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Aging is ubiquitous to the human condition.The MRI correlates of healthy aging have been
extensively investigated using a range of modalities, including volumetric MRI, quantita-
tive MRI (qMRI), and diffusion tensor imaging. Despite this, the reported brainstem related
changes remain sparse.This is, in part, due to the technical and methodological limitations
in quantitatively assessing and statistically analyzing this region. By utilizing a new method
of brainstem segmentation, a large cohort of 100 healthy adults were assessed in this study
for the effects of aging within the human brainstem in vivo. Using qMRI, tensor-based mor-
phometry (TBM), and voxel-based quantification (VBQ), the volumetric and quantitative
changes across healthy adults between 19 and 75 years were characterized. In addition
to the increased R2∗ in substantia nigra corresponding to increasing iron deposition with
age, several novel findings were reported in the current study. These include selective
volumetric loss of the brachium conjunctivum, with a corresponding decrease in magneti-
zation transfer and increase in proton density (PD), accounting for the previously described
“midbrain shrinkage.” Additionally, we found increases in R1 and PD in several pontine
and medullary structures. We consider these changes in the context of well-characterized,
functional age-related changes, and propose potential biophysical mechanisms.This study
provides detailed quantitative analysis of the internal architecture of the brainstem and pro-
vides a baseline for further studies of neurodegenerative diseases that are characterized
by early, pre-clinical involvement of the brainstem, such as Parkinson’s and Alzheimer’s
diseases.

Keywords: brainstem, quantitative MRI, tensor-based morphometry, voxel-based quantification, aging

INTRODUCTION
Aging is ubiquitous to the human condition. Previously, the cor-
tical and subcortical correlates of normal aging have been exten-
sively investigated using several modalities including volumetric
MRI (Jernigan et al., 2001; Walhovd et al., 2005, 2011), quantitative
MRI (qMRI) (Armstrong et al., 2004; Draganski et al., 2011; Bilgic
et al., 2012), cortical thickness measures (Thambisetty et al., 2010),
and diffusion tensor imaging (DTI) (Pfefferbaum et al., 2010;
Vaillancourt et al., 2012). These studies have established that the
normal aging process is associated with distinctive morphological
changes including volumetric loss of the cortex, predominantly
in the prefrontal, parietal, and temporal regions in addition to the
amygdala, hippocampus, striatum, and cerebellum (Woodruff-Pak
et al., 2010; Draganski et al., 2011; Walhovd et al., 2011). Corre-
sponding with this, there is a reduction in cortical white-matter
myelination, reflected by falling magnetization transfer (MT) val-
ues, and increasing iron deposition particularly in basal ganglia
structures, notably the substantia nigra, as reflected by increas-
ing R2∗ values (Pfefferbaum et al., 2009, 2010; Haacke et al., 2010;
Draganski et al., 2011; Bilgic et al., 2012). Despite these widespread

effects, reported brainstem related changes remain sparse due to
technical limitations of imaging, segmenting, and statistically ana-
lyzing data from this region (Luft et al., 1999; Raz et al., 2001;
Lee et al., 2009). Aging is known to negatively impact on several
brainstem-mediated functions, for example the sleep-wake cycle
(Hut and Van der Zee, 2011), sympathetic outflow (Samuels and
Szabadi, 2008), vestibular-ocular reflexes (Baloh et al., 1993), and
cardiovascular reflexes (Vita et al., 1986). Post-mortem reports
indicate that changes within the brainstem sub-nuclei do take
place during aging (Alvarez et al., 2000; Samuels and Szabadi,
2008), some of which may be early precursors for subclinical
neurodegenerative disease (Tsopelas et al., 2011).

Quantitative MRI produces quantitative MR parameters that
can be used as biomarkers of tissue microstructure (Tofts, 2003;
Draganski et al., 2011). Examples of these parameters include MT,
Proton Density (PD), R2∗, and R1. MT emerges from hydrogen in
motionally restricted macromolecules and more directly relates to
macromolecular content. Biologically, it is a reflection of the quan-
tity of myelin within a voxel (Helms et al., 2008b). It is important
to note that in the literature MT contrast is often reported as
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“MT ratio” (Dousset et al., 1992), a parameter that shows residual
T1 dependence. However, by using semi-quantitative parameter,
the MT saturation, MT and T1 effect can be separated (Helms
et al., 2008b). PD refers to the concentration of MRI-visible water
(Tofts, 2003). R2∗ (=1/T2∗) is the relaxation rate of the transverse
magnetization, and is linearly correlated with tissue iron concen-
tration (Yao et al., 2009). Finally R1 (=1/T1) is the longitudinal
relaxation rate, and arises from a mix of water content, iron, and
tissue macromolecule fraction (Rooney et al., 2007). Increases in
iron (Rooney et al., 2007), decreases in PD (Gelman et al., 2001),
and increases in lipid content (Stanisz et al., 2005) all cause an
increase in the measured R1 signal.

