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Abstract
Atopic dermatitis (AD) is a common chronic skin disease with high heritability. Apart from
filaggrin (FLG), the genes influencing AD are largely unknown. We conducted a genome-wide
association meta-analysis of 5,606 cases and 20,565 controls from 16 population-based cohorts
and followed up the ten most strongly associated novel markers in a further 5,419 cases and
19,833 controls from 14 studies. Three SNPs met genome-wide significance in the discovery and
replication cohorts combined: rs479844 upstream of OVOL1 (OR=0.88, p=1.1×10−13) and
rs2164983 near ACTL9 (OR=1.16, p=7.1×10−9), genes which have been implicated in epidermal
proliferation and differentiation, as well as rs2897442 in KIF3A within the cytokine cluster on
5q31.1 (OR=1.11, p=3.8×10−8). We also replicated the FLG locus and two recently identified
association signals at 11q13.5 (rs7927894, p=0.008) and 20q13.3 (rs6010620, p=0.002). Our
results underline the importance of both epidermal barrier function and immune dysregulation in
AD pathogenesis.

Atopic dermatitis (AD), or eczema, is one of the most common chronic inflammatory skin
diseases with prevalence rates of up to 20% in children and 3% in adults. It commonly starts
during infancy and frequently precedes or co-occurs with food allergy, asthma and rhinitis1 .
AD shows a broad spectrum of clinical manifestations and is characterized by dry skin,
intense pruritus, and a typical age-related distribution of inflammatory lesions with frequent
bacterial and viral superinfections1. Profound alterations in skin barrier function and
immunologic abnormalities are considered key components affecting the development and
severity of AD, but the exact cellular and molecular mechanisms remain incompletely
understood1 .

There is substantial evidence in support of a strong genetic component in AD; however,
knowledge on the genetic susceptibility to AD is rather limited2,3. So far, only null
mutations in the epidermal structural protein filaggrin gene (FLG) have been established as
major risk factors4,5 .

The only genome-wide association study (GWAS) on AD in European populations so far
identified a novel susceptibility locus on 11q13.5, downstream of C11orf306. A recent
second GWAS in a Chinese Han population identified two novel loci, one of which also
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showed evidence for association in a German sample (rs6010620, 20q13.33)7. In a
collaborative effort to unravel additional risk genes for AD, we conducted a well powered
two-staged genome-wide association meta-analysis in The EArly Genetics and Lifecourse
Epidemiology (EAGLE) Consortium.

In the discovery analysis of 5,606 AD cases and 20,565 controls from 16 population-based
cohorts of European descent (Supplementary Tables 1,2) there was little evidence for
population stratification at study level (λGC<=1.08) or at the meta-analysis level
(λGC=1.02), but an excess of association signals beyond those expected by chance
(Supplementary Figs.1,2).

SNPs from two regions reached genome-wide significance in the discovery meta-analysis
(Fig.1; Supplementary Table 3): rs7000782 (8q21.13, ZBTB10, OR=1.14, p=1.6×10−8) and
rs9050 (1q21.3, TCHH, OR=1.33, p=1.9×10−8). Given the proximity of rs9050 to the well-
established AD susceptibility gene FLG4,5, we evaluated whether the observed association
was due to linkage disequilibrium (LD) with FLG mutations. Despite low correlation
between rs9050 and the two most prevalent FLG mutations (in ALSPAC (The Avon
Longitudinal Study of Parents and Children): r2=0.257 for R501X, r2=0.001 for 2282del4)
and high levels of recombination (peak of 20cM/Mb at ~150.4Mb in HapMap) between the
TCHH and FLG regions, in a meta-analysis across eight studies conditional on the two FLG
mutations, rs9050 was no longer associated with AD (OR=0.98, p=0.88) (Supplementary
Fig.3) and was therefore not investigated further. rs9050 might tag a far-reaching haplotype
on which the FLG null mutations occur, but we cannot exclude that there are additional AD
risk variants in this complex region.

