
Linkage and sequence analysis indicates that CCBE1 is mutated in recessively 

inherited Generalised Lymphatic Dysplasia. 
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Abstract 
Generalised lymphatic dysplasia (GLD) is chararacterised by extensive 

peripheral lymphoedema with visceral involvement. In some cases it 

presents in utero with hydrops fetalis. Autosomal dominant and recessive 

inheritance has been reported. A large, non-consanguineous family with 

three affected siblings with generalised lymphatic dysplasia is 

presented.  One child died aged 5 months, one spontaneously miscarried 

at 17 weeks gestation, and the third has survived with extensive 

lymphoedema. All three presented with hydrops fetalis. There are seven 

other siblings who are clinically unaffected. 

 

Linkage analysis produced two loci on chromosome 18, covering 22Mb and 

containing 150 genes, one of which is CCBE1. A homozygous cysteine to 

serine change in CCBE1 has been identified in the proband, in exon 3, in 

a residue that is conserved across species. High density SNP analysis 

revealed homozygosity (a region of 900kb) around the locus for CCBE1 in 

all three affected cases. This indicates a likely ancestral mutation 

that is common to both parents; an example of a homozygous mutation 

representing Identity by Descent (IBD) in this pedigree. Recent studies in 

zebrafish have shown this gene to be required for lymphangiogenesis and 

venous sprouting and are therefore supportive of our findings. In view 

of the conserved nature of the cysteine, the nature of the amino acid 

change, the occurrence of a homozygous region around the locus, the 

segregation within the family, and the evidence from zebrafish, we 

propose that this mutation is causative for the generalised lymphatic 

dysplasia in this family, and may be of relevance in cases of non-immune hydrops 

fetalis. 

 

Introduction.  

 

Lymphoedema is chronic, and often progressive, swelling due to failure of lymph 

drainage of protein-rich fluid from the interstitium, in circumstances in which 

capillary drainage is not increased (Mortimer 1998). Lymphoedema can be primary or 

secondary (acquired). Primary lymphoedema is a chronic oedema caused by a 

developmental abnormality of the lymphatic system (Mortimer 1995). It usually 

affects the extremities as a result of abnormal regional lymphatic failure, although 

visceral lymphatic drainage can also be impaired. The accumulation of fluid in the 

interstitial spaces occurs due to an anatomical or functional defect in the lymphatic 

vessels. Impairment of the lymphatic drainage system can occur as a non-syndromic 

mendelian condition or as part of a more complex syndromic disorder (Ferrell and 

Finegold 2008).  

 

Lymphoedema can be debilitating and disfiguring. It causes physical and 

psychological morbidity, and in some cases can be life-threatening. The burden of this 

disease and its complications is considerable. Treatment options are limited and only 

palliative. 

 

In recent years there has been considerable progress made in the understanding of the 

molecular pathways underlying lymphangiogenesis, with mouse knockouts 



uncovering a range of gene products, from the master switch, PROX1 (Wigle and 

Oliver 1999), through to the guidance molecules Ephrin B4 and ephrin B2 (Makinen 

et al 2005). In humans, only three causative genes have been identified for disorders 

where lymphoedema is the primary phenotype;  VEGFR3  in Milroy disease (Ferrell 

et al 1998, Karkkainen et al 2000, Irrthum et al 2000), FOXC2 for Lymphoedema 

distichiasis (Fang et al 2000, Bell et al 2001, Erickson et al 2001, Brice et al 2002)) 

and mutations in SOX18 are responsible for causing the rare syndrome, hypotrichosis-

lymphoedema-telangiectasia (Irrthum et al 2003). There are many other forms of 

primary lymphoedema where the genetic cause is unknown and the phenotype not 

well delineated. Widespread peripheral lymphoedema associated with systemic 

involvement is termed generalised lymphatic dysplasia (GLD). It can present in utero 

with ascites, pleural/pericardial effusions and hydrops fetalis. In 1989, Hennekam et 

al described  an autosomal recessive condition in which members of a consanguineous 

family were reported with congenital severe peripheral lymphoedema, intestinal 

lymphangiectasia, facial anomalies, seizures, mild growth retardation and mental 

retardation (Hennekam et al. 1989). The phenotype of Hennekam syndrome has since 

been expanded and the degree of mental retardation is reported to be very variable, 

even within families, ranging from near normal development to severe delay (Forzano 

et al. 2002;Van Balkom et al. 2002;Yasunaga et al. 1993). The generalised lymphatic 

maldevelopment that characterises this syndrome predominantly affects the limbs and 