The aim of this cross-sectional study was to characterize volu-
metric and tissue parameter changes associated with aging within
the human brainstem in vivo using qMRI, tensor-based mor-
phometry (TBM), and voxel-based quantification (VBQ). This
was motivated by the observation that certain neurodegenerative
diseases, such as Parkinson’s and Alzheimer’s diseases, are charac-
terized by early pre-clinical involvement of the brainstem (Simic
et al., 2009; Hawkes et al., 2010). In order to further study these
effects, changes associated with the normal aging process must first
be better characterized.

MATERIALS AND METHODS
SUBJECTS
Multiparametric maps were acquired from previous studies
(FitzGerald et al., 2012; Lambert et al., 2012; Chowdhury et al.,
2013). In total, imaging data for 100 healthy adults (47 males, aged
40.3± 21.2 years; 53 females, aged 48.2± 22.7 years; age ranged
19–75 years) who had MRI scanning at the Wellcome Trust Cen-
tre for Neuroimaging was used. Due to the selection criteria,
these predominately fell into a bimodal distribution (as is shown
Figure 5), with a younger cohort less than 60 years [n= 58,
mean age 25.8 years (SD 7.6 years)] and an older cohort above
60 years [n= 42, mean age 69.1 years (SD 3.5 years)]. Subjects
above 60 years had a normal neurological examination performed
by a physician (Rumana Chowdhury), MMSE score >28 and a
normal performance (within 1.5 SD of age-related norm) on a
range of neuropsychological tests. Involvement of human volun-
teers was approved by the local ethics committee, and each subject
provided written informed consent prior to MRI examination.

IMAGE ACQUISITION
MR imaging was performed on a 3T whole-body MRI system
(Magnetom TIM Trio, Siemens Healthcare, Erlangen) operated
with a whole-body transmit radio-frequency (RF) coil and a 32-
channel RF receive coil. MR data of 21 subjects was acquired on a
second identical MRI system located within the same department.
Each participant underwent a multiparametric mapping (MPM)
scanning protocol for quantitative mapping of multiple MR para-
meters. MT, R1 (=1/T1), and PD weighted images were acquired
using 3D multi-echo FLASH (fast low-angle shot) acquisitions
(Helms et al., 2008a,b). Full imaging parameters are summarized
in Table 1. The image resolution was 1 mm isotropic. The total
acquisition time was 19 min. For each subject quantitative MT,
R1, PD, and R2∗ (=1/T2∗) maps were extracted from the acquired
images using in-house MATLAB program. An additional dataset

was acquired on each subject for mapping of the RF transmit
field B1+ over the brain (4 mm isotropic resolution, acquisition
time 3 min) using the 3D EPI SE/STE method described in (Lutti
et al., 2010, 2012). A B0-field map was also acquired to correct
for the distortions of the EPI images acquired for the B1+ map-
ping acquisition (acquisition time 2 min). The resulting B1+maps
were used to correct the MPM maps for RF transmit field inhomo-
geneity effects (Helms et al., 2008a). The PD maps were corrected
for the spatially varying sensitivity profile of the receive coil using
the UNICORT algorithm (Weiskopf et al., 2011). The resulting
“flattened” signal amplitude maps were converted into PD maps
by scaling the voxels by the expected average PD of white-matter
[69% (Tofts, 2003)].

PRE-PROCESSING
The MT maps were initially segmented into gray, white, and CSF
tissue classes whilst maintaining the native resolution (1 mm)
by using the unified segmentation within SPM8 (http://www.
fil.ion.ucl.ac.uk/spm/) (Ashburner and Friston, 2005). For each
individual, the total intracranial volume (TIV) was calculated by
summing the gray matter, white-matter, and CSF segmentations at
a threshold of 0.1. The segmentations were then registered diffeo-
morphically to a common group-average 1 mm isotropic template
(using the “Shoot toolbox” of SPM, Ashburner and Friston, 2011)
to produce deformation fields that were subsequently used in the
segmentation step to warp the brainstem tissue priors to individual
subject space.

