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Abstract

Introduction

All-cause mortality in patients following repair of aortic aneurysms of the descending

thoracic aorta (TEVAR) is relatively high at mid-term follow-up. The aim of this

study was to derive and validate a system that could predict all cause mortality

following TEVAR to aid with patient selection.

Methods

The MOTHER database contained 625 patients that underwent elective surgery for

descending thoracic aortic aneurysms. Univariate analysis identified pre-operative

factors associated with mid-term all-cause mortality, and a Cox’s proportional hazards

model was developed. The model was internally validated using Kaplan-Meier

comparison of observed vs. predicted mortality. External validation was performed

using a dataset from the University of Florida College of Medicine (UFCM).

Results

There were 625 patients that underwent TEVAR for descending thoracic aortic

aneurysm in the MOTHER database and 231 in the UF validation set. The mid-term

mortality rate at 6 years follow-up was 34.4% and 34% respectively. The all-cause

mortality risk score was calculated using 0.0398*(age) + 0.516*(renal insufficiency)

+ 0.46*(previous cerebrovascular disease) + 0.352*(prior tobacco use) +

0.376*(number of devices > 2) + 0.016*(maximum aneurysm diameter). Using this

score, low, medium and high-risk groups were defined, with predicted survival at 5

years of 80%, 60% and 40%. Patients at high risk of mid-term all cause death were

identified in the validation cohort using the prediction rule.
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Conclusion

Identifying patients with a limited life expectancy following TEVAR is possible using

a pre-operative risk-stratification system. This information can be used to inform

decision-making regarding when and whether to proceed with TEVAR.
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Introduction

Endovascular repair of aneurysms of the descending thoracic aorta (TEVAR) has

enabled treatment of patients who would previously have been considered unfit for

extensive open surgery.1,2 Patients with descending thoracic aortic aneurysms

(DTAA) are generally elderly and frequently have multiple co-morbidities that may

limit life expectancy, independent of aneurysm related mortality.3 The principle of

aneurysm repair is to prevent rupture, which often has a low annualized risk of

occurring. Therefore, performing surgery on individuals who have a relatively short

life expectancy independent of their aneurysm, is of limited utility.4 Thus, a method

of stratifying patients into groups based on their predicted survival at mid-term

follow-up may help differentiate those who would benefit in terms of overall gain in

life expectancy from those who may not.

Risk-stratification systems have been described extensively for the pre-operative

assessment of patients undergoing elective abdominal aortic aneurysm repair.5 Most

of these systems were derived using logistic regression modelling and incorporated

pre-operative physiological covariates to predict peri-operative mortality. Others have

focused on one-year survival after AAA repair, placed in the context of rupture risk

based on aneurysm diameter, which may be a more useful measure of utility of

repair.6

Risk stratification models must be validated to prove that they are reliable before use

in clinical practice,7 and this validation can be internal, temporal or external,8 Internal

validation uses the same dataset that the models were initially developed from, and is

the least stringent form of validation. Temporal validation utilizes the same source as
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the original dataset, but uses new prospectively collected data acquired after the initial

model has been developed. External validation is the most stringent form of validation

and involves the testing of the model on an externally acquired dataset, ideally

collected from a different institution or even geographical area, completely separate to

the development sample.

The aim of this study was to derive and subsequently externally validate a model that

could be used to stratify patients undergoing TEVAR into different groups depending

on predicted life expectancy in order to inform pre-operative decision-making.
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Methods

Data from five prospective trials were obtained from Medtronic (Santa Rosa, CA,

USA) and collated with the addition of institutional data from a single UK centre. The

collated data was termed the MOTHER Registry (MedtrOnic THoracic Endovascular

Registry). The registry consists of the endovascular arm of one phase II/III trial

(VALOR I9), the intervention arm of one randomised control trial (INSTEAD10) and

three phase IV trials (VALOR II,11 CAPTIVIA12 and VIRTUE13), and patients who

underwent TEVAR specifically for DTAA were selected for this study. Patients with

a diagnosis of aortic dissection were excluded. The registry has been previously

described3. Patients who suffered mid-term all-cause death were identified, and the

cause of death was determined where possible. Time to death was determined as was

censorship due to end of follow-up (Table 1).

