (TTP) and molecular bacterial load (MBL) estimates were recorded alongside clinical 
parameters measuring severity of disease (chest radiograph score and the number of observable 
cavities) (Table S1). Unsupervised principal component analysis (PCA) plotting the first and second 
principle components of the M.tb transcriptional signatures from each patient over the first 2 weeks 
of treatment time showed that M.tb responses followed distinct trajectories (Fig. 4a).This suggested 
that M.tb responses to drug therapy may differ between patients and that these bacterial mRNA 
signatures may reflect patient disease severity or predict treatment progress. Interestingly, two 
directions of travel emerged at 0-3 days with South-North and East-West trajectories most common 
(Fig. 4a and Fig. S6). Therefore, the PC trajectories were grouped into two classes according to the 
direction of movement in principal component space (South-North or East-West). Unsurprisingly, 
since the PCA patterns are a representation of the transcriptional responses, support vector machine 
classification (SVM) confirmed that PC trajectory class could be predicted from the gene signatures 
(classification error of 8%, linear kernel). Furthermore, SVM was performed to test whether clinical 
or microbiological parameters collected for each patient would affect M.tb profiles such that the 
patient’s membership in South-North or East-West class could be forecasted. The number of 
observed cavities in the lung (at diagnosis) and the bacterial load at 8 weeks (MBL measurement) 
predicted PC trajectory class with a classification error of 13%, a success rate of 87%. These 
observations demonstrated that the expression profile of M.tb in sputum was associated with 
specific measurable patient parameters, that variability in clinical and microbiological manifestations 
of disease could be detected in the bacterial sputa signatures, which may also be of prognostic 
value. 
 
These findings were expanded using L1-norm regression to model the impact of continuous clinical 
and microbiological variables on M.tb sputa transcriptional profiles. Gene signatures were 
characterized that optimally designated time-to-positivity (day 0, day 7, day 14) with a RMSE (root 
mean squared error) of 3.6 hours. The fitted compared to true data are plotted in Fig. 4b/c, 
alongside the predictor gene set. The Pearson correlation coefficient between true and predicted 
values was 0.59 with p-value 4.4x10-5. Transcriptional patterns were also identified that correctly 
reflected patient chest x-ray score (at day 0) with a RMSE of 13.9 CXR score, Pearson correlation 
coefficient between true and predicted values of 0.73 with p-value 3.7x10-7 (Fig. 4d/e). M.tb 
expression profiles were also defined that were able to discriminate between high (>=106 bacilli 
measured by MBL) and low (<106 MBL bacilli) bacterial load at day 0 using a linear SVM (with 
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classification error of 5%). Thus, these clinical and microbiological parameters representing severity 
of disease and number of bacteria correlated with measurable changes in the M.tb transcriptional 
profile in sputa over the first 14 days of drug therapy. Notably, M.tb sputa signatures also predicted 
measures of early treatment response. The rate of decline in bacterial load from day 0 to day 3 
(measured by MBL) was forecast with a Gaussian SVM model with a classification error of 3%. TB 
test positivity at week 8 (positive wk8 TTP or MBL assay) was correctly classified using a Gaussian 
SVM with a classification error of 11% (successfully calling treatment progress 89% of the time). 
Similarly, a high or low molecular bacterial load at week 8 could be determined from the sputa 
transcriptional dataset using SVM with a classification error of 0%, 100% test accuracy. Thus, the 
changing transcriptional profile of M.tb derived from human sputa reflects features relevant to 
patient disease and may be used to predict early treatment success. 
 
 
Discussion 
M. tuberculosis bacilli derived from human sputa two weeks after the start of treatment should be 
portrayed as ‘fat, lazy and indifferent’ to drug therapy. In this study we were able to use genome-
wide transcriptional profiling to map the mRNA signatures of M.tb from the sputa of clinically well-
defined patients through the first two weeks of treatment, offering insight into the phenotypic state 
of bacilli that persist through chemotherapy. This contributes to our understanding of the in vivo 
efficacy of combination drug regimens and may aid novel anti-mycobacterial drug development 
programs targeting drug-persistent bacilli. The pre-chemotherapy M.tb signature defined here 
extends and validates the findings of a previous microarray study [20], confirming the M.tb sputa 
profile in a larger cohort of clinically-defined patients collected independently in a different country 
and assayed using a complementary profiling methodology. In addition, single gene inferences were 
verified by qRT-PCR using a panel of benchmark indicator genes. 
 