A method for generating brainstem specific tissue probability
maps (TPMs) and subsequent segmentation had been previously
developed (Lambert et al., 2013). In brief, the brainstem TPMs
were defined using a modified multivariate Mixture of Gaussians
(mmMoG) to generate spatial TPMs from 0.8 mm isotropic MT
and PD maps, which were masked to include the brainstem from
the origin of the cerebral aqueduct to the level of the foramen
magnum. Four tissue classes were identified, three gray matter
and one white-matter. These were labeled for descriptive pur-
poses according to the predominant tissue type present: tissue
class one included the substantia nigra, locus coeruleus and raphe
nuclei and hence was designated “monoaminergic gray matter,”
though regions that contained dorsal cranial nerve nuclei were also
included. Tissue class two consisted mainly of the nucleus reticu-
laris throughout its length and the pontine nuclei, and hence was
designated “reticulated gray matter.” Tissue class three was specific
for the periaqueductal gray (PAG) and labeled as such. Tissue class
four was the brainstem white-matter. Examples of these tissue
classes projected onto the corresponding sections from Duver-
noy’s 9.4T MRI brainstem atlas (Naidich and Duvernoy, 2009)
have been provided in Figure 1 (reprinted from Lambert et al.,
2013 with permission from Elsevier).

The previously calculated tissue priors for four brainstem and
one non-brainstem tissue classes were aligned with the calculated
group-average template. This was achieved by realigning a whole
brain template in the same space as the TPMs with the corre-
sponding new group-average template, re-slicing to achieve 1 mm
isotropic voxel size with a 4th degree spline interpolation and
ensuring each individual voxel probability value summed to one
across all the maps.
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Table 1 | Imaging parameters.

Image

type

Slice

No

FOV

(mm2)

Acquisition

matrix

(voxels)

TR

(ms)

TE (ms) Flip

angle

Echo

No.

Notes

Multispectral MTw 176 240×256 240×256 23.7 [2.2:2.5:14.7] 6 6 Resolution=1 mm

sequence T1w 176 240×256 240×256 23.7 [2.2:2.5:14.7] 20 8 Parallel imaging (GRAPPA)

PDw 176 240×256 240×256 18.7 [2.2:2.5:19.7] 6 6 along phase encoding direction

B1-Map 48 192×256 48×64 500 (SE:37.06; STE:68.26) SE:[230:−10:130] 2 Griswold et al. (2002)

Fieldmap 64 192×192 64×64 1020 10; 12.46 90 2 Griswold et al. (2002) partition

partial Fourier (6/8).

Bandwidth=425Hz/pixel

FIGURE 1 | Comparison of brainstem tissue classes against three corresponding ex vivo brainstem sections from “MR microscopy at 9.4T” (taken from
Duvernoy’s Atlas of the Human Brain Stem and Cerebellum with permission). Figure reproduced from Lambert et al. (2013) with permission from Elsevier.

The actual brainstem segmentation step is summarized in
Figure 2. The realigned probability maps were warped to individ-
ual subject space and used in SPM8 “New Segment ” on individual
MT and PD maps that had been cropped with a set-bounding box
to include only the brainstem region. Specifically, five tissue classes
were used; four within brainstem and one for everything else. Two
Gaussians were used to model each tissue class except for the PAG
matter (one Gaussian) and non-brainstem (eight Gaussians). Indi-
vidual level segmentations were generated from the MT and PD
images. All the images from each of the four tissue classes were then
cropped using a common bounding box to increase computational
speed and visually checked to ensure good quality. All of the brain-
stem tissue classes were then re-warped back to a group-average
using a diffeomorphic warping algorithm (geodesic shooting) to
allow re-estimation of the Jacobian determinants. The deforma-
tion fields were then used to warp each parametric map (MT,
PD, R1, R2∗) to the common template. The resulting images were
masked using the non-brainstem tissue class as an exclusion mask.