The morphological data available varied depending on the specific parameters that

were outlined in the original trial protocols. Participating centres measured their own

patients CT scans using three dimensional central luminal line reconstructions where

possible. The trial sponsors core laboratory then validated each centres measurements.

For the institutional series, each scan was measured according to a combined protocol

derived from all of the trials. For the St George’s Vascular Institute group

measurements were performed using 3-Mensio software (3-Mensio, Eindhoven,

Netherlands) according to a protocol that was based on previous work validating a

similar system for measuring the infra-renal aorta.14,15

Use of the data from the commercial trials was covered by the initial consent

procedure, and approval from the local IRB was given for the St Georges’ data.
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Statistical analysis

Statistical analysis was performed using the SAS 9.3 statistical package and SPSS 20.

Graphs were drawn with R 3.1.2 or SPSS 20. Univariate analysis was performed to

determine which individual factors were associated with all-cause death at mid-term

follow-up (6 years). Cox’s proportional hazard’s modelling was used to determine

which variables were independently associated with mid-term adverse outcomes, and

models were created to predict all-cause death at mid-term follow-up.

Univariate analysis

Univariate analysis for covariate association with mid-term outcomes was performed

by plotting Kaplan-Meier curves for each pre-operative categorical variable (e.g. renal

dysfunction) to determine if there was any significant difference in survival at follow-

up between those with this characteristic and those without. This also enabled

nominal (i.e. neck shape) or ordinal (access vessel tortuosity) variables with more

than two categories to be visually assessed for association with poor outcomes. The

Log-rank test was used to test for significance with a stringency of p<0.05. This test

was also used for categorical anatomical variables with more than one category.

For continuous variables such as anatomical measurements, an independent two-tailed

t-test was performed to compare the mean value for those that died with those that did

not die during the follow-up period.
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Selection of variables for multivariate modelling

As multiple univariate analyses were performed, selection of variables for the

multivariable analysis was stringent to avoid entering too many variables into the

automated process.

To select anatomical variables for consideration for use in multivariate analysis, a

dendrogram was created which visually clustered those variables that were correlated

according to Spearman’s correlation coefficient. This allowed variables to be

eliminated from further analysis on the basis that there was co-linearity and therefore

only one from the cluster (in any) would not be eliminated during the derivation of a

multivariate model. None of the trials included a complete set of anatomical variables

in the minimum data set, so where possible the variable with the most complete data

was selected from each cluster.

Categorical variables which were associated with a Chi-squared or Fisher’s exact test

p-value of p<0.05 were considered for multivariate analysis. Those which displayed a

trend toward significance (p<0.1) were also considered if it was felt that it made

clinical sense that they would contribute to a predictive model. Variables were

excluded if they were less than 80% complete in the original dataset. If there were

two variables that were considered to be potentially co-linear, the variable with the

strongest association with the outcome in question was selected.

The “rule of thumb” which suggests that 5-9 variables per event should be used in

logistic regression models was considered when selecting variables, to ensure as few

variables as possible were entered into the backward selection process.16
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Derivation of regression and proportional hazards models

The selected covariates were entered into an automated backwards selection process

which used the Wald test for significance at each stage to determine if variables

should be eliminated. The hazard ratio (HR) was calculated with 95% confidence

intervals with a p-value for significance for the Wald test to assess the contribution of

each covariate to the model.



12

Internal and external validation of Cox’s regression model for all cause death

The dataset used to externally validate the risk-stratification systems was obtained

from investigators from the University of Florida College of Medicine (UFCM), who

maintain a prospective endovascular surgery database at their institution for all

patients that have undergone TEVAR6. Institutional ethics board committee was

applied for and approved for the use of these data in this study. Patients who had died

during follow-up were identified and time to death from the procedure was calculated.

Patients that were censored for other reasons, such as the end of the study period or

loss to follow-up were identified.