The M.tb mRNA signatures 7 and 14 days after the start of drug therapy were most similar to that of 
bacilli before drug therapy had begun, as evidenced by hierarchical clustering and differential gene 
expression analysis. Transcriptional changes at 7 and 14 days also indicated that the M.tb day 0 
sputum phenotype was enhanced with chemotherapy, with transcriptional markers of an active 
metabolic state further repressed over time. This mirrors findings from a recent study of M.tb in 
sputa using multiplex qRT-PCR that showed transition to a slow-growing low-metabolic activity 
phenotype after the start of drug treatment [48]. The broad changes in M.tb sputum physiology 
reflected in these transcriptional patterns were conserved between studies, where day 14 signatures 
were more similar to day 7 than day 2 [48] or day 3 (this study). However, we argue here that by 
using a well-defined log phase M.tb population as a comparator (as applied in many studies) enabled 
the pre-chemotherapy (day 0) M.tb population to be characterized [20], allowing us to propose that 
a pre-existing, slow/non-replicating and likely drug-tolerant M.tb population dominates sputum 
before, and after, early drug treatment. This conclusion is supported by evidence from other studies 
identifying large non-culturable on solid media or rpf-dependent M.tb sub-populations in sputum 
prior to treatment [5, 6]. An inflection point in the mRNA profile three days after the start of drug 
treatment, of stress-responsive genes including mediators of drug efflux, likely represents the effects 
of anti-TB drug action; using bacterial mRNA responses as a bioprobe for cidal drug action during 
natural disease. This transcriptional signature was only observed 3 days into therapy and was absent 
after 7 or 14 days, where the mRNA patterns were more similar to sputa bacilli before treatment. 
We hypothesize that the mRNA signature at day 3 marks the killing of a drug-sensitive sub-
population of bacilli, since these responses are not detected after drug exposure in phenotypically 
drug-tolerant bacilli [26]. By mapping previously-characterized in vitro M.tb transcriptional 
responses to antimicrobial drugs, we were able to define the in vivo action of standard regimen 
chemotherapy in a clinical setting. The expression of isoniazid-inducible benchmark genes (iniB, 
efpA) at day 3 alone suggest that the sputum bacterial population profiled here one week after the 
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start of chemotherapy no longer respond to the antimicrobial actions of isoniazid. This finding 
supports the Walter et al. study that detected an isoniazid response in sputa bacilli two days after 
the start of drug therapy that disappeared 7 days into treatment [48], and mirrors evidence 
describing the bimodal early bactericidal activity of isoniazid in combination regimens [2,4]. 
 
This study should be seen as capturing changes in M.tb mRNA abundance rather than differential 
transcriptional regulation since the structure of the underlying M.tb population is unknown. 
Therefore the transcriptional read-out described here represents the average changes in gene 
expression from shifting mycobacterial sub-populations found in sputum. As such, lack of a response 
to drug therapy might reflect limited exposure of bacilli to antimicrobial drugs [49] and/or the 
presence of drug-tolerant bacterial populations that are able to survive drug treatment. The 
development of mycobacterial phenotypic drug tolerance has been described in many in vitro 
models for tuberculosis [8,18,19] and is often associated with a slow/non-replicating bacterial state, 
such as that inferred from the sputum M.tb mRNA signature. Moreover, recent observations using 
single cell reporter technology described the development of non-growing but metabolically-active 
mycobacterial sub-populations during murine infection [50]. Our study further emphasizes the 
significance of drug-tolerant bacilli in human tuberculosis, identifying a transcriptionally-active M.tb 
population that persists through 2 weeks of standard chemotherapy. 
 