ANATOMICAL ANALYSIS
This work utilized two techniques to quantitatively analyze qMRI
parameter maps. The first was TBM, which is a method to char-
acterize volumetric change in vivo. It is similar to the already
well-described voxel-based morphometry (Ashburner and Fris-
ton, 2000), however instead of statistically analyzing warped mod-
ulated tissue segmentations, the Jacobian determinant images
are used (Ashburner and Friston, 2001). The second was VBQ.
This is a pipeline to allow unbiased mass univariate statistical
analysis of quantitative parameter maps whilst controlling for
multiple comparisons with family-wise error (Draganski et al.,
2011). The original VBQ method (Draganski et al., 2011) was
modified slightly for this study. Because the brainstem lacks gyri-
fication, and due to the highly accurate warping algorithm used,
smoothing of the warped quantitative data was avoided, hence
negating the need to produce “warped-weighted average” images
that were required for the published approach. This had several
advantages. First, only one statistical analysis was required for each
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FIGURE 2 | Summary of segmentation pipeline. This includes examples of the Multiparameter Maps (MPMs) as shown at the top of the image.

quantitative map (i.e., the warped quantitative map) rather than
one for each tissue class (i.e., four), which would have been nec-
essary with the warped-weighted average approach. Additionally,
because analysis was carried out directly on the warped quantita-
tive maps without smoothing, a higher degree of spatial accuracy
could be achieved.

STATISTICAL ANALYSIS
All statistical analysis was carried out using SPM8 in MAT-
LAB 2010b. A two-sample t -test was initially used to check for
scanner-associated differences in the acquisitions controlling for
age, sex, and TIV, at FWE < 0.05 correction for multiple com-
parisons. No voxels survived correction. A design matrix for
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multiple linear regression model was then constructed includ-
ing age, sex, and TIV as covariates. The TIV was centered
around the mean, and the remaining covariates remained un-
centered. An intercept was included in the model but no nor-
malization was used. Using this design matrix, TBM was per-
formed by analyzing the Jacobian determinant images (Ash-
burner and Friston, 2001), and VBQ by analyzing each warped
quantitative map. For each analysis, the non-brainstem tis-
sue class was used as an exclusion mask, ensuring only vox-
els that contained brainstem tissue were included. Each image
type was assessed in a single design matrix to negate poten-
tial problems associated with uneven variances across the dif-
ferent quantitative maps. Each map was assessed for signifi-
cant positive and negative correlates with age. For each con-
trast, FWE < 0.05 was reported. Finally, for each VBQ analy-
sis where results were significant at FWE < 0.05, the T-maps
were binarized for visualization at p < 0.001 uncorrected.
These were used to create three-dimensional renderings, and also
to assess the overlap of significant results between different modal-
ities to better understand the interaction between the different
measures. Finally, the same binarized images were used to extract
the mean quantitative value for each individual. These values
were plotted against the corresponding age, and the best linear
fit indicated.

RESULTS
For anatomical reference, a high resolution (0.5 mm isotropic) ex
vivo combined MT T2∗ MRI with anatomical annotations has
been provided in Figure 3 (figure adapted from Lambert et al.,
2013 with permission from Elsevier).

TENSOR-BASED MORPHOMETRY
Highly localized volumetric decreases in tissue volume were found
symmetrically within the brachium conjunctivum (superior cere-
bellar peduncle) bilaterally. These volumetric decreases were sig-
nificant at FWE < 0.05 and are summarized in Figures 4 and 5.
There were no significant positive TBM correlates with age at
FWE < 0.05 and p < 0.001.

VOXEL-BASED QUANTIFICATION ANALYSIS
Negative correlates with age
Significant negative trends with age were only observed across
the MT maps within the brachium conjunctivum at FWE < 0.05.
These are summarized in Figures 4 and 5.

Positive correlates with age
As shown in Figures 5–7, there were more widespread significant
increases in qMRI values with age. Figure 6 shows the individual
parameter maps increases at six axial slices through the brainstem.
Figure 7 summarizes the regional MPM increases and examines
the overlap between the different parameter maps. It also demon-
strates the relative proportions of each tissue type that overlap
with one another.

