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Abstract

Background

Lifelong surveillance after endovascular repair (EVAR) of abdominal aortic aneurysms

(AAA) is considered mandatory to detect potentially life-threatening endograft complica-

tions. A minority of patients require reintervention but cannot be predictively identified by

existing methods. This study aimed to improve the prediction of endograft complications

and mortality, through the application of machine-learning techniques.

Methods

Patients undergoing EVAR at 2 centres were studied from 2004-2010. Pre-operative aneu-

rysm morphology was quantified and endograft complications were recorded up to 5 years

following surgery. An artificial neural networks (ANN) approach was used to predict whether

patients would be at low- or high-risk of endograft complications (aortic/limb) or mortality.

Centre 1 data were used for training and centre 2 data for validation. ANN performance was

assessed by Kaplan-Meier analysis to compare the incidence of aortic complications, limb

complications, and mortality; in patients predicted to be low-risk, versus those predicted to

be high-risk.

Results

761 patients aged 75 +/- 7 years underwent EVAR. Mean follow-up was 36+/- 20 months.

An ANN was created from morphological features including angulation/length/areas/diame-

ters/volume/tortuosity of the aneurysm neck/sac/iliac segments. ANN models predicted
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endograft complications and mortality with excellent discrimination between a low-risk and

high-risk group. In external validation, the 5-year rates of freedom from aortic complications,

limb complications and mortality were 95.9% vs 67.9%; 99.3% vs 92.0%; and 87.9% vs

79.3% respectively (p<0.001)

Conclusion

This study presents ANN models that stratify the 5-year risk of endograft complications or

mortality using routinely available pre-operative data.

Introduction
Endovascular aneurysm repair (EVAR) is the most frequently employed treatment for patients
with large abdominal aortic aneurysms (AAA). The key challenge for EVAR is to ensure the
durability of repair and detect endograft-related aortic complications requiring reintervention.
These complications comprise a group of well-defined entities, each of which predispose to
aneurysm rupture if left untreated (type 1 or 3 endoleak, sac expansion, or device migration).
Limb complications (stenosis or occlusion) do not predispose to rupture but are frequently
also a cause for re-intervention. Clinical trials have suggested that aortic or limb complications
may affect up to 1 in 5 patients in the first 5 years after EVAR[1–4].

In order to detect these complications before aortic rupture, lifelong surveillance imaging is
currently considered mandatory[5]. There is widespread debate regarding optimal surveillance
intervals and the preferred imaging modality employed in endograft surveillance[6]. Despite
the importance of detecting endograft related complications, only 30–50% of patients are com-
pliant with aortic surveillance after EVAR[7]. In addition, a number of studies have found that
the majority of aortic complications develop in the interval between normal surveillance scans
[8–11]. The majority of endograft complications are not identified by surveillance, and over
90% of re-interventions after EVAR are prompted by the onset of symptoms between appar-
ently normal surveillance scans[1, 9–11]. Therefore, it can be argued that over 90% of patients
do not directly benefit from surveillance imaging, but remain exposed to unnecessary nephro-
toxic contrast[12] and radiation[13], and incur economic cost[14]. Consequently, defining the
role for endograft surveillance has been identified as a priority[15, 16], particularly in light of
the significant contribution of surveillance to the cost-effectiveness of EVAR[15]. The need for
surveillance is predicated entirely on the risk of endograft complications, highlighting the need
for a clinical tool to predict these events.

The risk of endograft-related complications is heterogeneous[8] and a minority of patients
fall within a high-risk cohort[8]. Endograft complications and reinterventions are related to
pre-operative aneurysm morphology[17, 18], but current statistical models have proved insuf-
ficiently discriminatory for clinical use. Furthermore, existing risk models have not proved
capable of predicting limb complications such as stenosis or occlusion, which remain a source
of morbidity.

It is plausible that by using advanced machine learning techniques, such as artificial neural
networks (ANNs), the prediction of endograft complications and long-term mortality after
EVAR might be improved. Machine learning techniques have the potential to exploit complex
and subtle relationships between pre-operative variables in order to predict the risk of post-
operative events, and have gained popularity for modelling long-term outcomes in a variety of
surgical settings[19–23].
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The aim of the present study was to use ANN analysis to develop and externally validate a
predictive tool for determining the risk of endograft complications and mortality after EVAR.