The 11q13.5 locus previously reported to be associated in the only other European GWAS
on AD to date6 was confirmed in our meta-analysis (rs7927894 p=0.008, OR=1.07, 95%CI
1.02-1.12) (Supplementary Fig.4). So was the variant rs6010620 reported in a recent
Chinese GWAS7 (p=0.002, OR=1.09, 95%CI 1.03-1.15).

Of the 15 loci reported to be associated with asthma or total serum IgE levels in a recent
GWAS8, two showed suggestive evidence for association with AD (IL13:rs1295686,
p=0.0008 and rs20541, p=0.0007; STAT6:rs167769 p=0.0379) (Supplementary Table 4).

After excluding the rs9050 SNP, we attempted to replicate the remaining 10 most strongly
associated loci (P<10−5 in discovery, Table 1; Supplementary Table 3; Fig.2; Supplementary
Fig.5) in 5,419 cases and 19,833 controls from 14 studies (Supplementary Tables 1,2). Three
of the ten SNPs showed significant association after conservative Bonferroni correction
(p<0.05/10=0.005) in the replication meta-analysis (and same direction of effect as the
discovery meta-analysis): rs479844 near OVOL1, rs2164983 near ACTL9, and rs2897442
in intron 8 of KIF3A (Table 1; Fig. 2). All three SNPs reached genome-wide significance in
the combined meta-analysis of discovery and replication sets: rs479844 (p=1.1×10−13,
OR=0.88), rs2164983 (p=7.1×10−9, OR=1.16) and rs2897442 (p=3.8×10−8, OR=1.11). In
contrast, rs7000782, which had reached genome-wide significance in the discovery analysis,
showed no evidence of association in replication (p=0.296). There was no evidence of
interactions between the three replicated SNPs (Supplementary Table 5).

rs479844 (at 11q13.1) is located <3kb upstream of OVOL1. The pattern of LD is complex at
this locus, but there is low recombination between rs479844 and this gene in Europeans
(Supplementary Fig.2). OVOL1 belongs to a highly conserved family of genes involved in
the regulation of the development and differentiation of epithelial tissues and germ cells9-11 .
It acts as a c-Myc repressor in keratinocytes, is activated by the β-catenin-LEF1 complex
during epidermal differentiation, and represents a downstream target of Wg/Wnt and TGF-
β/BMP7-Smad4 developmental signaling pathways10,12,13. Apart from their role in the
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organogenesis of skin and skin appendages14,15, these pathways are also implicated in the
postnatal regulation of epidermal proliferation and differentiation16-18. Disruption of
OVOL1 in mice leads to keratinocyte hyperproliferation, hair shaft abnormalities, kidney
cysts, and defective spermatogenesis10,11. In addition, OVOL1 regulates loricrin expression
thereby preventing premature terminal differentiation10. Thus, it might be speculated
whether variation at this locus influences epidermal proliferation and/or differentiation,
which is known to be disturbed in AD. Analysis of transcript levels of all genes within 500
kb of rs479844 (OVOL1) in EBV-transformed lymphoblastoid cell lines (LCLs) from 949
ALSPAC individuals revealed a significant association between rs479844 and a nearby
hypothetical protein DKFZp761E198 (p=7×10−5). Likewise, analysis of SNP-transcript
pairs in the MuTHER (Multiple Tissue Human Expression Resource) skin genome-wide
expression quantitative trait loci (eQTL) pilot database of 160 samples19 provided
suggestive evidence for an association in the same direction with DKFZp761E198 in one of
the twin sets (Supplementary Fig.6). Further investigations are needed to clarify if the causal
variant(s) at this locus exerts its effect through this transcript.