R1 increases with age. Increases in R1 intensity values with age
were found throughout the brainstem, but were confined to gray
matter structures. These were found in bilateral inferior olivary
nuclei, pontine nuclei, dorsal raphe nucleus, and bilateral sub-
stantia nigra. To better understand this finding, a sub analysis on
these significant regions was performed, looking at the remain-
ing parameters. Whilst there may be some selection bias with this

FIGURE 3 | High resolution ex vivo combined MTT2* MRI with
anatomical annotations for reference. Figure adapted from Lambert et al.
(2013) with permission from Elsevier. Abbreviations: A8, dopaminergic center
(approximate location), CP, cerebral peduncle (anterior to posterior: consisting
of frontopontine, corticonuclear, corticospinal, and parietotemporal pontine

tracts); CST, corticospinal tract; CTT, central tegmental tract; ICP, inferior
cerebellar peduncle; ML, medial lemniscus; MLF, medial longitudinal
fasciculus; PAG, periaqueductal gray; SCT, spinocerebellar tract; SNpc,
substantia nigra pars compacta; SNpr, substantia nigra pars reticulata; TST,
tectospinal tract; VTA, ventral tegmental area. *Artifact due to fixation.
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FIGURE 4 | Areas of significant regional decreases in tissue volume
and magnetization transfer, binarized at p < 0.001 uncorrected.

approach (Vul et al., 2009), the correlation analysis was strictly
performed to compare the behavior of the different MRI modal-
ities within the regions of R1 change, to better understand what
may be contributing to this R1 increase. A significant positive cor-
relation with R2∗ was found within these regions, even when the
iron rich midbrain structures were excluded (Pearson’s Correla-
tion Coefficient within pons and medulla= 0.51, p < 1× 10−8),
implying that it is increasing iron deposition that significantly con-
tributes to the observed R1 signal increases within brainstem gray
matter structures.

R2∗ increases with age. Increases in R2∗ intensity values
were localized to midbrain structures. Specifically, the substantia
nigra, ventral tegmental area, and red nuclei. The pontine and
medullary R1 regions described above did not show increases
in R2s when analyzing the entire brainstem. This discrepancy
would be due to correction for multiple comparisons at the
whole brainstem level compared to a small volume region of
interest.

Proton density increases with age. Significant increases in PD
were observed in the brainstem white-matter. This included (from
rostral to caudal): Fasciculus cerebellothalamicus, brachium con-
junctivum, corticospinal tract, superior cerebellar peduncle, and
medial longitudinal fasciculus. Additionally, the inferior portion
of the substantia nigra also exhibited increased PD.

MT increases with age. Only one small region demonstrated
MT increases: the corticobulbar portion of the cerebral peduncle
bilaterally.

DISCUSSION
In this study, we have demonstrated the age effect of MT, R1,
R2∗, and PD in human brainstem using an automated, non-
biased approach that is able to resolve the internal structure of
the brainstem in unprecedented detail at 3T.

MIDBRAIN ATROPHY IN HEALTHY AGING
Previous studies examining age-related volumetric decline in the
brainstem have found no overall volume loss (Raz et al., 2001; Lee
et al., 2009) but significant midbrain atrophy (Luft et al., 1999).
This had previously been attributed to shrinkage of the substantia
nigra (Raz, 1996), however there is sparse histopathological evi-
dence to support this hypothesis (McCormack et al., 2004; Collier
et al., 2007). Our study agrees with previous work in that brainstem
aging-associated atrophy seems to be confined to the midbrain.
However, our results indicate that it is predominantly volume
loss of the superior cerebellar fiber bundles (brachium conjunc-
tivum, fasciculus cerebellothalamicus (Haroian et al., 1981)] that
are responsible for this finding. Additionally the decreasing myelin
content, reflected by decreasing MT and increasing PD, indicates
this is a regional effect due to axonal loss rather than an artifact.
What is striking is the regional specificity of these findings. As
with previous studies (Draganski et al., 2011), we found a marked
increase in iron concentration with age in the substantia nigra and
red nucleus. Though this increase is largely sequestered in neu-
romelanin in vivo, this substance will be released by dying neurons
and hence can contribute to the regional damage observed (Chi-
ueh, 2001; Papanikolaou and Pantopoulos, 2005). Not only is iron
directly toxic to axons by causing rapid lipid peroxidation, it can
also induce neurotoxic microglial factors to be released locally
that will potentiate the regional insult (Zecca et al., 2004). These
findings correlate with previously described cerebellar atrophy
(Andersen et al., 2003; Draganski et al., 2011; Walhovd et al., 2011)
and the resultant cortical and subcortical disconnection (Taniwaki
et al., 2007; Alalade et al., 2011) hence would better account for
these observations.