bowel, but can also manifest in the face, genitalia and other organs (pleura, 

pericardium, thyroid and kidneys) (Forzano et al. 2002;Van Balkom et al. 2002). The 

lymphoedema is usually congenital, can be asymmetrical and, often, gradually 

progressive (Van Balkom et al. 2002). Additional features include, congenital heart 

defects, vascular anomalies, craniosynostosis, congenital glaucoma, polysplenia, ear 

anomalies, hearing loss, primary hypothyroidism, pyloric stenosis, camptodactyly, 

rectal prolapse and renal malformations (Ali-Gazali et al. 2003;Angle and Hersh 

1997;Cormier-Daire et al. 1995;Scarcella et al. 2000;Van Balkom et al. 2002). A 

genetic cause of Hennekam syndrome has yet to be identified, and there may well be 

genetic heterogeneity for this syndrome, but it is families such as the one described in 

this report (see below) that may lead to further insight into this syndrome and 

clarification of the spectrum of the phenotype of this rare condition.  

 

A  family with non consanguineous parents, seven unaffected children and three offspring 

affected with a generalised lymphatic dysplasia has been ascertained and genetically 

investigated. The proband has extensive lymphoedema of all parts of the body, and DNA 

was available from the two other affected children, both deceased. Linkage analysis 

identified two loci on chromosome 18, with 150 genes within them. Sequence analysis of 

these genes was undertaken. 

 

 

Family profile: The family was ascertained via the joint lymphoedema/genetic clinic 

at St George’s Hospital, London, UK. The proband, II3, (Fig 1) is the child of non-

consanguineous parents. Antenatal hydrops, with pleural effusions and ascites, was 

diagnosed at16 weeks gestation. The increasing ascites and polyhydramnious required 

drainage via a peritoneal shunt at 33 weeks gestation.The antenatal karyotype result 

was 46 XX (confirmed postnatally) and fetal echocardiogram was normal.  

 

The proband was born at 35 weeks gestation weighing 3.8kg. At birth, she was 

oedematous and was admitted to the neonatal unit requiring ventilation and inotropic 



support. Her albumin following birth was 18g/L (normal range 35-48g/L) and she 

received regular albumin infusions. Liver function was otherwise normal. She had an 

enlarged clitoral glans but urinary sex hormone profiles, a short synacthen test, and 

metabolic profile were all normal. After commencing medium chain triglyceride 

(MCT)  enteral nutrition at the age of 32 days, she developed severe diarrhoea. Bowel 

biopsies taken at seven weeks of age  did not reveal evidence of intestinal 

lymphangiectasia but subsequent bowel histology showed evidence of lymphatic 

dilatation and inflammation. She continued on a treatment regime of albumin 

infusions and total parenteral nutrition. At this time she had severe peripheral oedema 

affecting the legs, feet, arms, hands and face (including conjunctiva). At the age of 

three months she developed a severe stridor. Laryngotracheobronchoscopy showed a 

narrowed trachea, compression of the trachea by oedema and  pulmonary hypoplasia. 

Respiratory difficulties secondary to upper respiratory tract obstruction and reduced 

lung volume were ongoing in the first year of life. Age six years, she continues to 

have widespread, generalised lymphoedema, affecting the whole body (see figure 2). 

Recurrent ascites is an ongoing problem, for which varying treatments have been 

tried, including albumin infusions, diuretics (spironolactone) and octreotide infusions. 

Her serum albumin is persistently low (approximately 19g/L). She is kept on an MCT 

diet as treatment for intestinal lymphangiectasia. Manual lymphatic drainage and 

multi-layer bandaging techniques have been used to try and reduce the peripheral 

oedema. She has dysmorphic facies consistent with past in-utero oedema (epicanthic 

folds, depressed nasal bridge) and ongoing facial lymphoedema. Her development has 

been essentially normal, allowing for some delay in achieving early developmental 

milestones given the severity of her ongoing illness. She continues on thyroxine 

treatment for hypothyroidism 

 

Male infant (II.1 Fig 1) was born at 29 weeks gestation with a birth weight of 

2.78kg. Hydrops was observed on the 20 week gestation ultrasound scan. The 

pregnancy was further complicated by polyhydramnios. An antenatal echocardiogram 

was normal but postnatally he developed hypertrophic cardiomyopathy. He was 

oedematous at birth (normal serum albumin), with chylous ascites and chylous pleural 

effusions, and had severe pulmonary hypoplasia with pulmonary lymphangiectasia. 