Demographics

Patient demographic characteristics were compared between the development registry

dataset and the external dataset. Continuous variables were compared between the

two groups using the independent samples t-test, and categorical variables were

compared the Fisher’s exact test. Where there was more than one category to

compare, the Chi-squared test was used.
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Internal validation of Cox’s regression models for mid-term events

The accuracy of the Cox’s proportional hazards models was tested using Kaplan-

Meier plots that compared observed and predicted events. The “predicted” plot was

created by determining the probability of each patient having died at a particular time

point and taking the mean of every patients likelihood. 95% confidence intervals were

generated from the mean for each point. To determine if the model was able to stratify

patients into clinically useful groups according to predicted risk, quartiles and tertile

cut-off points of the scores were calculated and a comparison of Kaplan-Meier curves

made to determine if two, three or four risk groups were appropriate. Multiple log-

rank tests with Sidak’s adjustment for multiple comparisons of the log-rank test were

used to determine if these were any differences between pairs of groups (i.e. 1st and

2nd quartile and 1st and 3rd quartile) etc. with a stringency of p<0.05. Cut-off values to

stratify patients into groups could then be derived based.

These steps were repeated first for the original registry data for internal validation

purposes and using the UFCM dataset for external validation.
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Results

Patient demographics, co-morbidities and aneurysm morphology

671 TAA patients from the MOTHER registry were identified, of which 625 patients

from the MOTHER registry were identified as having undergone elective repair. The

UFCM validation set consisted of 256 patients that underwent TEVAR for DTAA

between 2000 and 2010, of whom 224 underwent elective repair. The age and gender

distribution of the development registry and the UFCM groups were statistically

similar (Table 1). The mean follow-up period was 29.6 months (range 0-121 months)

and the median was 26.4 months.

Outcomes

Of the 671 patients with a TAA in the MOTHER registry, 231 (34%) of patients had

died during follow-up. Of the 256 patients in the UFCM dataset, 90 (35%) had died

during follow-up. In the MOTHER group there were 275 (40%) patients entering the

3rd year of follow-up and 184 (27%) entering the 5th year. In the UFMC group there

were 99 (39%) patients entering the 3rd year of follow-up and 36 (14%) entering the

5th year of follow-up.
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Initial selection of anatomical covariates

Proximal neck diameter was selected for further univariate analysis as it was strongly

correlated with all other diameter measurements in the aortic arch, and was the most

complete (additional figure 1). Similarly, distal neck diameter was selected as it was

correlated with other diameter measurements of the distal aorta and was the most

complete. Maximum aneurysm diameter and aneurysm length were selected, as they

were relatively complete and are known to be clinically relevant. Of the categorical

variables, only iliac tortuosity was selected to enter into the selection process for the

models, as it was the most complete. Unfortunately descriptions of neck shape,

thrombus burden, calcification and access vessel calcification were not complete

enough to use in the model.
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Univariate associations with mid-term all cause death and covariate selection for

multivariate modelling

Age >75 years was associated with all cause mortality (log-rank p<0.001), as was

renal dysfunction (p<0.001), previous cerebrovascular disease (p=0.027), the

requirement for >2 devices (p<0.001) and coverage of the left subclavian artery

(p=0.005). Previous tobacco use displayed a trend toward significance (p=0.098).

More proximal stent-graft landing zones (Ishimaru 0, 1 and 2) (p=0.033), and

increasing burden of calcification in the distal neck (p=0.014) and access vessels

(p=0.018 and p=0.008 for the right and left respectively) were also subject to

increased mid-term mortality and patients with conical distal aneurysm necks showed

a trend toward increased risk of mortality (p=0.062) (supplemental table 1) (see

supplemental figure 2 for some example Kaplan-Meier plots).

Larger mean proximal (32mm vs. 33.5mm; p=0.001) and distal (31.6mm vs. 33.3mm;

p=0.003) neck diameters, larger mean maximum aortic diameters (58.3mm vs.

63.mm; p<0.001) and more extensive aneurysms (mean lengths of 121.7mm vs.