Modelling M.tb gene expression in the sputa of patients over time revealed that the transcriptional 
pattern of bacilli varied from patient to patient with drug treatment. Correlation of patient indices of 
disease severity with bacterial mRNA signatures showed that basic microbiological (time-to-
positivity, bacterial load at day 0) and clinical (chest radiograph score) parameters were reflected in 
the divergent M.tb responses. These associations suggest that factors such as bacterial load and 
disease pathology influence the host-pathogen interplay and thus the phenotypic state of bacilli, 
which in turn might affect the natural history of patient disease. Importantly, this demonstrates for 
the first time that the diverse pathology of tuberculosis affects measurable changes on the 
phenotype of M.tb bacilli in sputa. Notably, transcriptional signatures were also identified that 
predicted measures of early treatment success (rate of decline in bacterial load over three days, MBL 
or TTP positivity at 2 months, bacterial load at 2 months). Although this study was not significantly 
powered to test these signatures, these observations highlight the potential use of assaying dynamic 
bacterial phenotypes through drug therapy as biomarkers for treatment efficacy. These data are 
supported by recent evidence suggesting that higher percentages of lipid-body-positive acid-fast 
bacilli 3-4 weeks after the start of treatment, rather than initial baseline counts, correlated with 
treatment failure or relapse [51]. We demonstrate here a novel concept and proof-of-principle that 
proposes using the changing transcriptional state of infecting bacilli to monitor treatment success. 
 
 
Conclusions 
This study defines the transcriptional signature of bacilli in sputum after two weeks of drug 
treatment, mapping the molecular phenotype of persister-type bacilli. We demonstrate for the first 
time that variability in clinical manifestations of disease are detectable in bacterial sputa signatures, 
and that the changing M.tb mRNA profiles 0-2 weeks into chemotherapy predict the efficacy of 
treatment 6 weeks later. These findings advocate a novel biomarker discovery strategy, profiling the 
phenotype of infecting bacteria, to find predictive markers of treatment success that are desperately 
needed in clinical trials and to stratify at-risk patients in the clinic. 
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Figure legends 
Figure 1: The transcriptional signature of M.tb bacilli in sputa relative to aerobic log phase growth 
before chemotherapy (D0) and 3 days (D3), 7 days (D7), and 14 days (D14) after beginning standard 
regimen drug therapy. (a) 1337 genes significantly differentially expressed at any sputum timepoint 
compared to axenic log phase bacilli are displayed as rows; each patient/timepoint as columns. 
Coloring details fold change relative to log phase bacilli; red denoting up-regulation, blue repression. 
Adaptations to mycobacterial respiratory and metabolic state are summarized as text, listing key 
indicator genes that were significantly regulated at D0. Grey columns (A-D) mark in which 
comparison each gene was identified. Clear boxes signpost clusters of genes that were differentially 
expressed over time. (b) Quantitative RT-PCR verification of 10 genes as key indicators of M.tb 
physiological state measured in patient samples before treatment (day 0) and after 3, 7, and 14 days 
drug therapy. Genes induced in sputum icl, hspX, sigG, tgs1, and prpC and genes repressed in 
sputum atpE, kasA, nuoA, qcrC, and ctaD. Log2 expression ratios are plotted; the y-axis detailing fold 
change relative to log phase bacilli. Error bars mark the standard error of the mean. 
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Figure 2: The M.tb mRNA signatures 7 and 14 days into chemotherapy resemble untreated bacilli. (a) 
Hierarchical clustering of M.tb transcriptional profiles derived from sputa before the start of drug 
therapy (D0, black) and 3, 7, and 14 days into chemotherapy (D3, red; D7, blue; D14, purple). The 
dendrogram is derived from clustering all genes (4456) and all sputum samples (52) after median 
centering. Individual patient study numbers are marked. (b) M.tb genes significantly differentially 
expressed over time in sputa; at day 3 (top panel), day 7 (middle panel) and day 14 (bottom panel) 
compared to pre-chemotherapy (day 0) bacilli. Log2 expression ratios are plotted 3, 7, and 14 days 
after the start of drug therapy; the y-axis detailing fold change relative to day 0. Red coloring marks 
up-regulation, blue repression. (c) Table detailing M.tb responses to the early stages of drug therapy. 
The number of genes significantly induced (red) or repressed (blue) in pairwise comparisons of 
sputum time points are marked in the matrix. The mean Spearman’s rank correlation scores 
between samples at each time interval are also detailed (across the diagonal), demonstrating that 
variation in replicate sputa at each time point did not bias the statistical testing. 
 