BRAINSTEM GRAY MATTER CHANGES
Our results agree with previous studies in the observation that the
pons and medulla do not show volumetric loss in aging (Sullivan
et al., 2004; Lee et al., 2009). Despite this, we identified wide-
spread and specific changes in the qMRI maps within the gray
matter structures of these regions. Specifically, increasing R1 sig-
nal was observed within the pontine nuclei and inferior olive, in
addition to the substantia nigra and dorsal raphe nuclei within the
mesencephalon. This increase in R1 signal was significantly corre-
lated with R2∗, suggesting that increasing iron content within these
structures can at least partly account for the observed gray matter
changes. Within the pons, as with elsewhere in the brain, iron is
predominately found in oligodendrocytes and to a lesser extent
in the microglia and astrocytes (Ozawa et al., 1994). However
the amount of iron in the former remains constant throughout
aging and instead increases are found within the microglia and
astrocytes (Zecca et al., 2004), which may relate to changes in vas-
cular permeability. It has been speculated that the accumulation
of immunoreactive iron in the microglia may cause or predis-
pose to a neuroinflammatory response, as seen in Parkinson’s and
Alzheimer’s disease (Zecca et al., 2004).

Chemical exchange brings a significant contribution to the
transfer of magnetization between free water and macromole-
cules (Henkelman et al., 1993; Kucharczyk et al., 1994). Evidence
has been presented which also suggests a significant impact of
chemical exchange on the resonance frequency of water protons
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FIGURE 5 | Scatter plots of mean individual values extracted from binarizedT-maps at p < 0.001 uncorrected. Linear fit shown in red. Increases: (A)
Proton Density; (B) R1; (C) Magnetization Transfer; (D) R2*. Decreases: (E). Magnetization Transfer; (F). TBM. All Pearson’s correlation coefficients significant
at p < 1×10−8.

(Shmueli et al., 2011; Wharton and Bowtell, 2012). Physiological
factors that impact chemical exchange such as tissue oxygenation
(O2 and CO2 exchange), temperature, and pH (Kucharczyk et al.,

1994; Liepinsh and Otting, 1996; van Zijl et al., 2003) may alter
the MT and R2∗ estimates presented here. However only small
variations of MT with pH have previously been reported within
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FIGURE 6 | Axial, coronal, and sagittal slice-wise images showing
positive correlates with age (R2s, MT, A, R1) projected onto
group-average MT map.

biologically plausible values (Kucharczyk et al., 1994). T1 relax-
ation is primarily driven by dipolar interactions between water and
macromolecular protons (Koenig, 1995). Additionally the small
variations in MT and T1 values of brain tissue with temperature
(Lewa and Majewska, 1980; Graham et al., 1999) are unlikely to
have a significant impact on our results within a range of biolog-
ically reasonable temperatures. Decreases in cerebral blood flow
(CBF) that vary from region to region have been reported in nor-
mal aging (Aanerud et al., 2012). Modulated by the physiological
parameters listed above, CBF may have an impact on the MPM
measurements. However, the precise interaction between these
remains poorly understood (Zauner and Muizelaar, 1997) and
their impact on aging sparsely characterized. Several findings in
this study suggest that the impact of CBF on healthy aging is mini-
mal in the brainstem. First, biologically plausible concordance was
accomplished between different parameter maps, for example the
decreasing MT with increasing PD in areas of axonal and volume
loss. Second, the results demonstrate respect for known anatomi-
cal boundaries such as the brachium conjunctivum with increased
PD. Finally, our results are in agreement with previous histological

FIGURE 7 | Significant regional increases binarized at p < 0.001
uncorrected.The legend classifies the regions of significant increase across
the MPM, allowing overlapping significant increases to be simultaneously
visualized. The histogram takes the total number of all significant voxels
shown in the rendering, and then classifies them according to the MPMs in
which those voxels are found in as per the legend.

observations, such as the increases in iron content in the substan-
tia nigra (Zecca et al., 2001). Future work is expected to truly
clarify and disambiguate the effects of CBF on MPM measure-
ments. Not only will this improve the biophysical interpretation
of these sequences in healthy tissue, but also allow better under-
standing of cerebral pathology where the vascular permeability
will also change (Mooradian, 1988).