Oral feeding could not be established. He died at the age of five months having never 

been discharged from the neonatal unit. No post mortem was carried out. The 

differential diagnoses in this infant included Noonan syndrome as hydrops and 

hypertrophic cardiomyopathy are associated with  this diagnosis. However, the 

subsequent family history and phenotype in the other two affected family members 

made this diagnosis unlikely.  

 

Male infant (II.2 Fig 1)): an ultrasound scan of this fetus at 16/40 weeks gestation 

revealed hydrops fetalis. The pregnancy spontaneously miscarried at 17 weeks 

gestation. A post mortem examination showed severe non-immune hydrops, with 

normal heart and lungs, and no other structural abnormalities reported. There were 

4mls of blood stained ascitic fluid in the peritoneal cavity, and 2ml straw coloured 

fluid in the pleural cavities.. Infective causes of hydrops were ruled out, and 

lysosomal enzymes were normal, making storage diseases unlikely. 

The occurrence of three pregnancies (two male and one female) affected by hydrops, 

wirh no other family history, is suggestive of autosomal recessive inheritance of a 

generalised lymphatic dysplasia (GLD). 

 



 

 

Methods. 

 

SNP chip array and linkage analysis. DNA was extracted from peripheral blood 

using a standard chloroform ethanol procedure. There was no blood available from 

the fetus or baby that died, and DNA was taken from tissue samples in these cases. 

The linkage SNP microarray analysis was performed at the Institute of Child Health, 

London, using standard procedures, with an Affymetrix 10K SNP-chip (Xba142 with 

10204 SNPs). Processing of arrays was performed according to the manufacturer’s 

protocol and call rates were all above 99%. All genotypes were checked for 

Mendelian inconsistencies in MERLIN. A parametric linkage test was run in 

MERLIN (Abecasis et al 2002) using an autosomal recessive model. Microsatellite 

and polyacrylamide gel electrophoresis were used to confirm and refine the two 

regions. This work resulted in a final list of 150 genes which were prioritised 

according to their functional relevance. DNA from the three affected individuals was 

hybridised on a 250k Affymetrix SNP chip (Part number 900767, 262,000 SNPs) at 

Gene Service, Nottingham, following the manufacturer’s protocol. Homozygous 

regions on chromosome 18 shared by the 3 affected siblings were investigated using 

Exclude AR (Woods et al 2004). 

 

Gene sequencing.  Primers for candidate genes were designed using the Primer3 

software (Rozen and Skaletsky, 2000).  CCBE1 has 11 exons, and primer sequences 

and PCR programmes are available on request. The cleaned PCR products were 

sequenced using BigDye Terminator v3.1 and an ABI 3130xl Genetic Analyzer. The 

sequencing traces were visually inspected in Chromas Lite (Technelysium Pty Ltd) 

and finally compared to wild type sequence using CLC Sequence Viewer 6.2  (CLC 

bio A/S). As no restriction site was found for the SNP in exon 3, two hundred controls 

(caucasian) were sequenced. Primers for exon 3 which produced allele dropout were:  

3F- AATGTTTCCTGGGCACAAGT 3R-AAGACCTATATTCCATGAACATCTGA 

while those where amplification was successful were:  

3aF ACTTCACCCCTACTTTGCTTT    3cR  AGGGAGGAGGGTTGGTTCT 

 

Mutation database analysis.  The change found in CCBE1 was examined for 

potential effect on the protein using SIFT (sift.jcvi.org) and PolyPhen 

(genetics.bwh.harvard.edu/pph/) 

 

RNA Analysis.  Blood was taken from the mother using a PAXgene Blood RNA tube 

(PreAnalytiX). RNA was purified following the manufacturer’s protocol, the quality 

was checked on Nanodrop. cDNA was obtained using SuperScript II Reverse 

transcriptase  (Invitrogen). A skin biopsy was also taken from the mother, stored in 

RNALater (Ambion) for 48 hours in a refrigerator, and then RNA was extracted.using 

the same protocol as for the blood sample. Primers were designed to check for the 

presence of an RNA transcript from CCBE1 in the two tissues  using Primer3 

software and are available upon request. Control primers for GAPDH were used to 

check the cDNA.  

 

Results. 

 



Using random markers in a genome wide analysis, the family was only large enough 

to generate a LOD score of 2.4, so could not reach the conventionally significant LOD 

score of 3. The severity of the phenotype meant that the chance of the clinically 

unaffected siblings carrying the affected genotype was remote, although it had to be 

considered. Linkage analysis was carried out on the data from a 10kb Affymetrix SNP 

chip, using MERLIN. This produced two loci on chromosome 18; one at 18p and one 

at 18q (Fig 3). These both gave LOD scores of 2.4. The remainder of the genome 

gave no loci returning a positive LOD score.   