rs2164983 (at 19p13.2) is located in an intergenic region 70kb upstream of ADAMTS10 and
18kb downstream of ACTL9 (encoding a hypothetical protein). ADAMTS are a group of
complex secreted zinc-dependent metalloproteinases, which bind to and cleave extracellular
matrix components, and are involved in connective tissue remodelling and extracellular
matrix turnover20,21. Actin proteins have well-characterized cytoskeletal functions, are
important for the maintenance of epithelial morphology and cell migration, and have also
been implicated in nuclear activities22-24. The low recombination between rs2164983 and
ACTL9 and recombination peak between rs2164983 and ADAMTS10 in CEU HapMap
individuals (Supplementary Fig.2) suggests the functional variant may be located within the
ACTL9 region. There was no evidence for association between this SNP and any expression
level of genes within 500kb in the ALSPAC LCL eQTL analysis, nor the MuTHER skin
eQTL data (Supplementary Fig.6).

rs2897442 is located in intron 8 of KIF3A, which encodes a subunit of kinesin-II complex,
required for the assembly of primary cilia, essential for Hedgehog signaling and implicated
in β-catenin-dependent Wnt signaling to induce expression of a variety of genes that
influence proliferation and apoptosis25,26. Of note, KIF3A is located in the 5q31 region,
which is characterized by a complex LD pattern and contains a cluster of cytokine and
immune-related genes, and has been linked to several autoimmune or inflammatory diseases,
including psoriasis27,28, Crohn’s disease29,30, and asthma

8,29,31 (Supplementary Table 4). In particular, distinct functional IL13 variants have been
associated with asthma susceptibility32. Although rs2897442 is within the KIF3A gene,
there is little recombination between this region and IL4 (interleukin 4). But there does
appear to be a recombination peak between this region and IL13 (Supplementary Fig.7a).
However, a secondary signal also appears to be present in the IL13/RAD50 region, and
when conditioning on rs2897442 in our discovery meta-analysis, the signal in the IL13/
RAD50 region remains, providing evidence of two independent signals (Supplementary Fig.
7b). In an attempt to refine the association at this locus further, we analysed Immunochip
data from 1,553 German AD cases and 3,640 population controls, 767 and 983 of which
were part of the replication stage. The Immunochip is a custom content Illumina iSelect
array focusing on autoimmune disorders, and offers an increased resolution at 5q31. In the
population tested, the strongest signal was seen for the IL13 SNP rs848 (p=1.93×10−10),
which is in high LD with the functional IL13 variant rs20541 (r2=0.979, D’=0.995). Further
significant signals were observed for a cluster of tightly linked variants in IL4 (lead SNP
rs66913936, p= 2.58×10−8) and KIF3A (rs2897442, p=8.84×10−7) (Supplementary Tables
6,7; Supplementary Fig.8). While rs2897442 showed only weak LD with rs848 (r2=0.160,
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D’=0.483), it was strongly correlated with rs66913936 (r2=0.858, D’=0.982). Likewise,
pair-wise genotype-conditioned analyses showed that the significant association of
rs2897442 with AD was abolished upon conditioning on rs66913936, whereas there was a
remaining signal after conditioning on rs848 (Supplementary Tables 6,7). Analysis of LCL
expression levels of all genes within 500kb of rs2897442 in ALSPAC revealed a modest
association between rs2897442 and IL13 transcript levels (p=2.7×10−3). No associations
with any transcript levels within 500kb of the proxy variant rs2299009 (r2=1) were seen in
the MuTHER skin eQTL data (Supplementary Fig.6). However, this does not exclude a
regulatory effect in another tissue or physiological state, involvement of causative variants
in LD with these SNPs in long-range control of more distant genes33, or different functional
effects such as alternative splicing.

It is well known that genes that participate in the same pathway tend to be adjacent in the
human genome and coordinately regulated34. Thus, our results and previous findings
suggest that there are distinct effects at this locus, which might be part of a regulatory block.
Further efforts including detailed sequencing and functional exploration are necessary to
fully explore this locus.