LIMITATIONS
There are several limitations with our study. First, to accrue
100 normal control MPMs, we utilized scans that were acquired
through previous studies (FitzGerald et al., 2012; Lambert et al.,
2012; Chowdhury et al., 2013). There were few subjects between
the ages of 35–65. Whilst this does not invalidate the findings, it
makes it impossible to better characterize the temporal character-
istics of the changes i.e., are they linear or non-linear. Additionally,
as the upper age limit is 75, it is unclear how these changes
extrapolate to those over that age. These features also bias the
study toward those who are ambulatory, independent, and self
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motivating. Whilst it could also be argued that the latter criticism
ensures that the experimental group consists only of healthy nor-
mal controls, it must also be acknowledged that declining mobility
is a recognized feature of normal aging that may be unrelated to
cortical changes, and this would certainly represent a selection
bias in this work. Finally, it is currently unclear how these changes
map to individual function, so further work is required to better
understand this aspect.

In this work, the impact of physiological noise on image quality
and the segmentation results was not explored. However, recent
work using these techniques in the cortex highlights its robustness
and also sensitivity to tissue microarchitecture (Dick et al., 2012;
Sereno et al., 2013). Physiological noise has mostly been addressed
in the context of fMRI, where image stability is paramount (Glover
et al., 2000; Hutton et al., 2011). These methods cannot be directly
implemented in anatomical imaging due to the different type of
image acquisition. Potentially beneficial techniques include phase-
navigator correction methods (Hu and Kim, 1994; Barry et al.,
2008) although they may reduce the efficiency of the FLASH acqui-
sitions. Alternatively real-time shimming methods for correction
of respiratory-induced effects (Van Gelderen et al., 2007) or optical
systems for fast prospective correction of subject motion (Zait-
sev et al., 2006) may yield a significant reduction of physiological
effects on anatomical scans.

Regarding the scanning parameters, 1 mm isotopic volumes are
still reasonably large for certain brainstem structures, so our abil-
ity to fully characterize the changes are likewise limited. However,
many structures in the brainstem are well above the 1 mm3 thresh-
old such as the facial nerve nucleus (mean volume= 12.95 mm3)
and hypoglossal nerve nucleus (mean volume= 14.39 mm3)
(Sherwood et al., 2005), and hence this current study is of sufficient
resolution for these nuclei. Additionally, we have demonstrated
that widespread and structure specific changes can be found that
also correspond to known features of brainstem aging.

FUTURE APPLICATIONS
This work provided a baseline of qMRI changes with aging in
the brainstem. Further work is required to characterize the exact
temporal dynamics of these changes, and how they extrapolate
to those beyond the age of 75. Combining these techniques with
diffusion-weighted imaging would allow further characterization
of the changes within the white-matter and connectivity prop-
erties, and could be used to further refine the segmentations.
Future work will examine these parameters in the context of

the Parkinsonian disorders, such as idiopathic Parkinson’s dis-
ease, progressive supranuclear palsy, and multisystem atrophy.
These conditions are good models of brainstem disease with
which to develop the imaging techniques, as they all show post-
mortem histological changes within the brainstem that, to date, are
only evident on MRI at advanced stages of disease. Additionally,
further longitudinal work is required to understand how indi-
viduals whose qMRI parameters lay well outside their expected
normal age-matched distributions develop over time, to identify
whether these parameters can serve as early biomarkers of neu-
rodegenerative disease, an important prerequisite for any future
neuroprotective therapy.

CONCLUSION
In conclusion, we have characterized changes in the brainstem due
to normal healthy aging using qMRI and volumetric analysis. We
replicate previous findings of midbrain shrinkage, and put forward
a new hypothesis as to the underlying mechanism based on statis-
tically significant regional changes in the qMRI maps. Specifically,
axonal loss in the ascending cerebellar fiber bundles is responsible
for the decreased brainstem volume loss rather than atrophy of
the substantia nigra, as previously speculated. Additionally, it may
be that the regional increases in nigral and rubral iron content,
as reflected by R2∗ signal, underpin these observations. Finally
we demonstrate widespread brainstem changes during aging evi-
denced by increasing PD in the white-matter, and increasing R1
in the gray matter, the latter being significantly driven by increas-
ing iron deposition. This work provides a baseline from which
brainstem pathology can be better explored in vivo using 3T
MRI, and non-invasive biomarkers of different neurodegenerative
conditions.
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