135.5mm; p<0.001) were associated with a subsequent mid-term death (supplemental

table 2).
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Age, renal dysfunction, cerebrovascular disease, need for >2 devices, coverage of the

LSA, tobacco usage and the four continuous anatomical variables were used in the

multivariate modelling. Ishimaru zone was not used to avoid co-linearity of model

variables as LSA coverage and aneurysm length showed a stronger association. ASA

grade was not used as it was considered that this is decided on in a subjective manner

and is likely subject to variation. Vessel calcification parameters and aneurysm neck

shape could not be used due to incompleteness of these data.
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Cox’s proportional hazard’s models for mid-term events

The backwards selection process eliminated aneurysm length, proximal neck diameter

and distal neck diameter from the final model which contained age (HR 1.041 per

year, 95% CI 1.021-1.061; p<0.001), renal insufficiency (HR 1.675, 95% CI 1.208-

2.324; p=0.002), previous history of stroke (HR 1.584 95% CI 1.111-2.259;

p=0.0111), the requirement for a placement of >2 devices into the aorta (HR 1.456,

95% CI 1.068-1.985; p=0.0176), tobacco use (HR 1.422, 95% CI 0.99-

2.043,p=0.0569) and maximum aneurysm diameter (HR 1.016 per mm 95% CI 1.004-

1.028; p=0.01).

The risk score produced was:

All-cause mortality score = 0.0398*(age) + 0.516*(renal insufficiency) +

0.46*(previous history of cerebrovascular disease) + 0.352*(prior tobacco use) +

0.376*(number of devices > 2) + 0.016*(maximum aneurysm diameter)

For categorical variables such as renal insufficiency, when a risk factor is present “1”

is used and when it is not “0” is used.
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Validation of Cox’s proportional hazard’s models for mid-term all-cause death

The model for mid-term all-cause death appeared to predict death well when applied

to the development group based only on the variables in the model (Figure 1 and

supplemental table 3). Patients were stratified according to the risk score using

tertiles (33rd and 66th centiles), quartiles and a high-risk and low-risk group (over 75th

centile = high risk) group (Figure 2 and supplemental table 4). Division into a high

and low-risk groups resulted in a highly significant log-rank test (p<0.001), whereas

division into quartiles showed that the two medium risk groups were not significantly

different. The group could be separated into a low, medium and high-risk group

successfully (p<0.05 for comparisons between each group) with a 80%, 63% and 43%

5-year freedom from death respectively. Low risk was defined as a score of <

4.10325, medium risk 4.10325 - 4.67375 and high risk > 4.67375 (Supplemental

table 3).

When the all-cause death model was applied to the UFCM dataset, there appeared to

be a clearly identified low-risk group with a 79% freedom from mortality at 5 years

(Figure 3). The medium-risk group had a freedom from mortality of 57%, and the

high-risk group only 24% (Supplemental table 4). There was no significant difference

between the medium and high-risk Kaplan-Meier curves, as the medium risk group

appeared to suffer from a high rate of mortality than the development registry patients

in the first three years. When split into two groups, the group predicted to be in the

highest quartile of risk had a 21% freedom from mortality at 5 years compared to the

rest of the group which had 63% freedom from mortality.
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Discussion

Univariate analysis of pre-operative physiological and anatomical variables revealed

several factors that were associated with mortality at mid-term follow-up after

endovascular repair of DTAA. A risk stratification model was derived, and was

validated internally meaning the proportion of observed events would likely have

been predicted using only the covariates contained in the models. The models were

able to identify different risk strata in the development registry, and when applied to

the University of Florida group, also placed patients into clinically useful risk strata.

Age, renal dysfunction, previous cerebrovascular disease and a history of tobacco use

were all associated with mid-term all-cause death, and these are factors that would be

expected to impact on the life-expectancy of the general population regardless of

surgical intervention. Patients with aneurysms that extended more proximally and

required >2 devices to repair were less likely to survive to follow-up, which is

consistent with other work that has suggest more proximal pathology is associated

with increased mortality at one year.6 Increasing maximum aneurysm diameter and

diameter of the proximal and distal neck was also associated with poor survival, as

was severe calcification of the distal aorta and access vessels. Advanced, generalised

aneurysmal and calcific arterial disease is associated with a combination of risk

factors that would increase the risk of death from various causes, and has been

demonstrated in previous work.17
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The multivariate model stratified the patients from the development registry into three

groups that had approximately an 80%, 60% and 40% freedom from all-cause

mortality at 5 years. The model was based on several covariates that intuitively would

be likely to predict a limited life expectancy. When applied to the UFCM group, it

appeared that only two distinct groups were visible. This was due to the fact that

although the mid-term all-cause death rate was comparable in both groups (34% vs.