 

The spacing and informativity of the SNPs meant that microsatellite mapping was needed 

to refine the two intervals (see figure 1 and Table 1). The two regions shared by the three 

affected siblings were large, (approximately 17Mb for the interval on the p arm and 15Mb 

for that on the q arm), but shared haplotypes in II.9 and II.10 and affected siblings 

reduced the 18p interval to 7Mb. The region on 18q could not be further reduced. 

   

Database mining of the intervals using NIBSC (ncbi.nlm.nih.gov/sites/entrez), Ensembl 

(ensemble.org) and UCSC (genome.ucsc.edu) produced the current knowledge for all 

genes in the intervals. Those candidates considered ‘Good’ or ‘Average’ on the basis of 

their biochemistry, function and distribution, are shown in Table 2.  Sequencing of all the 

‘Good’ candidates yielded no mutations, but in the ‘Average ‘ group was CCBE1, which 

had a suggested role in calcium transport, or an EGF binding function, based on 

homology to other proteins.  Sequence analysis identified an apparently homozygous 

mutation in the proband and her two affected siblings, changing a cysteine to a serine (Fig 

4). The change is p.Cys75Ser (c.223T>A). This residue is conserved across species, being 

present in 37 of the 40 species represented in the Ensembl homologue database (See 

Table 3). In the three in which it was not present; stickleback, medaka and platypus, there 

was no equivalent residue. The PolyPhen database indicates this as a probably damaging 

mutation, and SIFT predicts that the change will affect protein function.  Recently, ccbe1 

was reported to have an ’indispensable role in lymphangiogenesis’ by Hogan et al (2009) 

in the zebrafish. The approximate position of CCBE1 in the 18q linkage interval is shown 

in Figure 1.  

 

Familial DNA analysis using the first primer set indicated heterozygosity in the paternal 

haplotype but both maternal alleles were apparently T. However it was determined that 

the penultimate base of the reverse primer contained a SNP (found in intron 3) resulting 

in non-amplification of one of the mother’s alleles (see Methods for primer details). 

Primers were therefore redesigned to span the mutation and the SNP (see Methods), and 

results using the second primer set showed that there was indeed both heterozygosity for 

the SNP and for the mutation in the mother (mutation shown in Fig 5). All members of 

the family were sequenced with the new primer set, and this produced the result that was 

expected from the haplotype data; both parents were heterozygous for p.Cys75Ser, and all 

three affected siblings were homozygous. Individuals II.4, II.7, II.9 and II.10 were 

heterozygous, and II.5, II.6 and II.8 were homozygous wildtype. This change was not 

found in 400 control chromosomes.  

     

The occurrence of the same mutation in unrelated parents prompted investigation into the 

possibility that this homozygosity might be more extensive than simply this one base, and 

analysis of chromosome 18 in the three affected individuals, with a 250k genomic SNP 

chip, produced an area of homozygosity of about 900kb. A heterozygous SNP at 

rs4349256 (54,834,349 base position) delineated the upper boundary of homozygosity. 



There was another heterozygous SNP at rs4940912 (55,732,132). This region of shared 

homozygosity contained CCBE1 (55,250,000 – 55,513,000).  

 

As very little is known about the expression of CCBE1, we investigated its transcription 

in lymphocytes and skin from the mother of the proband.  If the transcript was produced it 

would also allow confirmation of the mutant residue in the RNA . cDNA was 

successfully produced from both white cells and skin, and GAPDH amplified in both. 

However, no product at all was obtained for CCBE1 from lymphocytes, but a strong 

signal was given by the skin RNA (Fig 6). Sequencing of this product showed that both 

alleles were expressed (data not shown).  

  

Discussion 

A homozygous mutation in the CCBE1 gene has been identified in three siblings affected 

by generalised lymphatic dysplasia (GLD). The phenotype is severe, causing significant 

morbidity and mortality in this family. Examination of chromosome 18q in the affected 

individuals in the pedigree has shown that they all share a homozygous region around 

CCBE1 of just under a megabase. This is strongly suggestive of a previously unknown 

distant relationship between the parents, and Identity by Descent (IBD) of the mutation in 

this family. 