Methods
Prospective databases were maintained for 761 patients undergoing EVAR at 2 regional vascu-
lar units in the UK, from 2004 to 2010. Details of this cohort have been published previously
[17]. Data from both centres were combined to create a single database. The dataset contained
details of pre-operative demographics, comorbidity and aortic morphology; peri-operative
technical details including operative procedure, endograft configuration and operative
adjuncts; and follow-up information including aortic complications or mortality.

The primary outcome measure was the development of endograft complications. Endograft
complications were classified as aortic or limb. Aortic complications were defined on an inten-
tion-to-treat basis as a group of conditions comprising any of: aortic rupture, type 1 endoleak,
type 2 endoleak with sac expansion> 5mm on CT, type 3 endoleak, sac expansion of any
cause> 5mm on CT and graft migration> 5mm on CT. Limb complications were defined on
an intention-to-treat basis as limb stenosis requiring reintervention; or occlusion. Stenosis was
treated symptomatically and the minimal criterion for haemodynamic significance was defined
as a 2.5-fold increase in peak systolic velocity on duplex ultrasound[24]. The secondary out-
come measure was all-cause mortality.

Inclusion Criteria
The study included all cases of EVAR for non-ruptured infrarenal AAA (both elective and
non-elective admissions) presenting between January 2004 and June 2010 at St George’s Vas-
cular Institute (centre 1) and Leicester Vascular Unit (centre 2). Patients undergoing open
aneurysm repair, fenestrated or branch stent-grafts, or those with juxta-renal/supra-renal/thor-
aco-abdominal aneurysms were excluded. All data was analysed retrospectively and was anon-
ymised and de-identified prior to analysis.

Completion Imaging, Endograft Surveillance and Reintervention Policy
Biplanar angiography was performed at the completion of EVAR. In both centres, the role of
surveillance CT imaging changed during the course of the study, although the role of duplex
ultrasound remained constant. Before September 2007, postoperative imaging comprised CT
and duplex prior to discharge from hospital. This group of patients underwent contrast-
enhanced CT at 3 months and 1 year postoperatively. Following September 2007, follow-up
comprised duplex ultrasound only, with patients undergoing duplex ultrasound and plain
abdominal radiograph prior to discharge from hospital. Throughout the study, all patients
underwent duplex ultrasound and plain radiography at 6 weeks, 3 months, 6 months, 9
months, 12 months, 18 months and annually thereafter.

In all cases where surveillance detected a clinically significant complication, or when
patients presented symptomatically between surveillance scans, a contrast-enhanced CT was
performed to direct reintervention. All patients underwent clinical evaluation at 6 weeks and
12 months after the index procedure and annually thereafter. An aggressive reintervention pol-
icy was followed for type 1 endoleak, type 2 endoleak with sac expansion> 5mm on CT, type 3
endoleak, and graft migration> 5mm.
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Data Collection: Comorbidity, Morphology and Freedom from Endograft
Complications
3D morphological assessment of preoperative imaging was performed on 3Mensio Vascular
software (3surgery; 3Mensio Medical Imaging B.V., Bilthoven, The Netherlands), following a
validated and published protocol[25]. The minimum CT slice thickness used for the 3D recon-
structions was 2.5mm. Comorbidity was categorised in binary variables specified by the Royal
College of Surgeons’ Charlson index for administrative data[26].

Freedom from endograft complications was reported using Kaplan-Meier analysis in both
centres. Patients undergoing EVAR at centre 1 (St George’s Vascular Institute) were treated as
a “model development” cohort and used exclusively for network training. Patients at centre 2
(Leicester Vascular Unit) were treated as a “model validation” cohort, and used as an indepen-
dent data source, to test the predictive accuracy of the network trained using data from centre
1 only.

Validation was performed by plotting the Kaplan-Meier freedom from endograft complica-
tions in patients predicted to be at high-risk versus those predicted to be at low-risk, with com-
parison by the log-rank test.

Construction of Bayesian ANNs
The censoring time of patients treated at centre 1 was used to classify patients into three
groups, which developed an endograft complication within five years (high risk group), com-
pleted five years of observation without a recorded endograft complication (low risk group), or
died within 5 years without a recorded endograft complication (unknown risk). Low- and
high-risk groups for endograft complication were used to build two separate Bayesian networks
called Blow and Bhigh respectively after applying a standard upsampling technique to balance
the datasets[27]. Each censored event was compared with the inherent distribution of the high-
risk group phigh and inherent distribution of low risk group plow, by calculating the likelihood
that the event was sampled from either model. Equations used to derive these likelihoods and
specify the ANN are detailed in the accompanying appendix, (Appendix A in S1 File).