Figure 3: The changing M.tb transcriptional pattern in sputum over time, highlighting day 3 as an 
inflection point. (a) Significantly represented temporal gene expression profiles in M.tb bacilli 
extracted from sputa relative to log phase bacilli using short time-series expression miner (STEM). 
The numbers of genes assigned to each gene expression curve are marked. (b) Quantitative RT-PCR 
defining day 3-specific induction of bkdC, ndhA, nadA, kasB, iniB and efpA plotted at 3, 7 and 14 days 
after the start of drug therapy. Log2 expression ratios are plotted; the y-axis detailing fold change 
relative to day 0 sputum bacilli. Error bars mark the standard error of the mean. (c) Significantly 
enriched gene clusters, previously defined in response to antimicrobial drugs [23], in M.tb derived 
from sputum at 0, 3, 7, and 14 days after the start of chemotherapy. Greater statistical significance is 
indicated by increasing depth of color (minimum hypergeometric p-value <0.05). Gene clusters in 
red overlap with genes up-regulated (blue, down-regulated) in sputum compared to aerobic log 
phase bacilli. Gene clusters are labelled numerically as in [23]. Ten gene clusters were identified as 
significantly enriched only after drug treatment had started (marked with asterisks). Gene clusters 
101, 31, 35 and 142 reflect exposure to pyrazinamide and rifampicin; cluster 45 rifampicin alone; and 
cluster 87 pyrazinamide alone. Six of the ten enriched drug responsive gene clusters were only 
significant at day 3. 
 
Figure 4: The associations between patient clinical and microbiological parameters and M.tb sputa 
transcriptional signatures. (a) M.tb responses to drug therapy result in contrasting patient 
trajectories as defined by principle component analysis (PCA). The first (PC1) and second (PC2) 
principle components of the M.tb transcriptional signatures from each patient at day 0, 3, 7, and 14 
are plotted. Each point represents an M.tb mRNA profile derived from a patient (colored 
individually), arrows and dashed lines mark the direction and distance of movement of each patient 
from day 0 to day 14. Patient study identifiers are plotted at day 0. (b/c) Fitted (x-axis) against true 
(y-axis) time-to-positivity (TTP) values of test samples modelled using the displayed set of 20 genes. 
y=x red line indicates ideal performance of the model; RMSE 3.6 hours, Pearson correlation 
coefficient 0.59, p-value of 4.4x10-5. (d/e) Fitted (x-axis) against true (y-axis) chest x-ray scores of 
test samples modelled using the displayed set of 23 genes. y=x red line indicates ideal performance 
of the model; RMSE 13.9 CXR score, Pearson correlation coefficient 0.73, p-value 3.7x10-7. 
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Figure S1: An illustration of the computation process to test associations between transcriptional 
signatures and patient variables. Figure S2: Venn diagrams describing the overlapping transcriptional 
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signatures of bacilli in sputum relative to aerobic log phase growth. Figure S3: Box and whisker plots 
mapping the differential expression of gene families. Figure S4: Hierarchical clustering of the mean 
M.tb transcriptional profiles derived from sputa. Figure S5: Venn diagram highlighting genes 
significantly induced 3 days after the start of drug therapy. Figure S6: Contrasting patient trajectories 
as defined by principle component analysis plotting day 0 and day 3 timepoints only. 
 
Additional file 2: 
Table S1: Participants’ molecular, microbiological and clinical parameters. 
 
Additional file 3: 
Table S2: M.tuberculosis genes significantly differentially expressed in bacilli derived from sputum 
before the start of chemotherapy (day 0) and 3, 7, and 14 days during treatment compared to log 
phase aerobic growth. 
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Table S3: M.tuberculosis genes significantly differentially expressed in sputa over time. 
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Table S4: Quantitative RT-PCR multiplex primer and probe sequences. 
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