 

Ccbe1 has very recently been shown to be essential for the development of the lymphatics 

in zebrafish (Hogan et al 2009). Prior to this little was known about the function of this 

gene. Indeed, its name; Collagen and Calcium Binding EGF domain 1, derives from the 

fact that there are elements within the protein that show resemblance to other known 

protein family domains, rather than any knowledge of its particular function (see Figure 

7). The zebrafish mutant full of fluid (fof), which was produced by mutagenesis, was 

found to have a homozygous mutation in exon 4 of the ccbe1 gene (Hogan et al 2009). 

This led to an absence of the thoracic duct and longitudinal lymphatic vessels, and such 

severe oedema that only three of 28 embryos survived to 36 days post fertilization. As 

ccbe1 was not expressed in lymphatic tissue, but seemed to be found in the routes where 

lymphatics were developing, it was proposed that it might act as part of the guidance 

system for budding lymphatics in rather the same way that ephrin B2 and ephrin B4 have 

been suggested to be involved in such a process in mice (Makinen et al 2005).  

 

The mutation in the zebrafish causes a change of aspartic acid to glutamic acid at residue 

162. This is a change in size of R group but is otherwise non-conservative. The amino 

acid is conserved across species, however, with the exception of the cat where there is no 

equivalent residue. The base change in our report is in a more N terminal part of the 

molecule; the function of which is currently unknown. The exon structure of the gene, the 

cysteine residues, and the two proposed domains that show similarity to known protein 

superfamilies are shown in Fig 7. The suggested homology for a stretch of CBBE1 from 

amino acid 71 to 219 with the growth factor domain superfamily is indicated in Fig 7, and 

contains the cysteine that is mutated in the patients reported here. This cysteine rich 

region is found in a number of proteins that have an involvement in signal transduction by 

receptor tyrosine kinases. Insulin growth factor binding protein (IGFBP) is a member of 

this family, and controls the distribution, function and activity of insulin-like growth 

factors I and II, which are key regulators of cell proliferation. The highest conservation of 

IGFBPs is in the N-terminal Cys-rich IGF-binding domain, where there are 10-12 

conserved cysteine residues. If CCBE1 is involved with guidance and lymphatic 

proliferation, it is quite likely that production of local growth factors would be essential 



for this process. The cysteine to serine change seen in this family is significant, as 

cysteine residues are often involved in inter or intramolecular disulfide bond formation. 

This residue is highly conserved, and is only absent in three of 41 species, where there is 

not an equivalent amino acid in the orthologue.  

 

We wanted to look at two reasonably readily available sources of protein and RNA, 

namely blood and skin. Nagase et al,(2001) who cloned the cDNA, showed tissue 

expression in adult lung, liver and kidney, while Hogan et al (2009) showed that there 

was no expression in adults in epithelial cells or blood. Our cDNA data confirms that 

there is no expression in lymphocytes, but shows a transcript from skin RNA. This could 

be a potentially useful finding for examination of mutant transcript and protein. 

 

Future analysis of other patients with a similar widespread generalised lymphatic 

dysplasia, and with a family history of hydrops fetalis, for mutations in CCBE1 is clearly 

a priority. 

In summary, a mutation of a highly conserved cysteine residue in exon 3 of CCBE1 

has been identified in three siblings with an autosomal recessive generalised 

lymphatic dysplasia. The homozygous nature of the mutation, the strong likelihood of 

IBD in the family, and the data from zebrafish, make it likely that this change is 

pathogenic. This is the first gene in which mutations cause extensive generalised 

lymphoedema in humans, rather than the peripheral disease associated with the 

currently known genes, VEGFR3 and FOXC2.  The identification of such a gene 

underscores the validity of human genetic approaches to identifying disease causing 

mutations. The phenotype is extremely severe, and can be lethal, and investigations 

into the function and nature of action of the gene product in humans may well have 

implications in understanding the nature of non-immune hydrops fetalis, and in the 

longer term the possibility of in utero therapy for this important and currently ill 

understood condition. 
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Table 1. Positions on chromosome 18 for those microsatellites shown in Fig 1. The 

positions are for build 36.3 on NCBI Mapviewer. 

 

 

 

 

5354464-5354522 

6285310-6285346 

7643117-7643157 

7648329-7648358 

7823742-7823782 

8766721-8766770 

12912172-12912219 

13376891-13376980 

14339485-14339528 

14715190-14715232 

15018742-15018803 

17815982-17816023 
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44811302-44811350 

46406251-46406296 

47536603-47536644 

47775260-47775308 

49590719-49590761 

57631492-57631535 
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61948843-61948893 

63460255-63460320 

63979026-63979070 

64966988-64967039 
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Table 2. Genes designated as ‘Good’ and ‘Average’ candidates for analysis in the 

two linkage intervals, with a small summary to explain their inclusion. 