A chi-square test feature selection method was applied to select 19 morphological features
for ANN construction for endograft complications; conventional univariate analyses were
therefore not performed for feature selection and model inclusion[28]. Three-layers back-
propagation ANNs were employed to predict aortic complications for centre 2, comprising 19
input, 4 hidden and 1 output neurons respectively. Full descriptive details of the ANN structure
and the ANN dependency graph are provided in Appendix B in S1 File. Clinical data regarding
patients’ comorbidity were added as inputs for an ANN to predict all-cause mortality at 5
years.

Validation of ANN performance was performed by plotting the Kaplan-Meier freedom
from aortic complications in patients predicted to be at high-risk versus those predicted to be
at low-risk, with comparison of actual outcomes in these predicted groups by the log-rank test.

Results
Between 1/1/2004 and 30/6/2010, 761 patients underwent EVAR of non-ruptured infrarenal
AAA and had complete morphological data available for analysis. Median follow-up was 36
months (range 11–94). 89% were male, and median (interquartile range, IQR) age was 75 (70–
80) years. The development cohort (centre 1, n = 475) and the validation cohort (centre 2,
n = 286) had similar demographics/comorbidity and similar pre-operative aneurysm morphol-
ogy (Table 1 and Table 2).
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A chi-squared filter feature selection method ranked the importance of various aspects of
aortic morphology as shown in Table 2, with higher-ranking features demonstrating greater
predictive power for determining the risk of endograft complications. The 19 highest-ranking
features were included in ANNs to predict aortic complications and limb complications
(Table 2, Figs 1, 2 and 3). Binary data regarding patient comorbidity and demographics
(Table 1) were added as inputs for an ANN to predict mortality (Fig 4).

Prediction of Endograft Aortic Complications
In the training dataset (centre 1), the 19-feature Bayesian ANN allocated 45.8% of patients to
the low-risk group. The 5-year freedom from aortic complications was 98.3% in the low-risk
group, and 41.3% in the high-risk group (p<0.001, log-rank test; Fig 1A; c-statistic 0.763). In
the validation dataset (centre 2), the ANN allocated 44.4% of patients to the low-risk group.
The 5-year freedom from aortic complications was 95.9% in the low-risk group, and 67.9% in
the high-risk group (p<0.001, log-rank test; Fig 1B; c-statistic 0.759).

Table 1. Baseline Demographics and Comorbidity in Development and Validation cohorts. Univariate analysis performed with Chi-Squared or Fisher’s
exact test for dichotomous data, Mann-Whitney U-test for non-normally distributed continuous data and student’s t-test for normally distributed continuous
data.

Patient Demographics or Comorbidity Centre 1 N = 475 Centre 2 N = 286 Total N = 761 p-value

Age (median) 76.00 75.00 75.00 0.239

Age (IQR) (70.0–80.0) (70.0–79.0) (70.0–80.0)

Male Gender 416/471 260/286 676/757 0.278

Male Gender (%) (88.3%) (90.9%) (89.3%)

Estimated Glomerular Filtration Rate (ml/min/1.73m2) (median) 70.00 66.30 68.65 0.044

Estimate GFR (ml/min/1.73m2) (IQR) (53.4–84.2) (51.8–79.6) (52.6–82.4)

Ischaemic Heart Disease* 240/475 114/248 354/723 0.273

Ischaemic Heart Disease (%) (50.5%) (46.0%) (49.0%)

Chronic Obstructive Pulmonary Disease† 174/475 14/286 188/761 < 0.001

Chronic Obstructive Pulmonary Disease (%) (36.6%) (4.9%) (24.7%)

Hypertension‡ 332/475 185/259 517/734 0.673

Hypertension (%) (69.9%) (71.4%) (70.4%)

Hypercholesterolaemia§ 337/475 140/177 477/652 0.037

Hypercholesterolaemia (%) (70.9%) (79.1%) (73.2%)

Current Smoking 180/475 47/252 227/727 < 0.001

Current Smoking (%) (37.9%) (18.7%) (31.2%)