Variants rs2164983, rs1327914 and rs10983837 showed evidence of heterogeneity in the
meta-analysis (p<0.01). The overall random effects results for these variants were OR=1.14
(95%CI 1.05 −1.24), p=0.001; OR=1.06 (95%CI 1.00 - 1.13), p=0.058; and OR=1.11
(95%CI 0.98 - 1.20) p=0.155, respectively. Stratified analysis showed that the effects of
rs2164983 and rs1327914 were stronger in the childhood AD cohorts (OR=1.23,
p=2.9×10−9; OR=1.12, p=2.5×10−4) as compared to those studies that included AD cases of
any age (OR=1.17, p=0.002; OR=1.02, p=0.584, p-value for the differences p=0.031 and
p=0.028, respectively) (Supplementary Fig.9). This did not fully explain the heterogeneity
for rs2164983 (in the childhood only cohorts the p-value for heterogeneity was still p<0.01).
COPSAC (Copenhagen Studies on Asthma in Children) is noticeably in the opposite
direction and excluding this study gives a heterogeneity p-value of 0.069 (OR=1.17,
p=8.1×10−10). However, COPSAC is diagnostically and demographically comparable to the
other cohorts and so there is no obvious reason why this cohort should give such a different
result. Neither stratification by age of diagnosis nor whether a physician’s diagnosis was a
case criterion explained the heterogeneity observed for rs10983837. Stratified analyses also
indicated a stronger effect of rs2897442 in studies with a more stringent definition of AD
(reported physician’s diagnosis) (OR=1.14, p=7.0×10−9) as compared to studies where AD
was defined as self-reported history of AD only (OR=1.05, p=0.119) (Supplementary Fig.9).
These observations underline the importance of careful phenotyping and support the claim
of distinct disease entities rather than one illness as is reflected by current rather broad and
inclusive concepts of AD. It is anticipated that the results of molecular studies will enable a
more precise classification of AD.

In summary, in this large-scale GWAS on 11,025 AD cases and 40,398 controls we have
identified and replicated two novel AD risk loci near genes which have annotations that
suggest a role in epidermal proliferation and differentiation, supporting the importance of
abnormalities in skin barrier function in the pathobiology of AD. In addition, we observed a
genome-wide significant association signal from within the cytokine cluster on 5q31.1, this
appeared to be due to two distinct signals, one centered on RAD50/IL13 and the other on
IL4/KIF3A, both of which showed moderate association with IL13 expression. We further
observed a signal in the epidermal differentiation complex, representing the FLG locus, and
replicated the 11q13.5 variant identified in the only other (smaller) European GWAS on AD
published to date. Our results are consistent with the hypothesis that AD is caused by both
epidermal barrier abnormalities and immunological features. Further studies are needed to
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identify the causal variants at these loci and to understand the mechanisms through which
they confer AD risk.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Methods
Discovery Analysis

For the discovery analysis we used 5,606 AD cases and 20,565 controls of European descent
from 16 population-based cohorts, 10 of which were birth cohorts. Details on sample
recruitment, phenotypes and summary details for each collection are given in the
Supplementary Methods and in Supplementary Table 1. Genome-wide genotyping was
performed independently in each cohort with the use of various standard genotyping
technologies (see Supplementary Table 2). Each study independently conducted imputation
with reference to HapMap release 21 or 22 CEU phased genotypes, and performed
association analysis using logistic regression models based on an expected allelic-dosage
model for SNPs, adjusting for sex and ancestry-informative principal components, as
necessary. SNPs with a minor allele frequency <1% and poor imputation quality (R2<0.3 if
using MACH or proper-info<0.4 if using IMPUTE imputation algorithm) were excluded.
After genomic control at individual study levels, we combined association data for ~2.5
million imputed and genotyped autosomal SNPs into an inverse-variance fixed-effects
additive-model meta-analysis. There was little evidence for population stratification at study
level (λGC<=1.08, Supplementary Table 2) or at the meta-analysis level (λGC=1.02), and
the quantile-quantile (Q-Q) plot of the meta-statistic showed a marked excess of detectable
association signals well beyond those expected by chance (Supplementary Fig.1).