 

Good candidates. 
PTPN2. Protein tyrosine phosphatase, non-receptor type 2  A member of the transmembrane protein 

tyrosine phosphatase family that share a highly conserved catalytic motif. 10 exons.  
PTPRM. Protein tyrosine phosphatase, receptor type, M  PTPs are known to be signalling molecules 

that regulate cell growth and differentiation. 31 exons.   

ANKRD12. Ankyrin repeat domain-containing protein 12. Mouse homologue binds to p160, and may 

be part of a gene transactivation complex. 13 exons.  

VAPA.  Vesicle-associated membrane protein-associated protein A. This is a SNARE; a 

compartmentally specific, cytoplasmically oriented integral membrane protein involved in the fusion of 

membranes and the transport of intracellular proteins. Localizes at the tight junction in polarized 

epithelial cells. Ubiquitous distribution. 7 exons.   

APCDD1. Adenomatosis polyposis coli down-regulated 1. A gene downregulated by APC in the beta-

catenin T-cell factor signalling pathway in SW480 colon cancer cells. Ubiquitous expression. 6 exons.  

IMPA2. OMIM. Myo inositol monophosphate. Plays a crucial role in the phosphatidylinositol 

signalling pathway. 8 exons.  

CIDEA. OMIM. Cell death-inducing DFFA-like effector A. Activates apoptosis. Mice that lack 

functional Cidea have higher metabolic rates, higher lipolysis and higher core body temperatures when 

subjected to cold. These mice are also resistant to diet-induced obesity and diabetes. 5 exons.  

TUBB6. Tubulin, beta 6. (aka TUBB-5, HsT1601). Component of the cytoskeleton. 4 exons.   

AFG3L. AFG3 ATPase family gene 3-like 2 (yeast).  This gene encodes a protein localized in 

mitochondria, closely related to paraplegin. The paraplegin gene is responsible for an autosomal 

recessive form of hereditary spastic paraplegia. 17 exons.  

ZNF519 Zinc Finger Protein 519. Possible transcription factor.  3 exons.  

 DCC. Excellent candidate.  Interacts with neural guidance molecules Nets and Slits. 29 exons.     

CCD68. Coiled coil domain containing protein 68. 12 exons.  
TCF4. Transcription factor 4. Complexes with cJUN and beta catenin. Phosphorylation dependent 

interaction with cJUN regulates intestinal tumirogenesis. 20 exons  

TXNL1. Thioredoxins are small redox active proteins, with mRNA in all tissues. Transcriptional 

repressor binding to transcription factor B-Myb. 9 exons  

WDR7. WD repeat domain 7. Involved in cell cycle progression, signal transduction,apoptosis, and 

gene regulation.  28 exons  

ATP8B1. ATPase Class 1, Type 8B,member 1. Involved in ATP dependent phosholipid transport. 

Expressed in epithelial tissues,. Involved in enterohepatic bile acid circulation?  28 exons.  

NEDD4L. Ubiquitin protein ligase Nedd4-like. Transcript is at high levels in liver and kidney and at 

lower levels in brain, heart, lung, spleen, skeletal muscle, and testis. One domain, WW, binds strongly 

to ENAC. 30 exons.   

ALPK2. Alpha kinase 2.  The gene product is believed to play a part in protein amino acid 

phosphorylation.   13 exons.  

MALT1. Mucosa-associated lymphoid tissue lymphoma translocation gene 1. A common translocation 

in tumours of the mucosa is found between this gene and AP12 (inhibitor of apoptosis). MALT1 

operates downstream of BCL10, controls the catalytic activity of the I-kappa-B kinase complex, and 

regulates the signalling of JNK MAP kinase. 17 exons.  

ZNF532. Zinc finger protein 532. ZNF homology suggests transcription factor. 11 exons.  

LOC390858. Contains acyltransferase 3 domain and some transmembrane domains.   14 exons.    

SEC11L3. Homologue of a yeast protein that is an 18kDa catalytic subunit of the Signal Peptidase 

Complex which cleaves the signal sequence of proteins targeted to the ER. 6 exons.  

GRP. Gastrin releasing peptide. Increases plasma gastrin pancreatic polypeptide, glucagons, gastric 

inhibitory peptide, and insulin.  3 exons.  