Diabetes|| 70/472 39/253 109/725 0.828

Diabetes (%) (14.8%) (15.4%) (15.0%)

Top Endograft Diameter (median) 28.00 28.00 28.00 0.920

Top Endograft Diameter (IQR) (26.0–30.0) (26.0–32.0) (26.0–31.0)

AortoUniIliac Device 61/637 3/63 64/700 0.257

AortoUnIliac Device (%) (9.6%) (4.8%) (9.1%)

*History of angina; and history or ECG evidence of previous myocardial infarction
†Receiving treatment for COPD, previously diagnosed with COPD, FEV1<80% predicted or FEV1/FVC<0.7
‡Receiving treatment or dietary advice for hypertension or recorded blood pressure of 140/90mmHg or greater on at least two occasions
§Receiving treatment or dietary advice for hypercholesterolaemia
||Receiving treatment or dietary advice for type I or type II diabetes mellitus

doi:10.1371/journal.pone.0129024.t001
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Table 2. Morphological Features included in 19-feature Neural Networks.

Feature of AAA Morphology (pre-operative) Centre 1
N = 475

Centre 2
N = 286

Total N = 761 Ranking Importance in
ANN

Maximum AAA Diameter (Median) 62.90 62.15 62.60 1

Maximum AAA Diameter (IQR) (58.7–71.0) (58.1–70.8) (58.4–70.9)

Maximum AAA Area (Median) 2917.0 2843.0 2876.5 2

Maximum AAA Area (IQR) (2565.5–
3759.5)

(2483.0–
3651.0)

(2544.0–
3721.0)

AAA Sac Volume (Median) 189.70 182.35 188.75 3

AAA Sac Volume (IQR) (147.4–276.1) (147.4–248.1) (147.4–263.9)

Largest Common Iliac Diameter, measured 10mm proximal to Internal
Iliac Ostium (Median)

18.70 19.70 19.10 4

Largest Common Iliac Diameter, measured 10mm proximal to Internal
Iliac Ostium (IQR)

(16.0–22.6) (17.3–23.3) (16.4–23.0)

Largest Common Iliac Diameter, measured 5mm proximal to Internal
Iliac Ostium (Median)

18.30 19.50 18.60 5

Largest Common Iliac Diameter, measured 5mm proximal to Internal
Iliac Ostium (IQR)

(15.7–21.6) (17.0–22.6) (16.1–22.2)

Largest Common Iliac Diameter, measured 1mm proximal to Internal
Iliac Ostium (Median)

17.55 18.80 18.00 6

Largest Common Iliac Diameter, measured 1mm proximal to Internal
Iliac Ostium (IQR)

(15.3–20.4) (16.8–21.6) (15.8–21.0)

Aneurysm Neck Diameter, measured at widest point (Median) 26.30 26.80 26.45 7

Aneurysm Neck Diameter, measured at widest point (IQR) (24.2–29.8) (24.3–29.3) (24.3–29.6)

Aneurysm Neck Diameter, measured 15mm below lowest renal artery
(Median)

25.70 27.00 26.00 8

Aneurysm Neck Diameter, measured 15mm below lowest renal artery
(IQR)

(23.3–29.1) (24.1–29.7) (23.7–29.4)

Largest Iliac Tortuosity Index (Median) 1.48 1.44 1.46 9

Largest Iliac Tortuosity Index (IQR) (1.3–1.7) (1.3–1.6) (1.3–1.6)

Aneurysm Thrombus Volume (Median) 90.50 90.05 90.50 10

Aneurysm Thrombus Volume (IQR) (55.5–141.5) (54.9–131.2) (55.1–138.5)

Aneurysm Tortuosity Index (Median) 1.11 1.09 1.11 11

Aneurysm Tortuosity Index (IQR) (1.1–1.2) (1.1–1.1) (1.1–1.2)

Aneurysm Length (Median) 101.30 107.20 103.40 12

Aneurysm Length (IQR) (88.3–117.2) (93.2–119.5) (89.5–118.5)

Largest Common Iliac Volume (Median) 14.80 15.10 14.90 13

Largest Common Iliac Volume (IQR) (10.6–23.1) (10.9–23.1) (10.8–23.1)

Aneurysm Neck Diameter, measured 10mm below lowest renal artery
(Median)

25.20 25.90 25.40 14

Aneurysm Neck Diameter, measured 10mm below lowest renal artery
(IQR)