35%), the patients in the “medium-risk” UFCM group tended to see a sharper decline

in survival at an earlier time in the follow-up period and had a poorer overall survival

at 5 years (49%). The rate of death in the high-risk group was such that only 23% of

patients were left alive after 5 years. It would appear therefore that the model under-

predicted 5-year survival in the UFCM group, but it should be noted that there were

relatively more patients in the “high-risk” group than in the development registry.

The mid-term all-cause mortality observed amongst patients that have undergone

TEVAR is relatively poor, a finding which consistently observed in the published

literature. A recent study of UK administrative data showed that freedom from

mortality at 5 years was only 65% after TEVAR, compared to 89% in matched

controls, which suggests that this group has a generally poorer life expectancy to that

of the normal population.18 Other prospective studies of mid-term mortality in

patients undergoing TEVAR for aneurysm revealed a similarly poor rate of survival

as the two cohorts studied here.19,20 This finding has been confirmed by analysis of

large administrative datasets in the UK and the US.1,21

This risk stratification system is able to identify a group of patients who might not be

offered TEVAR unless their aneurysm is felt to be at imminent danger of rupturing, as
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they are unlikely to see any benefit in terms of life expectancy. This is an important

finding given reports of the increasing numbers of procedures being performed in

relatively older, sicker patients than in the era of purely open surgical repair.1,21,22

Ultimately, TEVAR does not change the natural history of these patients with the

exception of decreasing their risk of aneurysm rupture. Thus, due care must be

applied when selecting which patients are to undergo TEVAR, given the potential for

early serious morbidity and mortality in high-risk patients. If the procedure is not

adding significantly to life expectancy, subsequent surveillance and re-intervention

may be costly to healthcare systems for little or no benefit at all. Importantly, these

risk-stratification systems should not be used to make final decisions about patients,

but they can certainly be used to assist in peri-operative decision-making.

Limitations of this study include the fact that some pre-operative information was not

available in the development registry, such as some morphological data and

information regarding secondary prevention medications. Although the external

dataset was similar statistically to the development registry, the UFCM dataset was

smaller meaning there were less events that could be used for validation of the peri-

operative events. The MOTHER registry is made up of many patients that were

enrolled into clinical studies with exclusion and inclusion criteria, whereas the UFCM

dataset was an institutional case series. Despite this the two groups were from similar

time periods, and to a certain extent differences in institutional practice is important if

external validation is to be successful.
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Conclusion

Identifying patients who have a limited life expectancy despite successful

endovascular treatment of a thoracic aortic aneurysm appears to be possible using an

externally validated pre-operative risk-stratification system. A variety of

physiological and morphological factors are associated with adverse peri-operative

and mid-term outcomes following thoracic endovascular aneurysm repair. Patients

can potentially be grouped into risk strata that will inform their risk of mid-term all

cause mortality. This knowledge could be used to target patients who stand to gain the

most from treatment, and potentially counsel some against intervention.
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Figure legends
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Figure 1 KM curves for mid-term all-cause death model internal validation

Figure 1 showing internal validation of the Cox’s proportional hazards model for all-

cause death. The red points or (KM estimates) represent the actual occurrence of

death in sample population. The blue line (PH model fit) represents a line drawn

through the predicted deaths that would have occurred based on the predictions of the

proportional hazards model with 95% confidence intervals.

0 1 2 3 4 5

No. at risk 631 456 364 279 228 164

Observed
Deaths

119 39 28 17 22 2

Expected
deaths

113 38 26 17 20 1
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Figure 2 KM curves for mid-term all-cause death stratification groups

Figure 2 showing different ways of stratifying risk of all cause death according to

grouping. When the group was divided into three, there was a significant difference

between all groups (p<0.001 for group 1 vs. 3 and 2 vs. 3 and p = 0.014 for 1 vs. 2)

(see supplemental table 3 for life-tables)
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Figure 3 KM curves for mid-term all-cause death - validation of stratification
groups

Figure 3 showing the Kaplan-Meier showing groups of patients at low-risk, medium-

risk and high-risk according to the model for predicting mid-term all-cause death

applied to the validation cohort (UFCM group) (see supplemental table 3 for life-

tables).
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