CDH20. Similar to mouse Cdh7. Expression in placenta, adult brain, and fetal brain. Cadherins are 

calcium-dependent adhesive proteins that mediate cell-to-cell interaction, and are involved in the 

structural and functional organization of cells in various tissues. 11 exons 

RNF152. Ring Finger Protein 152. Involved in protein binding or control of transcription. 3 exons  

PIGN. Phosphatidylinositol glycan, class N. Glycosylphosphatidylinositol (GPI)-anchored proteins 

comprise a well-characterized family of proteins that must acquire a GPI anchor and traffic from their 

site of synthesis, the ER, to the cell surface. 32 exons.  



ZCCHC2. The 18 residues CCHC zinc finger domain is found in eukaryotic proteins involved in RNA 

binding or single strand DNA binding. 15 exons.   

VPS4B. This is an AAA protein (ATPase associated with diverse cellular activities) and is involved in 

lysosomal/endosomal membrane trafficking. It is ubiquitously expressed.  11 exons.  

CDH7. Cadherin7. This protein is a calcium dependent cell-cell adhesion glycoprotein comprised of 

five extracellular cadherin repeats, contributing to the sorting of heterogeneous cell types and the 

maintenance of orderly structures. 12 exons.   

CDH19. Formerly given as CDH7, and shows considerable similarity to that gene. 12 exons.  

Average candidates. 
RAB12.  Suggested roles in cell growth, survival and differentiation, 1 exon  

TWSG1. Dorsal-ventral patterning requires a conserved system of extracellular proteins. Tsg is one of 

these, and functions with chordin to antagonise BMP activity. 5 exons.   

RALBP1.  Can catalyze the transport of glutathione conjugates and xenobiotics.  11 exons.  

PPP4R1. Involved in protein phosphorylation  on serine and threonine residues. 20 exons.  

RAB31. A small GTP-binding protein of the RAB family. 7 exons.   

TXNDC2. Probably plays a regulatory role in sperm development. 2 exons.   

NAPG.  Mediates platelet exocytosis and controls the membrane fusion events. 12 exons.   

GNAL.  Found in the olfactory epithelium,and in certain areas of the brain and appears to be coupled to 

the dopamine D1 receptor (DRD) 12 exons.  

CHMP1B. Chromatin modifying protein 1B Involved in degradation of surface receptor proteins and 

formation of endocytic multivesicular bodies 1 exon.  

SPIRE1. concerned with actin organization, and required for axis specification in  embryos, 16 exons.   

CEP76. Centrosomal protein 76kDa.  Restricted to the centrosome.  12 exons.  

TNFSF5IP1. Ubiquitous expression, and upregulated in hepatic carcinoma. 8 exons.   

SEHIL. Part of a nuclear pore complex, and, specifically localizes to kinetochores in mitosis. 9 exons. 

CEP192. Centrosomal protein 192kDa. No known function.  40 exons.   

C18orf19. Chromosome 18 open reading frame 19. 3 exons.  

RNMT. Part of the process, where 5-prime-terminal caps are formed on pre-mRNAs. 13 exons  

MC5R. Melanocortin 5 receptor. Targeted disruption of the mouse MC5R gene produced mice with a 

defect in thermoregulation due to decreased production of sebaceous lipids. 1 exon.  

MC2R. Melanocortin 2 receptor, encodes one member of the five-member G-protein associated 

melanocortin receptor family (see MCR5 above). 1 exon.   

MBD2.  Binds methylated DNA and actively demethylates it. Represses transcription.  7 exons.   

POLI. Polymerase DNA Iota. Promotes replication through minor groove purine adducts.  5 exons. Av 

STARD6. Steroidogenic acute regulatory protein. Involved in cholesterol homeostasis. 6 exons.  

C18orf54. 8 exons. Unknown Function.  

C18orf26. 3 exons. Unknown Function.  

RAB27B.  RABs are involved in vesicular fusion and transport. Expressed mainly in testis. 6 exons. A 

ST8SIA3. Transfers sialic acid at the termini of glycoconjugates. 4 exons.  

ONECUT2. Transcription factor from fetal retina EST. mRNA in liver and skin.  2 exons. 

FECH. Ferrochelatase. Fech is a mitochondrial enzyme. Mutations can give rise to light sensitive 

dermatitis (erythropoetic protoporhyria), 11 exons.  

LMAN1. Lectin mannose binding 1. A membrane mannose specific lectin. 13 exons.   

CCBE1. Collagen and calcium binding EGF domains 1. Very little data.  Could be involved in  

phosphate transport, or in calcium ion binding and its localisation in the cytoplasm. 11 exons.  

MC4R. Melanocortin 4 receptor. Found predominantly in the brain. 1 exon.  