(22.5–28.1) (23.6–28.7) (23.1–28.2)

Aneurysm Neck Angulation (Median) 30.00 48.20 37.90 15

Aneurysm Neck Angulation (IQR) (15.8–49.5) (35.4–64.3) (23.0–56.3)

Largest Common Iliac Thrombus Volume (Median) 4.90 5.80 5.20 16

Largest Common Iliac Thrombus Volume (IQR) (3.3–7.6) (4.2–8.8) (3.6–8.2)

Aneurysm Neck Tortuosity Index (Median) 1.08 1.08 1.08 17

Aneurysm Neck Tortuosity Index (IQR) (1.08–1.09) (1.08–1.09) (1.08–1.09)

Aneurysm Neck Diameter, measured 5mm below lowest renal artery
(Median)

24.50 25.60 24.90 18

Aneurysm Neck Diameter, measured 5mm below lowest renal artery
(IQR)

(22.3–27.2) (23.2–27.9) (22.5–27.5)

(Continued)
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Prediction of Endograft Limb Complications
In the training dataset (centre 1), the 19-feature Bayesian ANN allocated 52.8% of patients to
the low-risk group. The 5-year freedom from endograft limb complications was 97.6% in the
low-risk group, and 64.0% in the high-risk group (p<0.001, log-rank test; Fig 2A; c-statistic
0.834). In the validation dataset (centre 2), the ANN allocated 51.0% of patients to the low-risk
group. The 5-year freedom from endograft limb complications was 99.3% in the low-risk
group, and 92% in the high-risk group (p<0.001, log-rank test; Fig 2B; c-statistic 0.767).

Table 2. (Continued)

Feature of AAA Morphology (pre-operative) Centre 1
N = 475

Centre 2
N = 286

Total N = 761 Ranking Importance in
ANN

Aneurysm Neck Area, measured at widest point (Median) 571.00 515.00 550.50 19

Aneurysm Neck Area, measured at widest point (IQR) (453.0–723.0) (429.0–613.0) (444.0–679.0)

doi:10.1371/journal.pone.0129024.t002

Fig 1. A: Freedom from Aortic Complications in Centre 1 in patients classified at low-risk or high-risk (Development Dataset). B: Freedom from
Aortic Complications in Centre 2 in patients classified at low-risk or high-risk (Validation Dataset).

doi:10.1371/journal.pone.0129024.g001

Artificial Neural Networks Stratify Risk in Aortic Surgery Patients

PLOS ONE | DOI:10.1371/journal.pone.0129024 July 15, 2015 7 / 15



Combined Prediction of All Endograft Complications
In the training dataset (centre 1), the 19-feature Bayesian ANN allocated 71.8% of patients to
the low-risk group. The 5-year freedom from all endograft complications was 88.5% in the
low-risk group, and 32.0% in the high-risk group (p<0.001, log-rank test; Fig 3A; c-statistic
0.779). In the validation dataset (centre 2), the ANN allocated 40.6% of patients to the low-risk
group. The 5-year freedom from endograft limb complications was 96.5% in the low-risk
group, and 85.6% in the high-risk group (p<0.001, log-rank test; Fig 3B; c-statistic 0.776).

Prediction of Mortality after EVAR
An ANN combining 19 morphological features (Table 2) with patient demographics and
comorbidity (Table 1) classified 59.3% of the training set patients (Centre 1) as low-risk. In the
training dataset, the 5-year freedom from mortality was 95% in patients predicted to be low-
risk, and 13.7% in those predicted to be high-risk (p<0.001 log rank test; Fig 4A; c-statistic
0.741). In the validation dataset, 57.3% were classified as low-risk and the 5-year freedom from
mortality was 87.9% in the low-risk group vs. 79.3% in the high-risk group (p<0.001 log-rank
test; Fig 4B; c-statistic 0.699).