Replication Analysis
For replication we selected the most strongly associated SNPs from the 10 most strongly
associated loci in the discovery meta-analysis (all were P < 10−5 in stage 1, Table 1). These
SNPs were analysed using in silico data from 11 GWA sample sets not included in the
discovery meta-analysis and additional de novo genotyping in a further 3 studies
(Supplementary Tables 1,2), for a maximum possible replication sample size of 5,419 cases
and 19,833 controls, all of European descent. Each study again conducted the association
analyses using a logistic regression model with similar covariate adjustments, based on
expected allelic dosage for the in silico studies and allele counts in the de novo genotyping
studies and the results were meta-analysed in Stata 11.1 software (Statacorp LP, Texas,
USA). We applied a threshold of p<5×10−8 for genome-wide significance and tested for
overall heterogeneity of the discovery and replication studies using the Cochran’s Q-
statistic.

Immunochip Analysis Methods
We evaluated 1,553 German AD cases and 3,640 German population controls. Cases were
obtained from German university hospitals (Technical University Munich as part of the
GENEVA study, and University of Kiel). AD was diagnosed on the basis of a skin
examination by experienced dermatologists according to standard criteria in the presence of
chronic or chronically relapsing pruritic dermatitis with the typical morphology and
distribution6. Controls were derived from the KORA population-based surveys35 and the
previously described population-based Popgen Biobank36. 767 of the cases and 983 of the
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controls were also part of the replication stage. Samples with > 10% missing data,
individuals from each pair of unexpected duplicates or relatives, as well as individuals with
outlier heterozygosities of ±5 s.d. away from the mean were excluded. The remaining
Immunochip samples were tested for population stratification using the principal
components stratification method, as implemented in EIGENSTRAT37. The results of
principal component analysis revealed no evidence for population stratification. SNPs that
had >5% missing data, a minor allele frequency <1% and exact Hardy-Weinberg
equilibrium Pcontrols <10−4 were excluded. Association P values were calculated using χ2

tests (d.f. = 1) and conditional association was analyzed using logistic regression both
implemented in PLINK38 from where we also derived odds ratios and their respective
confidence intervals.

ALSPAC Expression Analysis Methods
997 unrelated ALSPAC individuals for which LCLs had been generated had RNA extracted
using Qiagen’s Rneasy extraction kit and amplified using Ambion’s illumina totalprep 96
RNA amplification kit and expression surveyed using the Illumina HT-12 v3 bead arrays.
Each individual was run with 2 replicates. Expression data was normalized by quantile
normalization between replicates and then median normalization across individuals. 949
ALSPAC individuals had both expression levels and imputed genome-wide SNP data
available (see ALSPAC replication cohort genotyping above). For each of the three AD
replicated SNPs (rs479844, rs2164983 and rs2897442, we used linear regression in
Mach2QTL to investigate the association between each SNP and any transcript within +/−
500kb of the SNP.
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Figure 1. Manhattan plot for the discovery genome-wide association meta-analysis of atopic
dermatitis
after excluding all SNPs MAF<1% and Rsqr<0.3 or proper_info<0.4. λ=1.017. SNPs with
p<1×10−5 are shown in red.
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Figure 2. Forest plots for the association of (a) rs479844, (b) rs2164983 and (c) rs2894772 with
atopic dermatitis
All OR are reported with the minor allele (shown in brackets) as the effect allele. *MoBa
imputation quality score was ‘info’ from PLINK.
GENR=Generation R. rs2164983 was not included in the HapMap release 21 and so was
missing for some discovery cohorts.
Black points indicate the Odds Ratios (ORs) and the horizontal lines represent the 95%
confidence intervals (CIs) for each study. Arrows are used to show where a CI extends
beyond the range of the plot.
The sizes of the red and blue boxes indicate the relative weight of each study (using inverse
variance weighting). Blue boxes indicate SNPs that were imputed and red boxes indicate
SNPs on the genome-wide genotyping chip for the discovery cohorts and either on the
genome-wide genotyping chip or individually genotyped for the replication cohorts. Only
Health2006, KORA/GENEVA and NFBC86’ underwent individual SNP genotyping.
The subtotals (for discovery and replication) and overall ORs and CIs are indicated by the
centre and range of the diamonds.
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