KIAA1468. HEAT domains suggest involvement in protein-protein interactions.  30 exons.   

TNFRSF11A. It is the membrane-bound osteoclast differentiation factor receptor on osteoclast 

progenitors, 10 exons.   

PHLPP. Terminates AKT (a protein kinase) signalling by directly dephosphorylating and inactivating 

it. 17 exons.   

BCL2. B-cell CLL/lymphoma 2. This gene encodes an integral outer mitochondrial membrane protein 

that blocks the apoptotic death of some cells such as lymphocytes. 3 exons.   

FVT1.. Weakly expressed in normal haemopoetic tissues, more strongly in some T cell malignancies. 

Catalyzes the reduction of 3-ketodihydrosphingosine to dihydrosphingosine. 10 exons.   

HMSD. Histocompatibility (minor) serpin domain containing.  Similar to SerpinB 6. 4 exons.  

C18orf4. Dermatan-sulfate epimerase-like protein precursor.  No known function 3 exons. 

 

 



 

 

Table 3. Conservation of the mutated cysteine residue (shown shaded) across species. 

Of the 43 orthologues in Ensembl, this amino acid was not present only in those cases 

(platypus, cat and medaka) where there was no equivalent residue in the molecule. 

 

 

 

 

 

Human L T T C Y R K K C C K G Y K F V L 

Chimpanzee L T T C Y R K K C C K G Y K F V L 

Lemur - - - C Y R K K C C K G Y K F V L 

Dog L T T C Y R K K C C K G Y K F V L 

Kangaroo rat L T T C F R K K C C K G Y K F V L 

Dolphin - - - - F R R K C C K G Y K F V L 

Pika (little hair) - - - - F R K K C C E G Y K F V L 

Sloth - T T C F R K K C C K G Y K F V L 

Cow - C F S L R K K C C K G Y K F V L 

Wallaby L T T C F R K K C C K G Y K F V L 

Chicken - - - - F R K K C C K G Y K F V L 

Anolis lizard - - - - F R K K C C Q G Y K F V L 

Xenopus (frog) - - - - F R K K C C K G Y K F V L 

Zebra fish V T T C Y R K K C C E G Y K F V L 

Stickleback V T A C Y R K K C C K G Y K F V L 

Fugu (puffer fish) A A T C Y R K K C C K G Y K F V L 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 

 

 

 

Fig 1. Haplotypes showing the delineation of the 2 loci using microsatellites. The 

positions of the 33 markers shown (a proportion of those used in the analysis) are 

given in Table 1. The two linkage intervals are given by the 2 sets of parallel lines. 

The position of CCBE1 is indicated by an arrow 

 

 

 

 

 

 



 
 

Figure 2. The proband, showing her extensive lympoedema. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               Fig 3. Lodscore results for the 2 loci on chromosome 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Proband  (II.3) CCBE1 Exon 3 

 

 

                                                                ↓ 

 
 

 

 

 

Mother (I.1)  CCBE1 Exon 3 

 

                                                                ↓ 

 
 

 

 

Father (I.2) CCBE1 Exon 3 

 

                                                                ↓ 

 
 

Fig 4. Sequencing traces for exon 3 showing the heterozygous allele in the father, 

apparent homozygosity for the wildtype T allele in the mother, and homozygous A in 

the affected child. 

 

 

 

 

 



 

 

 

 
 

 

 

Fig 5.  Sequence of exon 3 for the mother (I.1) using the second primers set, showing 

heterozygosity for the mutation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.       cDNA from mother (I.1) amplified with 2 sets of primers for CCBE1 and 

run on an agarose gel.  

 

Lane 1 is a 100kb ladder  Lanes 2 and 7 are negative controls. Lanes 3,4,5 and 6 are  

amplicons from primers in exons 1 and 6 (480bp product). 3 and 6 are from skin 

biopsy of I.1, 4 is from lymphocytes of I.1, 5 is a control skin biopsy. 

 

Lanes 8-11 are amplified with primers from exons 1 and 11 (960bp product). Lanes 8 

and 11 are from skin biopsy of I.1, lane 9 is from lymphocytes of I.1, lane 10 is a 

control skin biopsy.  
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Fig7. Schematic of  CCBE1, indicating the 11 exons in the top line, the position of the 

cysteine residues on the second line, and two regions of homology with other protein 

Super Families ( GFRD = Growth Factor Receptor Domain. EGF = EGF binding 

domain). The arrow indicates the exon containing the p.Cys75Ser mutation. 
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