Fig 2. A: Freedom from Endograft Limb Complications in Centre 1 in patients classified at low-risk or high-risk (Development Dataset). B: Freedom
from Endograft Limb Complications in Centre 2 in patients classified at low-risk or high-risk (Validation Dataset).

doi:10.1371/journal.pone.0129024.g002
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Discussion
Although the short-term benefit of EVAR for AAA is clear, challenges remain regarding its
longer-term clinical success, especially endograft-related complications and all-cause mortality
[2–4]. The present study demonstrated that these long-term outcomes could be risk-stratified
before surgery, using routinely available pre-operative data. A machine-learning technique
reproducibly categorised patients’ 5-year risk for both endograft complications and all-cause
mortality. This adds considerably to previously published work aimed at providing patients
with individualised risk profiles (IRP) for EVAR[17, 29]. Risk stratification of endograft com-
plications and mortality has considerable relevance because the need for lifelong surveillance
after EVAR is predicated entirely on the incidence of endograft complications, while better pre-
diction of long-term mortality informs patient selection for surgery. All-cause mortality was
reported preferentially to aneurysm-related mortality, in order to maximise internal validity
and the reproducibility of our findings. This is because autopsy is rare in the UK and aneu-
rysm-related mortality may be confounded by differences in endograft surveillance practice,
whereas all-cause mortality and endograft reinterventions can be reported with confidence,

Fig 3. A: Freedom from All Endograft Complications in Centre 1 in patients classified at low-risk or high-risk (Development Dataset). B: Freedom
from All Endograft Complications in Centre 2 in patients classified at low-risk or high-risk (Validation Dataset).

doi:10.1371/journal.pone.0129024.g003
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and reproducibly studied. Patients identified by an ANN to be at very high risk of all-cause
mortality might also be potentially excluded from consideration for AAA repair.

The ANNmodels developed in this study outperformed a validated IRP, the SGVI (St
George’s Vascular Institute) score, which was derived using Cox Proportional Hazards model-
ling techniques[17] (see Appendix C Figs 1, 2, 3 and 4 in S1 File). The majority of patients are
low-risk, both in clinical practice and in classification by ANN or SGVI score models. The
ANN provided a more powerful prediction of the low-risk group than has previously been pos-
sible with the SGVI score, which resulted in superior performance in simulated surveillance
studies (see Appendix D in S1 File). This finding is not unexpected due to the construct of
ANNs; that enables them to outperform logistic or survival models by including multiple inter-
acting and complex covariate effects for event prediction. To date, ANNs have successfully
been used in the clinical environment as event predictors in a variety of settings including the
diagnosis of myocardial infarction[30] and survival after acute coronary syndrome[31]. In
other clinical arenas, studies have demonstrated that ANNs outperform logistic regression
models in the prediction of autonomic dysfunction[32], or mortality following hip fracture
[33]. These quoted studies compared ANN with models derived from logistic regression; the
SGVI score was derived using Cox Proportional Hazards modelling techniques and similar
comparisons in this context have also been previously carried out[34].

Fig 4. A: Freedom fromMortality in Centre 1 in patients classified at low-risk or high-risk (Development Dataset). B: Freedom fromMortality in Centre
2 in patients classified at low-risk or high-risk (Validation Dataset).

doi:10.1371/journal.pone.0129024.g004
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The impact of aortic morphology on long-term outcome of EVAR is complex and well-
suited to ANN analysis, with considerable potential for interaction between aortic volume,
shape, diameter, angulation. Existing models have repeatedly demonstrated that aneurysm
diameter predicts reintervention after EVAR[35, 36], but evidence also suggests that other
aspects of aneurysm morphology contribute to long-term clinical success[23, 37–39]. More
complex considerations such as endograft configuration and deployment, or intermediate
markers of patients’ cardiovascular risk phenotype, could potentially be “learned” by future
iterations of the ANN in prospective studies. The addition of further operative factors (length
of operation, graft size, and endoleak at completion) or post-operative factors (endoleak at
early surveillance scans) might further improve the discriminatory power of ANNs.

In contrast to conventional statistical models, the ANN utilised for the present study was
designed as a binary classifier of a dichotomous event: endograft complications, or all-cause
mortality. A limitation of this technique is that clinicians are not provided with a greater num-
ber of predicted risk strata, or a group at predicted intermediate risk. A multinomial modifica-
tion of the ANN analysis technique can allow for generation of intermediate risk strata, but
there were too few patients to allow adequate discrimination in this study (Appendix E in S1
File); while for endograft surveillance a dichotomous model arguably provides sufficient infor-
mation for clinicians to identify those in whom surveillance could either be curtailed or intensi-
fied. A disadvantage of the ANN approach was that the best model required the measurement
and input of 19 features of aortic morphology for maximum accuracy, compromising ease of
use for clinicians. A more parsimonious ANN, incorporating 8 predictive features, would allow
faster use by clinicians, but performed with inferior discriminatory power (see Appendix C
Figs 1, 2, 3 and 4 in S1 File). A web portal for entry of morphology data, relaying information
to an ANN hosted on a remote server, would mitigate this difficulty and improve the usability
of the ANN solution for clinicians. A single software package was used for the assessment of
aortic morphology in the present study to minimise bias and maximise reproducibility. How-
ever, for clinical practice, any locally available software allowing 3D reconstruction of CT aor-
tograms would be suitable, further improving the acceptability of this solution. Furthermore,
the model was developed and validated on a cohort of patients from two institutions in a single
country. It was notable that the proportion of patients classified as high- or low-risk varied
between centres, although the absolute difference in event rates between groups within each
centre was clinically significant. This might be attributable to local differences in patients’ pref-
erences for endograft limb reinterventions, and further prospective evaluation of the ANN
models will be essential to inform clinicians regarding its generalizability, and improve under-
standing of the potential health economic implications for stratified endograft surveillance. A
further potential limitation of the ANN technique was the number of input variables required
compared to the number of events detected; this might challenge the generalizability of the
model and further evidence is required of its performance characteristics in other groups of
patients.

It has previously been suggested that surveillance should be adjusted according to patients’
AAA diameter as a surrogate for the future risk of endograft complication[35]. Unfortunately,
existing IRPs have not been able to define the lowest-risk patients with sufficient accuracy to
suggest safe termination of surveillance in such a cohort; for example, the lowest-risk patients
classified by the SGVI score continued to demonstrate a 12% 5-year risk of aortic complica-
tions[17]. Furthermore, existing risk scores have not been able to predict endograft limb com-
plications (stenosis or occlusion), which remain a source of morbidity[24].

The ANNmodels developed in the present study have the potential to inform surveillance
practice by stratifying the incidence of all endograft complications requiring reintervention.
Existing controversies around surveillance after EVAR encompass diagnostic inaccuracy,
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patient attendance rates, interval presentations and adverse events caused through surveillance
including ultimately unrequired reinterventions, nephrotoxicity, radiation exposure and cost.
Due to these issues, surveillance protocols tend to be applied uniformly, and are empirical
rather than evidence-based. There is widespread variation in practice in the UK[40, 41] and
internationally[42], both in the timing of scans and the imaging modality used. Many centres
utilise CT for first-line imaging amid concerns regarding the sensitivity of duplex, but duplex
ultrasound is proven to offer sufficient diagnostic accuracy for detecting key complications[6],
is safe [43, 44] and is preferred to CT by institutions with greater experience in performing
EVAR[42].

Several studies have reported that the majority of complications requiring reintervention
after EVAR are most often detected by the onset of symptoms occurring in the interval between
apparently normal surveillance scans[1, 9–11]; so that just 1.4–9% of patients undergo reinter-
vention after EVAR directly as a result of surveillance findings rather than the development of
symptoms between surveillance scans. Therefore, it could be argued that over 90% of all
patients receive no benefit from post-EVAR surveillance. In addition, 15% of post-EVAR aneu-
rysm ruptures are described in patients with no detectable stent abnormality on surveillance
imaging[45]. Finally, the attendance rate at surveillance is globally less than 50% of those who
originally underwent EVAR, with some reports suggesting that the figure is as low as 30%[7,
46]. Surveillance can also give rise to false positive findings; in one series, 3/553 (0.5%) patients
underwent unnecessary diagnostic angiography due to apparent endoleak on initial surveil-
lance; exposing these patients to unnecessary procedural risk[8]. The present study suggests
that an ANN technique for analysing aortic morphology and basic co-morbidity data might
inform a more evidence-based approach to patient selection and post-operative surveillance, in
which the frequency of scans can be targeted to the risk of endograft failure.

Conclusion
This study has demonstrated that it is possible to stratify the risk of key long-term outcomes
after EVAR, based on routinely available pre-operative data combined with accurate assess-
ment of aortic morphology. This might impact both patient selection and surveillance after
EVAR, which remain subject to controversy in practice. The development of a user interface,
further validation of the model and feasibility study are required to enhancing the acceptability
of this proposal.

Supporting Information
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classification of high-risk, medium-risk, and low-risk patients for limb or aortic endograft
complications after EVAR.
(DOC)
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